1
|
Luzardo-Ocampo I, Flores-Zavala D, Ramírez-Jiménez AK, Wall-Medrano A, Olivas-Aguirre FJ, Loarca-Piña G, Gaytán-Martínez M. Sensory evaluation and in vitro prebiotic effect of (poly)phenols and dietary fiber-rich mango bagasse-enriched confections. Food Chem 2025; 465:142149. [PMID: 39591873 DOI: 10.1016/j.foodchem.2024.142149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Mango bagasse (MB) is a (poly)phenols and fiber (DF)-rich agroindustrial by-product exhibiting health-beneficial properties. This research aimed to design and characterize an MB-added confection and evaluate its prebiotic effect in vitro. A sensory analysis involving 51 children was conducted to select the most accepted formulation. Nine formulations (3k factorial design) were screened through texture profile analysis to select an MBC formulation that was hydrated (1:4 and 1:5 MBC:water) to reduce its hardness, where 1:4 was chosen. Compared to MB, 1:4 formulation showed a higher protein (+1.20-fold) but less DF (-0.62-fold). The confections contained gallic acid, mangiferin, quercetin, and (+)-catechin (234.82-479.69 g/100 g sample) but displayed a lower in vitro accessibility than those from MB. Selected bacterial strains exhibited fermentative activity using MBC as a substrate, which was even better than using MB fiber-only. The results showed the potential of MB to DF and (poly)phenol-rich confections with prebiotic potential.
Collapse
Affiliation(s)
- Ivan Luzardo-Ocampo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, NL 64700, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, NL 64700, Mexico
| | - Daniela Flores-Zavala
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Santiago de Querétaro, QE 76000, Mexico
| | - Aurea K Ramírez-Jiménez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, NL 64700, Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua 32310, Mexico
| | - Francisco Javier Olivas-Aguirre
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua 32310, Mexico; Departamento de Ciencias de la La Salud, Universidad de Sonora (Campus Cajeme), Blvd. Bordo Nuevo s/n, Antiguo Ejido Providencia, Ciudad Obregón, SO 85010, Mexico
| | - Guadalupe Loarca-Piña
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Santiago de Querétaro, QE 76000, Mexico
| | - Marcela Gaytán-Martínez
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Santiago de Querétaro, QE 76000, Mexico.
| |
Collapse
|
2
|
Sánchez-Quezada V, Luzardo-Ocampo I, Gaytán-Martínez M, Loarca-Piña G. Physicochemical, nutraceutical, and sensory evaluation of a milk-type plant-based beverage of extruded common bean (Phaseolus vulgaris L.) added with iron. Food Chem 2024; 453:139602. [PMID: 38795433 DOI: 10.1016/j.foodchem.2024.139602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Milk-type beverages are popular vegan products requiring iron and calcium fortification to improve their nutritional value, as iron deficiency is the world's most prevalent nutritional problem. This research aimed to develop and characterize an extruded common bean (Phaseolus vulgaris L.)-based milk-type beverage added with bean protein isolate and iron. The formulations included flavors (non-flavored, vanilla, and nut) and two iron concentrations (2 and 3 mg FeSO4/100 mL). Extrusion increased the beverages' protein (+17.38 %) and starch digestibility, and reduced their antinutritional compounds (trypsin inhibitors, condensed tannins, and carbonates). Developed beverages' formulations differed from a commercial soybean beverage in their physicochemical properties but were more nutritious (protein: 3.33-3.44 %; fiber: 3.43-4.08 %). Iron-added beverages displayed a medium sensory acceptance (best overall likeness: 5.3-6.2). The developed beverage is a suitable, sensory-accepted, and nutritious bean-based beverage, suggesting novel research lines improving vegan beverage formulations to increase average daily iron intake.
Collapse
Affiliation(s)
- Vanessa Sánchez-Quezada
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Qro., Qro, Mexico.
| | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Qro., Qro, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico; Tecnologico de Monterrey, School of Engineering and Science, Campus Guadalajara, Av. General Ramon Corona 2514, Zapopan 45201, Mexico.
| | - Marcela Gaytán-Martínez
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Qro., Qro, Mexico.
| | - Guadalupe Loarca-Piña
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Qro., Qro, Mexico.
| |
Collapse
|
3
|
Sánchez-Quezada V, Velázquez-Guadarrama N, Mendoza-Elizalde S, Hernández-Iturriaga M, Landaverde PV, Loarca-Piña G. Bioaccessibility of bioactive compounds present in Persea americana Mill. seed ingredient during oral-gastric digestion with antibacterial capacity against Helicobacter pylori. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118259. [PMID: 38685366 DOI: 10.1016/j.jep.2024.118259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In ancient Mexican cultures, the Persea americana Mill seed has been used against gastrointestinal diseases, due to high concentrations of bioactive compounds. According to Traditional Mexican Medicine, P. americana seed aqueous infusion is used against roundworms, intestinal worms, parasites, and gastrointestinal problems, in a dose taken over three or four days. In addition, Mexican Society of Natural History indicates the traditional use of P. americana seed powder as an antiparasitic, and antibacterial. On the other hand, Helicobacter pylori infection is a factor associated with the development of gastric disease, peptic ulcers as well as some types of gastric lymphomas and gastric cancer in humans; in this way is necessary scientific evidence about P. americana seed effect in gastrointestinal disease. AIM OF THE STUDY The work aimed to evaluate bioactive compounds bioaccessibility and antimicrobial potential against Helicobacter pylori during oral-gastric digestion in vitro of food ingredient from Persea americana Mill. seed and elucidate the possible action mechanism using in silico tools. MATERIALS AND METHODS Initially, P. americana seed oil and aqueous extract of P. americana seed were obtained using ultrasound and maceration respectively, and the food ingredient from P. americana seed was obtained. The samples underwent oral-gastric digestions by the INFOGEST method, to continue identifying and quantifying the bioactive compounds by HPLC-DAD and GC-MS. The anti-Helicobacter pylori activity determination were used fourteen Helicobacter pylori clinical strains and reference strains by Susceptibility testing by Minimal Inhibition Concentration, Kinetics of Growth Inhibition of H. pylori, Urease Inhibitory Kinetic. Finally, to elucidate a possible action mechanism used in silico tools (Software AutoDock 4.2.6 and BioVia Discovery v.19.1.0.1.18287). RESULTS The lipophilic fraction of P. americana seed detected oleic acid, linoleic acid, and avocadenofuran compounds, and the phenolic fraction showed the presence of catechin, rutin, ellagic, and chlorogenic acid, among others. Phenolic compounds conformational changes during oral-gastric digestion due to mechanical and acid hydrolysis, while lipophilic compounds showed a 20% increase in the gastric phase. Persea americana Mill. seed ingredient (3.08 μg/mL) showed total in vitro inhibition of clinical and reference strains of H. pylori, likewise, the lipophilic fraction had a lower inhibition concentration (2.59 μg/mL) regardless of the strains. Among the mechanisms found in silico, inhibition of target proteins such as CagA, BabA, and MUC5 were observed, as virulence factors involving adherence and bacterial pathogenicity. CONCLUSIONS This research provides evidence that food ingredient from P. americana seed has antimicrobial in vitro potential against H. pylori clinical strains, through phenolic and mainly lipophilic compounds, opening new scientific evidence that supports the P. americana seed's traditional use.
Collapse
Affiliation(s)
- V Sánchez-Quezada
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Mexico.
| | - N Velázquez-Guadarrama
- Unidad de Investigación en Enfermedades Infecciosas, Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Mexico.
| | - S Mendoza-Elizalde
- Unidad de Investigación en Enfermedades Infecciosas, Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Mexico.
| | - M Hernández-Iturriaga
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Mexico.
| | - P Vázquez Landaverde
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Unidad Querétaro CICATA-IPN Querétaro, Mexico.
| | - G Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Mexico.
| |
Collapse
|
4
|
Bashmil YM, Dunshea FR, Appels R, Suleria HAR. Bioaccessibility of Phenolic Compounds, Resistant Starch, and Dietary Fibers from Australian Green Banana during In Vitro Digestion and Colonic Fermentation. Molecules 2024; 29:1535. [PMID: 38611814 PMCID: PMC11013930 DOI: 10.3390/molecules29071535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Green bananas contain a substantial amount of resistant starch (RS), dietary fiber (DF), and phytochemicals, which exhibit potent antioxidant capabilities, primarily attributable to the abundance of polyphenols. The objective of this study was to assess the variations in the contents and bioaccessibility of RS, DF, and phenolic compounds in three types of Australian green bananas (Cavendish "Musa acuminata", Ladyfinger "Musa paradisiaca L.", and Ducasse "Musa balbisiana"), along with their antioxidant capacities, and the production of short-chain fatty acids (SCFAs) following in vitro simulated gastrointestinal digestion and colonic fermentation. The studied cultivars exhibited significant levels of RS, with Ladyfinger showing the greatest (49%). However, Ducasse bananas had the greatest DF concentration (38.73%). Greater TPC levels for Ladyfinger (2.32 mg GAE/g), as well as TFC and TTC (0.06 mg QE/g and 3.2 mg CE/g, respectively) in Cavendish, together with strong antioxidant capacities (DPPH, 0.89 mg TE/g in Cavendish), have been detected after both intestinal phase and colonic fermentation at 12 and 24 h. The bioaccessibility of most phenolic compounds from bananas was high after gastric and small intestinal digestion. Nevertheless, a significant proportion of kaempferol (31% in Cavendish) remained detectable in the residue after colonic fermentation. The greatest production of SCFAs in all banana cultivars was observed after 24 h of fermentation, except valeric acid, which exhibited the greatest output after 12 h of fermentation. In conclusion, the consumption of whole green bananas may have an advantageous effect on bowel health and offer antioxidant characteristics.
Collapse
Affiliation(s)
- Yasmeen M. Bashmil
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rudi Appels
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| |
Collapse
|
5
|
Mironeasa S, Coţovanu I, Mironeasa C, Ungureanu-Iuga M. A Review of the Changes Produced by Extrusion Cooking on the Bioactive Compounds from Vegetal Sources. Antioxidants (Basel) 2023; 12:1453. [PMID: 37507991 PMCID: PMC10376774 DOI: 10.3390/antiox12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The demand for healthy ready-to-eat foods like snacks is increasing. Physical modification of vegetal food matrices through extrusion generates significant changes in the chemical composition of the final product. There is a great variety of food matrices that can be used in extrusion, most of them being based on cereals, legumes, fruits, vegetables, or seeds. The aim of this review was to summarize the main effects of the extrusion process on the bioactive compounds content, namely phenolics, terpenes, vitamins, minerals, and fibers of vegetal mixes, as well as on their biological activity. The literature reported contradictory results regarding the changes in bioactive compounds after extrusion, mainly due to the differences in the processing conditions, chemical composition, physicochemical properties, and nutritional value of the extruded material and quantification methods. The thermolabile phenolics and vitamins were negatively affected by extrusion, while the fiber content was proved to be enhanced. Further research is needed regarding the interactions between bioactive components during extrusion, as well as a more detailed analysis of the impact of extrusion on the terpenes since there are few papers dealing with this aspect.
Collapse
Affiliation(s)
- Silvia Mironeasa
- Faculty of Food Engineering, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Ionica Coţovanu
- Faculty of Food Engineering, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Costel Mironeasa
- Faculty of Mechanical Engineering, Automotive and Robotics, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Mădălina Ungureanu-Iuga
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control (MANSiD), "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
- Mountain Economy Center (CE-MONT), "Costin C. Kiriţescu" National Institute of Economic Researches (INCE), Romanian Academy, 49 Petreni Street, 725700 Vatra Dornei, Romania
| |
Collapse
|
6
|
Benítez V, Rebollo-Hernanz M, Braojos C, Cañas S, Gil-Ramírez A, Aguilera Y, Martín-Cabrejas MA. Changes in the cocoa shell dietary fiber and phenolic compounds after extrusion determine its functional and physiological properties. Curr Res Food Sci 2023; 6:100516. [PMID: 37215741 PMCID: PMC10196956 DOI: 10.1016/j.crfs.2023.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/09/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
The influence of different extrusion conditions on the cocoa shell (CS) dietary fiber, phenolic compounds, and antioxidant and functional properties was evaluated. Extrusion produced losses in the CS dietary fiber (3-26%), especially in the insoluble fraction, being more accentuated at higher temperatures (160 °C) and lower moisture feed (15-20%). The soluble fiber fraction significantly increased at 135 °C because of the solubilization of galactose- and glucose-containing insoluble polysaccharides. The extruded CS treated at 160 °C-25% of feed moisture showed the highest increase of total (27%) and free (58%) phenolic compounds, accompanied by an increase of indirect (10%) and direct (77%) antioxidant capacity. However, more promising results relative to the phenolic compounds' bioaccessibility after in vitro simulated digestion were observed for 135°C-15% of feed moisture extrusion conditions. The CS' physicochemical and techno-functional properties were affected by extrusion, producing extrudates with higher bulk density, a diminished capacity to hold oil (22-28%) and water (18-65%), and improved swelling properties (14-35%). The extruded CS exhibited increased glucose adsorption capacity (up to 2.1-fold, at 135 °C-15% of feed moisture) and α-amylase in vitro inhibitory capacity (29-54%), accompanied by an increase in their glucose diffusion delaying ability (73-91%) and their starch digestion retardation capacity (up to 2.8-fold, at 135 °C-15% of feed moisture). Moreover, the extruded CS preserved its cholesterol and bile salts binding capacity and pancreatic lipase inhibitory properties. These findings generated knowledge of the CS valorization through extrusion to produce foods rich in dietary fiber with improved health-promoting properties due to the extrusion-triggered fiber solubilization.
Collapse
Affiliation(s)
- Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC). C/ Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
7
|
Evaluation of the total phenolic content, antioxidative capacity, and chemical fingerprint of Annona crassiflora Mart. Bioaccessible molecules. Food Res Int 2023; 165:112514. [PMID: 36869513 DOI: 10.1016/j.foodres.2023.112514] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Annona crassiflora Mart. (araticum) is an exotic fruit native to the Brazilian Cerrado that stands out for its phytochemical profile, especially for the presence of bioactive compounds. The health-related benefits promoted by these metabolites are widely explored. It is known that the biological activity of bioactive compounds is directly dependent on the availability of the molecules, and their bioaccessibility after the digestion process is one of the main limiting factors. The present study aimed to evaluate the bioaccessibility of bioactive compounds in some parts of araticum (peel, pulp and seeds) fruits obtained from different regions through the in vitro digestion process simulating the gastrointestinal tract. The total phenolic content ranged from 480.81 to 1007.62 for pulp; 837.53 to 1926.56 for peel; and 358.28 to 1186.07 for seeds (mg GAE.100 g-1 of sample). The highest antioxidant activity was observed for the seeds by the DPPH method, the peel by the ABTS method, and most of the peel, except for the Cordisburgo sample, by the FRAP method. Through the research of the chemical profile, it was possible to list up to 35 compounds, including the nutrients, in this identification attempt. It was observed that some compounds were listed only in natura samples (epicatechin and procyanidin) and others only for the bioaccessible fraction (quercetin-3-O-dipentoside), which is justified by the different gastrointestinal tract conditions. Thus, the present study elucidates that the food matrix will directly influence the bioaccessibility of bioactive compounds. In addition, it highlights the potential of unconventionally used or consumed parts that can be used as sources of substances with biological activities, increasing the sustainability by reducing waste.
Collapse
|
8
|
Fărcaș AC, Socaci SA, Chiș MS, Martínez-Monzó J, García-Segovia P, Becze A, Török AI, Cadar O, Coldea TE, Igual M. In Vitro Digestibility of Minerals and B Group Vitamins from Different Brewers' Spent Grains. Nutrients 2022; 14:3512. [PMID: 36079770 PMCID: PMC9460495 DOI: 10.3390/nu14173512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brewers' spent grain (BSG), the main by-product of the brewing industry, is a rich source of minerals and water-soluble vitamins such as thiamine, pyridoxine, niacin, and cobalamin. Bioaccessibility through in vitro digestion is an important step toward the complete absorption of minerals and B group vitamins in the gastrointestinal system. Inductively coupled plasma optical emission spectrometry (ICP-OES) together with inductively coupled plasma quadrupole mass spectrometry (ICP-MS) was used for the quantification of the macro- and micro-minerals. An ultra-high performance liquid chromatography (UHPLC) system coupled with a diode array detector (DAD) was used for B group vitamin identification. Four different industrial BSG samples were used in the present study, with different percentages of malted cereals such as barley, wheat, and degermed corn. Calcium's bioaccessibility was higher in the BSG4 sample composed of 50% malted barley and 50% malted wheat (16.03%), while iron presented the highest bioaccessibility value in the BSG2 sample (30.03%) composed of 65% Pale Ale malt and 35% Vienna malt. On the other hand, vitamin B1 had the highest bioaccessibility value (72.45%) in the BSG3 sample, whilst B6 registered the lowest bioaccessibility value (16.47%) in the BSG2 sample. Therefore, measuring the bioaccessibilty of bioactive BSG compounds before their further use is crucial in assessing their bioavailability.
Collapse
Affiliation(s)
- Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Maria Simona Chiș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Javier Martínez-Monzó
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Purificación García-Segovia
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Anca Becze
- National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Anamaria Iulia Török
- National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Oana Cadar
- National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Marta Igual
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
9
|
In Vitro Digestibility and Bioaccessibility of Nutrients and Non-Nutrients Composing Extruded Brewers' Spent Grain. Nutrients 2022; 14:nu14173480. [PMID: 36079739 PMCID: PMC9459946 DOI: 10.3390/nu14173480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the effect of the extrusion process on the bioaccessibility of brewers’ spent grain (BSG) nutrients (carbohydrates and proteins) and non-nutrients (bioactive compounds). BSG and extruded BSG (EBSG) were digested in vitro simulating human oral-gastro-intestinal digestion and colonic fermentation. The duodenal bioaccessibility of glucose, amino acids and phenolic compounds was analyzed. The fermentability of the dietary fiber was assessed by analysis of short-chain fatty acids. Additionally, assessment of the bioaccessibility of phenolic compounds after colonic fermentation was undertaken. The antioxidant, anti-inflammatory and antidiabetic properties of the bioaccessible compounds were studied. Extrusion caused no change in the digestibility of gluten and glucose bioaccessibility (p > 0.05). Moreover, the bioaccessibility of amino acids and phenolic compounds significantly increased (p < 0.05) due to extrusion. However, higher short-chain fatty acid content was formed in colonic fermentation of BSG (p < 0.05) compared to EBSG. The latter inhibited intracellular ROS formation in IEC-6 cells and showed anti-inflammatory properties in RAW264.7 cells. With respect to antidiabetic properties, glucose absorption was lower, and the inhibition of carbohydrases higher (p < 0.05), in the presence of EBSG compared to BSG. The effects of EBSG and BSG digests on glucose transporters were not significantly different (p > 0.05). In conclusion, extrusion positively affected the nutritional value and health-promoting properties of BSG.
Collapse
|
10
|
In Vitro Bioaccessibility of Bioactive Compounds from Rosehip-Enriched Corn Extrudates. Molecules 2022; 27:molecules27061972. [PMID: 35335334 PMCID: PMC8950829 DOI: 10.3390/molecules27061972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
The rosehip (Rosa canina L.) fruit has gained researchers′ attention due to its rich chemical composition in vitamin C, phenols, carotenoids, and high antioxidant activity; meanwhile, polymers such as pea protein are generally recognized as exhibiting a protection role against the extrusion process. Corn snacks extrudates obtained by replacing corn flour with 10% R. canina powder (R) and 10% R. canina with pea protein (RPP) were evaluated for the physicochemical, textural, optical, and nutritional characteristics. A sample manufactured without R. canina powder was used as a control. Hardness, crispiness, chewiness, and solubility index (WSI) of the final extrudates were improved by addition of R. canina and pea protein powder (PP); meanwhile, b* (yellow/blue coordinate), C (chroma), and h* (tone) optical parameters were significantly different from the control sample (p < 0.05). Extrusion highlighted a negative impact on total phenols, carotenoids, vitamin C, and antioxidant activity extrudates, while PP exhibited a good protection against the extrusion process. In vitro digestion increased the bioaccessibility of vitamin C, folate, antioxidant activity, total phenols, and total carotenoids mainly on RPP extrudates.
Collapse
|
11
|
Igual M, Chiş MS, Păucean A, Vodnar DC, Muste S, Man S, Martínez-Monzó J, García-Segovia P. Valorization of Rose Hip ( Rosa canina) Puree Co-Product in Enriched Corn Extrudates. Foods 2021; 10:foods10112787. [PMID: 34829066 PMCID: PMC8618835 DOI: 10.3390/foods10112787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Serious issues and challenges of the world’s population are represented by dwindling natural food resources and the scale-up of sustainable food manufacturing. Therefore, the valorization of co-products from the food industry represents new methods for food development. The principal goal of the study was to capitalize rose hip (Rosa canina) co-product powder in extrudates, highlighting its influence on extrusion parameters, physicochemical, and nutritional characteristics. The water absorption index, swelling index, and hygroscopicity increased with the rose hip co-product addition. Furthermore, water solubility index, expansion index, porosity, image parameters (area and perimeter) of the extrudates decreased. Lycopene, β-Carotene, Zea-esters, and lutein were the main carotenoids identified in the extrudates; whereas Catechin, Di-gallic acid, Procyanidin dimmer 1, Procyanidin dimmer 2, and Isorhamnetin-glucuronide were the main flavonoids. Strong Pearson correlations were identified between carotenoids, total flavonoids, vitamin C, total folate, and antioxidant activity. Valorization of the Rosa canina powder co-product led to value-added products—corn extrudates—rich in bioactive compounds.
Collapse
Affiliation(s)
- Marta Igual
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (J.M.-M.); (P.G.-S.)
- Correspondence: ; Tel.: +34-96-3879-694
| | - Maria Simona Chiş
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.S.C.); (A.P.); (S.M.); (S.M.)
| | - Adriana Păucean
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.S.C.); (A.P.); (S.M.); (S.M.)
| | - Dan Cristian Vodnar
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3–5 Calea Mănăştur, 400372 Cluj-Napoca, Romania;
| | - Sevastița Muste
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.S.C.); (A.P.); (S.M.); (S.M.)
| | - Simona Man
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.S.C.); (A.P.); (S.M.); (S.M.)
| | - Javier Martínez-Monzó
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (J.M.-M.); (P.G.-S.)
| | - Purificación García-Segovia
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (J.M.-M.); (P.G.-S.)
| |
Collapse
|