1
|
Nie T, Bai X, Liao Z, Chen R, Le Q, Zhang Y, Liu X, Bian X, Wu S, Wu J, Li X. Engineering Patatin for enhanced lipase activity and long-chain fatty acid specificity via rational design. Food Chem 2025; 482:144155. [PMID: 40203696 DOI: 10.1016/j.foodchem.2025.144155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/20/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Patatin, a multifunctional glycoprotein from potatoes, is a promising lipase for industrial applications due to its emulsifying, antioxidant, and lipid-modifying properties. However, its low expression efficiency and preference for short-chain substrates limit practical utility. Here, we addressed these challenges by heterologously expressing patatin in Pichia pastoris X-33, achieving a yield of 121 mg/L through optimized fermentation. The enzyme showed optimal activity at 35 °C and pH 10.0, with methanol enhancing activity, while Fe2+/Fe3+ inhibited it. Rational design of the D286A mutant significantly improved long-chain substrate specificity (3.2-fold higher activity for pNP-C16) and thermal stability (ΔTm = +5.4 °C). Molecular dynamics revealed that the mutation disrupted an α-helix (residues 280-286), forming a flexible loop to accommodate long-chain substrates via hydrogen bonding and π-alkyl interactions. Structural integrity was confirmed by circular dichroism. This work provides a scalable platform for engineering patatin, with future studies targeting industrial-scale production and applications in functional lipids and biocatalysis.
Collapse
Affiliation(s)
- Ting Nie
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xue Bai
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zikang Liao
- School of Food & Biological Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China
| | - Runsha Chen
- School of Food & Biological Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China
| | - Qianyu Le
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Zhang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodan Liu
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuhong Wu
- National Engineering Research Center for Nanotechnology, Shanghai 200241, China; School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xianghong Li
- School of Food & Biological Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China.
| |
Collapse
|
2
|
Reis de Souza TC, Landín GM, Celis UM, Valeriano TH, Gómez-Soto JG, Briones CN. Supplementation with Potato Protein Concentrate and Saccharomyces boulardii to an Antibiotic-Free Diet Improves Intestinal Health in Weaned Piglets. Animals (Basel) 2025; 15:985. [PMID: 40218378 PMCID: PMC11988057 DOI: 10.3390/ani15070985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Many countries have banned the use of antibiotics in livestock feed due to the development of antibiotic-resistant bacteria. Therefore, it is necessary to identify suitable alternatives to antibiotics in order to maintain intestinal health and improve piglet performance after weaning. The objective of this study was to evaluate how the intake of two functional foods-potato protein concentrate (PP) and Saccharomyces boulardii (Sb), either isolated or combined-would affect productive performance and some digestive morphophysiological responses after two weeks post-weaning. We evaluated five diets: SB, with Sb; PPC, with PP; PPC-SB, with a combination of PP and Sb; C-, without antibiotics, Sb, or PP; and C+, with antibiotics. Neither the absence of antibiotics in the diet nor the inclusion of PP and Sb affected performance or digestive organ development during the post-weaning phase. Piglets fed the C+ diet and the PP-Sb combination had higher concentrations of occludin proteins and longer villi in the jejunum compared to those fed C-, PPC, and SB. The use of Sb alone or in combination with PP increased fecal Lactobacillus, while antibiotics reduced coliform bacteria. The PP-Sb combination prevented the atrophy of the jejunal villi and promoted adhesion between enterocytes in the jejunum. Including these functional foods in piglet diets contributed to maintaining intestinal health during the critical post-weaning phase. However, further research is needed to validate and enhance the conclusions of this study.
Collapse
Affiliation(s)
- Tércia Cesária Reis de Souza
- Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro 76230, Mexico; (U.M.C.); (T.H.V.); (J.G.G.-S.); (C.N.B.)
| | - Gerardo Mariscal Landín
- National Institute of Agricultural and Livestock Forestry Research, National Center of Research in Animal Physiology, Ajuchitlán Colón, Querétaro 76280, Mexico;
| | - Ulisses Moreno Celis
- Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro 76230, Mexico; (U.M.C.); (T.H.V.); (J.G.G.-S.); (C.N.B.)
| | - Teresita Hijuitl Valeriano
- Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro 76230, Mexico; (U.M.C.); (T.H.V.); (J.G.G.-S.); (C.N.B.)
| | - José Guadalupe Gómez-Soto
- Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro 76230, Mexico; (U.M.C.); (T.H.V.); (J.G.G.-S.); (C.N.B.)
| | - Christian Narváez Briones
- Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro 76230, Mexico; (U.M.C.); (T.H.V.); (J.G.G.-S.); (C.N.B.)
| |
Collapse
|
3
|
Sung WC, Tan CX, Lai PH, Wang ST, Chiou TY, Lee WJ. Enhancing the Functional and Emulsifying Properties of Potato Protein via Enzymatic Hydrolysis with Papain and Bromelain for Gluten-Free Cake Emulsifiers. Foods 2025; 14:978. [PMID: 40231977 PMCID: PMC11941777 DOI: 10.3390/foods14060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
In recent years, plant-derived food proteins have gained increasing attention due to their economic, ecological, and health benefits. This study aimed to enhance the functional properties of potato protein isolate (PPI) through enzymatic hydrolysis with papain and bromelain, evaluating the physicochemical and emulsifying characteristics of the resulting potato protein hydrolysates (PPHs) for their potential use as plant-based emulsifiers. PPHs were prepared at various hydrolysis times (0.25-2 h), resulting in reduced molecular weights and improved solubility under acidic conditions (pH 4-6). PPHs exhibited higher ABTS radical-scavenging activity than PPI. The foaming stability (FS) of bromelain-treated PPI was maintained, whereas papain-treated PPI showed decreased FS with increased hydrolysis. Bromelain-treated PPHs demonstrated a superior emulsifying activity index (EAI: 306 m2/g), polydispersity index (PDI), higher surface potential, and higher viscosity compared to papain-treated PPHs, particularly after 15 min of hydrolysis. Incorporating PPHs into gluten-free chiffon rice cake batter reduced the batter density, increased the specific volume, and improved the cake's textural properties, including springiness, cohesiveness, and resilience. These findings suggest that bromelain-treated PPHs are promising plant-based emulsifiers with applications in food systems requiring enhanced stability and functionality.
Collapse
Affiliation(s)
- Wen-Chieh Sung
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (W.-C.S.); (P.-H.L.); (S.-T.W.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chui-Xuan Tan
- School of Food Safety, Taipei Medical University, Taipei 11031, Taiwan;
| | - Pei-Hsuan Lai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (W.-C.S.); (P.-H.L.); (S.-T.W.)
| | - Shang-Ta Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (W.-C.S.); (P.-H.L.); (S.-T.W.)
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Tai-Ying Chiou
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Hokkaido 090-8507, Japan;
| | - Wei-Ju Lee
- School of Food Safety, Taipei Medical University, Taipei 11031, Taiwan;
| |
Collapse
|
4
|
Choudhury DB, Gul K, Sehrawat R, Mir NA, Ali A. Unveiling the potential of bean proteins: Extraction methods, functional and structural properties, modification techniques, physiological benefits, and diverse food applications. Int J Biol Macromol 2025; 295:139578. [PMID: 39793834 DOI: 10.1016/j.ijbiomac.2025.139578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Bean proteins, known for their sustainability, versatility, and high nutritional value, represent a valuable yet underutilized resource, receiving less industrial attention compared to soy and pea proteins. This review examines the structural and molecular characteristics, functional properties, amino acid composition, nutritional value, antinutritional factors, and digestibility of bean proteins. Their applications in various food systems, including baked goods, juice and milk substitutes, meat alternatives, edible coatings, and 3D printing inks, are discussed. The physiological benefits of bean proteins, such as antidiabetic, cardioprotective, antioxidant, and neuroprotective effects, are also presented, highlighting their potential for promoting well-being. Our review emphasizes the diversity of bean proteins and highlights ultrasound as the most effective extraction method among available techniques. Beyond their physiological benefits, bean proteins significantly enhance the structural, technological, and nutritional properties of food systems. The functionality can be further improved through various modification techniques, thereby expanding their applicability in the food industry. While studies have explored the impact of bean protein structure on their nutritional and functional properties, further research is needed to investigate advanced modification techniques and the structure-function relationship. This will enhance the utilization of bean proteins in innovative and sustainable food applications.
Collapse
Affiliation(s)
- Debojit Baidya Choudhury
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India.
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Nisar Ahmad Mir
- Department of Food Technology, Islamic University of Science and Technology, One University Avenue, Awantipora 192122, India
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom
| |
Collapse
|
5
|
Xu Z, Zhang F, Cheng D, Ma Q, Wang W, Wang J, Sun J. Physical stability of oil-in-water multi-layered coenzyme Q10 nano-emulsions. Food Chem 2025; 464:141860. [PMID: 39504897 DOI: 10.1016/j.foodchem.2024.141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
As a lipophilic antioxidant, coenzyme Q10 (CoQ10) has limited application owing to its low water solubility and instability. In the present study, potato protein (PP) and soybean soluble polysaccharide (SSPS) were used as carriers to prepare a multilayer SSPS-PP-CoQ10 nano-emulsion using the reversed-phase emulsification method; further, the water solubility, stability, and formation mechanism of the nano-emulsion were analyzed. The results showed that the particle size of SSPS-PP-CoQ10 nano-emulsions was 253-422 nm with good polydispersity. The encapsulation efficiency (EE) could reach up to 88.87 %. When the concentration of SSPS was 0.1 wt%, the decrease in interfacial tension and increase in viscoelasticity indicated that nano-emulsion improved CoQ10 physical stability. SSPS incorporation altered the microscopic environment of the hydrophobic residues, rendering them more hydrophilic and enhancing their water solubility. According to molecular docking results, hydrogen bonds promote binding among SSPS, PP, and CoQ10, and increase emulsion stability.
Collapse
Affiliation(s)
- Zhili Xu
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China
| | - Fan Zhang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China
| | - Dewei Cheng
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China.
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Potato Processing Technology Innovation Center, Zhangjiakou 076576, China; Sino-US and Sino-Japan Joint Center of Food Science and Technology, Baoding, Hebei, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China.
| |
Collapse
|
6
|
Chen X, Niu H, McClements DJ. Design and fabrication of plant-based milk fat globule mimetics: Flaxseed oil droplets coated with potato, soy, or pea protein. Food Res Int 2024; 197:115175. [PMID: 39593386 DOI: 10.1016/j.foodres.2024.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
An increasing number of plant-based milk products are appearing on the market as substitutes for dairy milk. These products are becoming more popular due to growing consumers concerns about environmental, health, or ethical issues linked to dairy milk. Typically, plant-based milks are produced using top-down approaches that involve mechanical disruption of plant tissues. In this study, we examined the possibility of using a bottom-up approach to mimic the structural and physicochemical properties of milk fat globules (MFGs) in homogenized milk. Plant-based MFGs (PB-MFGs) were prepared using flaxseed oil as an omega-3 fatty acid rich oil phase, and potato, soy, or pea protein as emulsifiers to create the interfacial membranes. PB-MFGs were prepared with the same oil content (10 %) but different protein contents (0.5, 1, 1.5, and 2 %). The mean particle diameters (d4,3 and d3,2) of the three types of PB-MFGs were slightly smaller than those of dairy MFGs, while their surface charges were somewhat more negative under neutral conditions. There was no significant difference in the shear viscosity of PB-MFGs and MFGs. In terms of stability, PB-MFGs prepared with potato protein exhibited the smallest particle size change after 30 days of storage. Moreover, the pH stability of these PB-MFGs was closest to that of dairy MFGs. Our results provide valuable insights into the design and development of plant-based milks with more dairy-like properties, which may increase their more widespread acceptance and application.
Collapse
Affiliation(s)
- Xianwei Chen
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
7
|
Tao L, Zhang C, Zhang G, Zhou J. High-level production of patatin in Pichia pastoris and characterization of N-glycosylation modification in food processing properties. Food Res Int 2024; 196:115111. [PMID: 39614517 DOI: 10.1016/j.foodres.2024.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Patatin is an acidic protein found in potatoes that is commonly used in food and pharmaceutical industries due to its excellent emulsifying and gelation abilities. Pichia pastoris is widely used as a host for recombinant protein production because it can incorporate post-translational modifications. In this study, a patatin titre of 2189.8 mg/L was achieved in a 5 L bioreactor using P. pastoris GS115 with signal peptide mutation, dual promoter construction, co-expression of chaperone proteins and optimised fermentation. To enhance the application of recombinant patatin in the food processing field, the level of N-glycosylation was elevated by genetic engineering. Properties of natural patatin, recombinant patatin and patatinL109T (N-glycosylated modified patatin) were investigated including foaming, hydrophobicity and emulsifying abilities. The functional properties of recombinant patatin were enhanced by introducing N-glycosylation, which also improved the water-holding capacity of its gel. The patatinL109T gel exhibited superior elasticity and water retention properties. The findings provide valuable insight and serve as a reference for the utilisation of recombinant patatin. The established enhancement strategy could be applied to other recombinant proteins.
Collapse
Affiliation(s)
- Lingling Tao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Changtai Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guoqiang Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Zhang L, Hu Y, Jiang L. Advancements in emulsion systems for specialized infant formulas: Research process and formulation proposals for optimizing bioavailability of nutraceuticals. Compr Rev Food Sci Food Saf 2024; 23:e70043. [PMID: 39455164 DOI: 10.1111/1541-4337.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
With the rapid advancements in nutrition and dietary management, infant formulas for special medical purposes (IFSMPs) have been developed to cater to the unique nutraceutical requirements of infants with specific medical conditions or physiological features. However, there are various challenges in effectively preserving and maximizing the health benefits of the specific nutraceuticals incorporated in IFSMPs. This review provides an overview of the nutritional compositions of various IFSMPs and highlights the challenges associated with the effective supplementation of specific nutraceuticals for infants. In addition, it emphasizes the promising potential of emulsion delivery systems, which possess both encapsulation and delivery features, to significantly improve the solubility, stability, oral acceptance, and bioavailability (BA) of nutraceutical bioactives. Based on this information, this work proposes detailed strategies for designing and developing model IFSMP emulsions to enhance the BA of specially required nutraceuticals. Key areas covered include emulsion stabilization, selective release mechanisms, and effective absorption of nutraceuticals. By following these proposals, researchers and industry professionals can design and optimize emulsion-based IFSMPs with enhanced health benefits. This review not only outlines the developmental states of IFSMP formulations but also identifies future research directions aimed at improving the physiological health benefits of IFSMPs. This effort lays the theoretical groundwork for the further development of emulsion-type IFSMP in infant formula (IF) industry, positioning the IF industry to better meet the complex needs of infants requiring specialized nutrition.
Collapse
Affiliation(s)
- Liling Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yang Hu
- Department of Scientific and Technological Innovation, Future Food (Bai Ma) Research Institute, Nanjing, Jiangsu, China
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Li L, Zhu T, Wen L, Zhang T, Ren M. Biofortification of potato nutrition. J Adv Res 2024:S2090-1232(24)00487-9. [PMID: 39486784 DOI: 10.1016/j.jare.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is the fourth most important food crop after rice, wheat and maize in the world with the potential to feed the world's population, and potato is a major staple food in many countries. Currently, potato is grown in more than 100 countries and is consumed by more than 1 billion people worldwide, and the global annual output exceeds 300 million tons. With the rapid increase in the global population, potato will play a key role in food supply. These aspects have driven scientists to genetically engineer potato for yield and nutrition improvement. AIM OF REVIEW Potato is an excellent source of carbohydrates, rich in vitamins, phenols and minerals. At present, the nutritional fortification of potato has made remarkable progress, and the biomass and nutrient compositions of potato have been significantly improved through agronomic operation and genetic improvement. This review aims to summarize recent advances in the nutritional fortification of potato protein, lipid and vitamin, and provides new insights for future potato research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively summarizes the biofortification of potato five nutrients from protein, lipid, starch, vitamin to mineral. Meanwhile, we also discuss the multilayered insights in the prospects of edible potato fruit, vaccines and high-value products synthesis, and diploid potato seeds reproduction.
Collapse
Affiliation(s)
- Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Tingting Zhu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Lina Wen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China
| | - Tanran Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Bashash M, Wang-Pruski G, He QS, Sun X. The emulsifying capacity and stability of potato proteins and peptides: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70007. [PMID: 39223759 DOI: 10.1111/1541-4337.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The potato has recently attracted more attention as a promising protein source. Potato proteins are commonly extracted from potato fruit juice, a byproduct of starch production. Potato proteins are characterized by superior techno-functional properties, such as water solubility, gel-forming, emulsifying, and foaming properties. However, commercially isolated potato proteins are often denatured, leading to a loss of these functionalities. Extensive research has explored the influence of different conditions and techniques on the emulsifying capacity and stability of potato proteins. However, there has been no comprehensive review of this topic yet. This paper aims to provide an in-depth overview of current research progress on the emulsifying capacity and stability of potato proteins and peptides, discussing research challenges and future perspectives. This paper discusses genetic diversity in potato proteins and various methods for extracting proteins from potatoes, including thermal and acid precipitation, salt precipitation, organic solvent precipitation, carboxymethyl cellulose complexation, chromatography, and membrane technology. It also covers enzymatic hydrolysis for producing potato-derived peptides and methods for identifying potato protein-derived emulsifying peptides. Furthermore, it reviews the influence of factors, such as physicochemical properties, environmental conditions, and food-processing techniques on the emulsifying capacity and stability of potato proteins and their derived peptides. Finally, it highlights chemical modifications, such as acylation, succinylation, phosphorylation, and glycation to enhance emulsifying capacity and stability. This review provides insight into future research directions for utilizing potato proteins as sustainable protein sources and high-value food emulsifiers, thereby contributing to adding value to the potato processing industry.
Collapse
Affiliation(s)
- Moein Bashash
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Xiaohong Sun
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
11
|
Jang J, Lee DW. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci Food 2024; 8:50. [PMID: 39112506 PMCID: PMC11306346 DOI: 10.1038/s41538-024-00292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The burgeoning demand for plant-based meat analogs (PBMAs) stems from environmental, health, and ethical concerns, yet replicating the sensory attributes of animal meat remains challenging. This comprehensive review explores recent innovations in PBMA ingredients and methodologies, emphasizing advancements in texture, flavor, and nutritional profiles. It chronicles the transition from soy-based first-generation products to more diversified second- and third-generation PBMAs, showcasing the utilization of various plant proteins and advanced processing techniques to enrich sensory experiences. The review underscores the crucial role of proteins, polysaccharides, and fats in mimicking meat's texture and flavor and emphasizes research on new plant-based sources to improve product quality. Addressing challenges like production costs, taste, texture, and nutritional adequacy is vital for enhancing consumer acceptance and fostering a more sustainable food system.
Collapse
Affiliation(s)
- Jiwon Jang
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Dong-Woo Lee
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea.
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
12
|
Kumar R, Guleria A, Padwad YS, Srivatsan V, Yadav SK. Smart proteins as a new paradigm for meeting dietary protein sufficiency of India: a critical review on the safety and sustainability of different protein sources. Crit Rev Food Sci Nutr 2024:1-50. [PMID: 39011754 DOI: 10.1080/10408398.2024.2367564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
India, a global leader in agriculture, faces sustainability challenges in feeding its population. Although primarily a vegetarian population, the consumption of animal derived proteins has tremendously increased in recent years. Excessive dependency on animal proteins is not environmentally sustainable, necessitating the identification of alternative smart proteins. Smart proteins are environmentally benign and mimic the properties of animal proteins (dairy, egg and meat) and are derived from plant proteins, microbial fermentation, insects and cell culture meat (CCM) processes. This review critically evaluates the technological, safety, and sustainability challenges involved in production of smart proteins and their consumer acceptance from Indian context. Under current circumstances, plant-based proteins are most favorable; however, limited land availability and impending climate change makes them unsustainable in the long run. CCM is unaffordable with high input costs limiting its commercialization in near future. Microbial-derived proteins could be the most sustainable option for future owing to higher productivity and ability to grow on low-cost substrates. A circular economy approach integrating agri-horti waste valorization and C1 substrate synthesis with microbial biomass production offer economic viability. Considering the use of novel additives and processing techniques, evaluation of safety, allergenicity, and bioavailability of smart protein products is necessary before large-scale adoption.
Collapse
Affiliation(s)
- Raman Kumar
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Aditi Guleria
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Yogendra S Padwad
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- Protein Processing Centre, Dietetics, and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Sudesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
13
|
Franca P, Pierucci AP, Boukid F. Analysis of ingredient list and nutrient composition of plant-based burgers available in the global market. Int J Food Sci Nutr 2024; 75:159-172. [PMID: 38230681 DOI: 10.1080/09637486.2024.2303029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
The nutrient composition of plant-based burgers is a key factor when making their purchase/consumption decision to maintain a balanced diet. For this reason, ingredient list and nutritional information of burgers launched in the global market were retrieved from their labels. Products were classified based on the technology development, market position and region of the manufacturer. From the ingredient analysis, we observed a high heterogeneity in the ingredients used, a predominance of soy and wheat as main sources of proteins, and the increasing use of new protein sources (e.g. peas, other types of beans and pseudo-cereals). Oil was the most cited ingredient followed by salt. Nutritional composition varied mainly depending on the region with no clear pattern among countries. To less extent, technology development resulted in traditional products with lower amounts of protein and higher amounts of carbohydrates. Vegan and vegetarian products showed limited differences due to the high intra-heterogenicity.
Collapse
Affiliation(s)
- Paula Franca
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Paola Pierucci
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
14
|
Parecha D, Alfano A, Cimini D, Schiraldi C. Vegan grade medium component screening and concentration optimization for the fermentation of the probiotic strain Lactobacillus paracasei IMC 502® using Design of Experiments. J Ind Microbiol Biotechnol 2024; 51:kuae016. [PMID: 38658186 PMCID: PMC11099668 DOI: 10.1093/jimb/kuae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Lactobacillus paracasei IMC502® is a commercially successful probiotic strain. However, there are no reports that investigate growth medium composition in relation to improved biomass production for this strain. The major outcome of the present study is the design and optimization of a growth medium based on vegan components to be used in the cultivation of Lactobacillus paracasei IMC502®, by using Design of Experiments. Besides comparing different carbon sources, the use of plant-based peptones as nitrogen sources was considered. In particular, the use of guar peptone as the main nitrogen source, in the optimization of fermentation media for the production of probiotics, could replace other plant peptones (e.g. potato, rice, wheat, and soy) which are part of the human diet, thereby avoiding an increase in product and process prices. A model with R2 and adjusted R2 values higher than 95% was obtained. Model accuracy was equal to 94.11%. The vegan-optimized culture medium described in this study increased biomass production by about 65% compared to growth on De Man-Rogosa-Sharpe (MRS) medium. Moreover, this approach showed that most of the salts and trace elements generally present in MRS are not affecting biomass production, thus a simplified medium preparation can be proposed with higher probiotic biomass yield and titer. The possibility to obtain viable lactic acid bacteria at high density from vegetable derived nutrients will be of great interest to specific consumer communities, opening the way to follow this approach with other probiotics of impact for human health.
Collapse
Affiliation(s)
- Darshankumar Parecha
- University of Campania Luigi Vanvitelli, Department of Experimental Medicine, 80138 Naples, Italy
| | - Alberto Alfano
- University of Campania Luigi Vanvitelli, Department of Experimental Medicine, 80138 Naples, Italy
| | - Donatella Cimini
- University of Campania Luigi Vanvitelli, Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, 81100 Caserta, Italy
| | - Chiara Schiraldi
- University of Campania Luigi Vanvitelli, Department of Experimental Medicine, 80138 Naples, Italy
| |
Collapse
|
15
|
Ayoob KT. Carbohydrate confusion and dietary patterns: unintended public health consequences of "food swapping". Front Nutr 2023; 10:1266308. [PMID: 37841395 PMCID: PMC10568005 DOI: 10.3389/fnut.2023.1266308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
The 2025-2030 United States Dietary Guidelines process is currently underway, and the 2025 Dietary Guidelines Advisory Committee is examining and evaluating a list of prioritized scientific questions identified by the United States Department of Health and Human Services and the United States Department of Agriculture. One of the questions that will be evaluated is if changes should be made to USDA Dietary Patterns based on whether starchy vegetables and grains are, or can be, consumed interchangeably. These foods have historically been classified in distinct food groups. Menu modeling analyses evaluating the impact of replacing starchy vegetables with grains result in declines in key nutrients of concern. Given their unique nutrient contributions and the fact that many cultural foodways within the United States population include both starchy vegetables and grains, it is important for dietary recommendations to continue to categorize starchy vegetables and grains separately.
Collapse
Affiliation(s)
- Keith T. Ayoob
- Department of Pediatrics, Albert Einstein College of Medicine, Montefiore Hospital and Medical Center, Bronx, NY, United States
| |
Collapse
|
16
|
Pandey J, Thompson D, Joshi M, Scheuring DC, Koym JW, Joshi V, Vales MI. Genetic architecture of tuber-bound free amino acids in potato and effect of growing environment on the amino acid content. Sci Rep 2023; 13:13940. [PMID: 37626106 PMCID: PMC10457394 DOI: 10.1038/s41598-023-40880-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Free amino acids in potato tubers contribute to their nutritional value and processing quality. Exploring the natural variation in their accumulation in tubers across diverse genetic backgrounds is critical to potato breeding programs aiming to enhance or partition their distribution effectively. This study assessed variation in the tuber-bound free amino acids in a diversity panel of tetraploid potato clones developed and maintained by the Texas A&M Potato Breeding Program to explore their genetic basis and to obtain genomic-estimated breeding values for applied breeding purposes. Free amino acids content was evaluated in tubers of 217 tetraploid potato clones collected from Dalhart, Texas in 2019 and 2020, and Springlake, Texas in 2020. Most tuber amino acids were not affected by growing location, except histidine and proline, which were significantly lower (- 59.0%) and higher (+ 129.0%), respectively, at Springlake, Texas (a location that regularly suffers from abiotic stresses, mainly high-temperature stress). Single nucleotide polymorphism markers were used for genome-wide association studies and genomic selection of clones based on amino acid content. Most amino acids showed significant variations among potato clones and moderate to high heritabilities. Principal component analysis separated fresh from processing potato market classes based on amino acids distribution patterns. Genome-wide association studies discovered 33 QTL associated with 13 free amino acids. Genomic-estimated breeding values were calculated and are recommended for practical potato breeding applications to select parents and advance clones with the desired free amino acid content.
Collapse
Affiliation(s)
- Jeewan Pandey
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Dalton Thompson
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, 78801, USA
| | - Madhumita Joshi
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, 78801, USA
| | - Douglas C Scheuring
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jeffrey W Koym
- Texas A&M AgriLife Research and Extension Center, Lubbock, TX, 79403, USA
| | - Vijay Joshi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, 78801, USA.
| | - M Isabel Vales
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
17
|
Can Karaca A, Assadpour E, Jafari SM. Plant protein-based emulsions for the delivery of bioactive compounds. Adv Colloid Interface Sci 2023; 316:102918. [PMID: 37172542 DOI: 10.1016/j.cis.2023.102918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Emulsion-based delivery systems (EBDSs) can be used as effective carriers for bioactive compounds (bioactives). Recent studies have shown that plant proteins (PLPs) have the potential to be utilized as stabilizers of emulsions for loading, protection and delivery of bioactives. Different strategies combining physical, chemical and biological techniques can be applied for alteration of the structural characteristics and improving the emulsification and encapsulation performance of PLPs. The stability, release, and bioavailability of the encapsulated bioactives can be tailored via optimizing the processing conditions and formulation of the emulsions. This paper presents cutting-edge information on PLP-based emulsions carrying bioactives in terms of their preparation methods, physicochemical characteristics, stability, encapsulation efficiency and release behavior of bioactives. Strategies applied for improvement of emulsifying and encapsulation properties of PLPs used in EBDSs are also reviewed. Special emphasis is given to the use of PLP-carbohydrate complexes for stabilizing bioactive-loaded emulsions.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
18
|
Ermis E, Tekiner IH, Lee CC, Ucak S, Yetim H. An overview of protein powders and their use in food formulations. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ertan Ermis
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Ismail Hakki Tekiner
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
- Department of Industrial Biotechnology Ansbach University of Applied Sciences Ansbach Germany
| | - Chi Ching Lee
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Sumeyye Ucak
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Hasan Yetim
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
- Halal Food R&D Center of Excellence Istanbul Sabahattin Zaim University Istanbul Turkey
| |
Collapse
|
19
|
DOMIAN EWA, MAŃKO-JURKOWSKA DIANA, GÓRSKA AGNIESZKA. HEAT-INDUCED GELATION, RHEOLOGY AND STABILITY OF OIL-IN-WATER EMULSIONS PREPARED WITH PATATIN-RICH POTATO PROTEIN. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
20
|
Chen X, Gao J, Cao G, Guo S, Lu D, Hu B, Yang Z, Tong Y, Wen C. The properties of potato gluten-free doughs: comparative and combined effects of propylene glycol alginate and hydroxypropyl methyl cellulose or flaxseed gum. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Abstract
Different methods are often used to make gluten-free (GF) bread to get better bread characteristics. To explore the effects of emulsifiers and hydrocolloids on the characteristics of GF dough, different esterification levels of propylene glycol alginate (PGA), hydroxypropyl methyl cellulose (HPMC), flaxseed gum with (FG) different molecular weight, and the binary blends of HPMC/PGA and FG/PGA were added to GF dough, made with potato starch and potato protein in a ratio of 6:4. The results showed that the potato GF dough with FG and FG/PGA obtained a higher viscoelasticity than the other doughs. HPMC and FG promoted to the formation of network structure, but the network structure formed by PGA and their combination was more developed. It was found that all PGA, HPMC, FG and their combination could improve the softness of GF breads. The results provided a basis for optimizing the quality of potato GF bread.
Collapse
Affiliation(s)
- Xueting Chen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , P. R. China
| | - Jingyan Gao
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , P. R. China
- Wuxi Biortus Biosciences Co., Ltd , Jiangyin , Jiangsu , 214437 , P. R. China
| | - Geng Cao
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , P. R. China
| | - Shule Guo
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , P. R. China
| | - Dingning Lu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , P. R. China
| | - Bingbing Hu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , P. R. China
| | - Zuoqian Yang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , P. R. China
| | - Yi Tong
- COFCO Biotechnology Co., Ltd , Beijing , 100005 , P. R. China
| | - Chengrong Wen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , P. R. China
| |
Collapse
|
21
|
Lv Y, Xu L, Tang T, Li J, Gu L, Chang C, Zhang M, Yang Y, Su Y. Gel properties of soy protein isolate-potato protein-egg white composite gel: Study on rheological properties, microstructure, and digestibility. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Characterization of highly gelatinous patatin storage protein from Pichia pastoris. Food Res Int 2022; 162:111925. [DOI: 10.1016/j.foodres.2022.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022]
|
23
|
Srenuja D, Shanmugam A, Nair Sinija VR. Novel zero waste tactics for commercial vegetables – recent advances. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Commercial vegetables include tomatoes, potatoes, onions, and eggplant due to their surplus production, availability, and affordability. The valorisation of the massive wastage of commercial vegetables and providing a long-term solution has been challenging. The review addresses the implications of biowastes on the environment and fosters the recent investigations into valorising commercial vegetable waste to develop multiple value-added products. It discussed the outcomes of the multiple technologies, majorly on green chemistry extraction, while outlining other methods such as fermentation, enzymatic treatments, 3D printing foods, high-pressure homogenisation, microencapsulation, bio-absorption method, and pyrolysis for their respective vegetable wastes. Agri-residues can be a valuable source for formulating functional ingredients, natural additives, biodiesel, dyes, and animal feed. This comprehensive review proposes a strategy to upcycle low-cost biowaste to boost the economic and ecological benefits. The current review captures the interests and great collaborations between researchers, industrialists, policymakers, waste management bodies, and eco-activists.
Collapse
Affiliation(s)
- Dekka Srenuja
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management , Thanjavur , India
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management , Thanjavur , India
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management , Thanjavur , India
| | - Vadakkepulppara Ramachandran Nair Sinija
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management , Thanjavur , India
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management , Thanjavur , India
| |
Collapse
|
24
|
Wang F, Gu X, Lü M, Huang Y, Zhu Y, Sun Y, Zhu X. Structural Analysis and Study of Gel Properties of Thermally-Induced Soybean Isolate-Potato Protein Gel System. Foods 2022; 11:foods11223562. [PMID: 36429154 PMCID: PMC9689681 DOI: 10.3390/foods11223562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Heat-induced composite gel systems consisting of different soybean protein isolate (SPI) and potato protein (PP) mixtures were studied to elucidate their "backbone" and property changes. This was achieved by comparing the ratio of non-network proteins, protein subunit composition, and aggregation of different gel samples. It was revealed that SPI was the "gel network backbone" and PP played the role of "filler" in the SPI-PP composite gel system. Compared with the composite gels at the same ratio, springiness and WHC decrease with PP addition. For hardness, PP addition showed a less linear trend. At the SPI-PP = 2/1 composite gel, hardness was more than doubled, while springiness and WHC did not decrease too much and increased the inter-protein binding. The hydrophobic interactions and electrostatic interactions and hydrogen bonding of the SPI gel system were enhanced. The scanning electron microscopy results showed that the SPI-based gel system was able to form a more compact and compatible gel network. This study demonstrates the use of PP as a potential filler that can effectively improve the gelling properties of SPI, thus providing a theoretical basis for the study of functional plant protein foods.
Collapse
|
25
|
Kopko C, Garthoff J, Zhou K, Meunier L, O'Sullivan A, Fattori V. Are alternative proteins increasing food allergies? Trends, drivers and future perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Utilization of potato protein fractions to form oil-in-water nanoemulsions: Impact of pH, salt, and heat on their stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
27
|
Jiménez-Munoz L, Tsochatzis ED, Corredig M. Impact of the Structural Modifications of Potato Protein in the Digestibility Process under Semi-Dynamic Simulated Human Gastrointestinal In Vitro System. Nutrients 2022; 14:nu14122505. [PMID: 35745236 PMCID: PMC9230451 DOI: 10.3390/nu14122505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The raising consumer demand for plant-derived proteins has led to an increased production of alternative protein ingredients with varying processing histories. In this study, we used a commercially available potato protein ingredient with a nutritionally valuable amino acid profile and high technological functionality to evaluate if the digestibility of a suspension with the same composition is affected by differences in the structure. Four isocaloric (4% protein, w/w) matrices (suspension, gel, foam and heat-set foam) were prepared and their gastrointestinal fate was followed utilizing a semi-dynamic in vitro digestion model. The microstructure was observed by confocal laser scanning microscopy, protein breakdown was tested by electrophoresis and free amino acids after intestinal digestion was estimated using liquid chromatography/triple-quadruple-mass spectrometry (LC-TQMS). The heat-treated samples showed a higher degree of hydrolysis and lower trypsin inhibitory activity than the non-heat-treated samples. An in vitro digestible indispensable amino acid score was calculated based on experimental data, showing a value of 0.9 based on sulfur amino acids/valine as the limiting amino acids. The heated samples also showed a slower gastric emptying rate. The study highlights the effect of the food matrix on the distribution of the peptides created during various stages of gastric emptying.
Collapse
Affiliation(s)
- Luis Jiménez-Munoz
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- Correspondence: author:
| | - Emmanouil D. Tsochatzis
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- European Food Safety Authority-EFSA, Via Carlo Magno 1A, 43146 Parma, Italy
| | - Milena Corredig
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
| |
Collapse
|
28
|
Yang X, Xu R, Sun Z. Effects of Sodium Chloride and Freeze–Thaw Cycling on the Quality of Frozen Cooked Noodles Made of Potato Flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao‐qing Yang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| | - Ru Xu
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| | - Zhen‐yu Sun
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| |
Collapse
|
29
|
Zhao R, Liu X, Liu W, Liu Q, Zhang L, Hu H. Effect of high-intensity ultrasound on the structural, rheological, emulsifying and gelling properties of insoluble potato protein isolates. ULTRASONICS SONOCHEMISTRY 2022; 85:105969. [PMID: 35364471 PMCID: PMC8967727 DOI: 10.1016/j.ultsonch.2022.105969] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 05/26/2023]
Abstract
The denaturation and lower solubility of commercial potato proteins generally limited their industrial application. Effects of high-intensity ultrasound (HIU) (200, 400, and 600 W) and treatment time (10, 20, and 30 min) on the physicochemical and functional properties of insoluble potato protein isolates (ISPP) were investigated. The results revealed that HIU treatment induced the unfolding and breakdown of macromolecular aggregates of ISPP, resulting in the exposure of hydrophobic and R-SH groups, and reduction of the particle size. These active groups contributed to the formation of a dense and uniform gel network of ISPP gel and insoluble potato proteins/egg white protein (ISPP/EWP) hybrid gel. Furthermore, the increase of solubility and surface hydrophobicity and the decrease of particle size improved the emulsifying property of ISPP. However, excessive HIU treatment reduced the emulsification and gelling properties of the ISPP. Meanwhile, HIU treatment changes the secondary structure of ISPP. It could be speculated that the formation of a stable secondary structure of ISPP initiated by cavitation and shearing effect might play a dominant role on gel strengthens and firmness. Meanwhile, the decrease in relative content of β-turn had a positive effect on the formation of small particle to improve emulsifying property of ISPP.
Collapse
Affiliation(s)
- Ruixuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xinshuo Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Wei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Qiannan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
30
|
Lomolino G, Vincenzi S, Zannoni S, Marangon M, De Iseppi A, Curioni A. Emulsifying activity of potato proteins in the presence of k-carrageenan at different pH conditions. Food Chem X 2022; 13:100232. [PMID: 35498974 PMCID: PMC9039935 DOI: 10.1016/j.fochx.2022.100232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
The emulsifying activity of potato proteins was tested in different conditions. Potato proteins presented a higher emulsifying activity at pH 4.8. Electrostatic attraction occurs between Potato proteins and k-carrageenan at pH 3. k-carrageenan strengthens the structure of Potato proteins - stabilised emulsions.
Oil in Water (3:1) emulsions were prepared using potato proteins in the presence or absence of 0.2% k-carrageenan at different pH conditions (3.0, 7.0, and 4.8). These emulsions showed different droplet sizes, stability, appearance, and rheological properties. The best emulsion stability was achieved combining potato proteins and k-carrageenan at pH 3.0, where uniform and small oil droplets (30 µm) were observed. The rheological properties of the emulsions were also different. The highest viscosity and G’ were shown by the emulsion prepared with the addition of k-carrageenan at pH 3.0, this being attributed to the onset of a gel-like viscoelastic structure in these conditions. SDS-PAGE indicated that the superior properties of the emulsion prepared with k-carrageenan at pH 3.0 can be attributed to an electrostatic interaction between the positively charged potato proteins and the anionic polysaccharide. This interaction allowed the formation of a strong molecular network able to stabilize the system.
Collapse
Affiliation(s)
- Giovanna Lomolino
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| | - Simone Vincenzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| | - Stefania Zannoni
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| | - Alberto De Iseppi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| | - Andrea Curioni
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| |
Collapse
|