1
|
Qian J, Li X, Ruan H, Du Z, Wei S, Sun Y. Design and development of drug delivery nanocarriers based on liquid-liquid phase separation, improved stability, cell-penetration and anti-cancer effect. Int J Biol Macromol 2025; 307:142023. [PMID: 40086555 DOI: 10.1016/j.ijbiomac.2025.142023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Liquid-liquid phase separation (LLPS) of nuclear pore complex (NPC) with nuclear transport proteins (NTPs) via intrinsically disordered regions (IDRs) plays a crucial role in the nucleocytoplasmic transport. The development of efficient targeted delivery systems based on LLPS has attracted widespread attention. Here, we developed nanocarriers of casein peptides, a natural intrinsically disordered proteins (IDPs), modified with fatty acids of different alkyl chains (C10-C18) and decorated by shellac for highly effective drug delivery and cancer therapy. The curcumin (Cur)-loading nanocarriers (CSLNCs) showed excellent stability and dispersity in the natural environment over 30 days, with Cur encapsulation efficiency and loading capacity of ~90 % and ~57 %. Electron microscope (EM) indicated an aggregated homogeneous elliptical shape of CSLNCs(C10) and the morphology of CSLNCs(C18) transited to a distributed cubic shape. CSLNCs(C10, C12, C14 and C18) exhibited cytotoxicity against human lung adenocarcinoma NCI-H1975 cells with an IC50 value of 17.5 μM, 17.3 μM, 10.2 μM and 19.3 μM after 24 h of incubation, respectively. CSLNCs were also found to inhibit the cell wound healing with a migration rate of 12.72 %, 10.93 %, 4.28 % and 13.62 %, respectively. CSLNCs especially increased the percentage of late apoptotic cells. As indications of confocal microscopy, the fluorescence intensities of NCI-H1975 cells were enhanced with a cytosolic distribution and noticeably florescence in the nucleus after 0.5 h of incubation CSLNCs. CSLNCs treated cells adopted a rounded morphology with a dramatic reduction in fluorescence intensity after 1 h of incubation. Among CSLNCs, CSLNCs(C14) improved considerably the cytotoxicity activity and intercellular localization in the nucleus. The cell-penetration ability was also confirmed by the binding of CSLNCs in a model bicelles membrane system composed of DMPC and DHPC investigated by 1H NMR. It was proposed that CSLNCs with cell-penetrating and nuclear targeting performance may regulate the LLPS of nuclear pore complex and thus improved its nuclear penetration and cytotoxic activity.
Collapse
Affiliation(s)
- Jingya Qian
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Hefei Ruan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhongyao Du
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China.
| | - Yang Sun
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Song Y, Wang Z, Ji H, Jiang Z, Li X, Du Z, Wei S, Sun Y. Fatty acid modification of casein bioactive peptides nano-assemblies, synthesis, characterization and anticarcinogenic effect. Int J Biol Macromol 2024; 254:127718. [PMID: 37918594 DOI: 10.1016/j.ijbiomac.2023.127718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
In this study, the nano-assemblies of bovine casein hydrolyzed peptides (HP) modified by fatty acids with various alkyl chain lengths (C8, C10, C12 and C14) were synthesized. The physicochemical properties of HP-C8-HP-C14 nano-assemblies were characterized using spectra, laser particle size analyzer, contact angle meter, scanning electron microscope (SEM) and cryo-transmission electron microscope (Cryo-TEM). HP-C8 and HP-C10 self-assembled into a hollow cube cage with an average size of ~500 nm, and the assembly of HP-C12 showed a flower-shaped morphology with more dispersed behavior, and droplet size was observed as ~20 nm. The in vitro cytotoxicity against human breast cancer cells MCF-7 was tested using CCK-8 assay and flow cytometry analysis. HP-C12 showed the highest cytotoxicity for MCF-7 cells with an inhibition rate of 66.03 % ± 0.35 % with an IC50 value of 7.4 μM among HP-Cn. HP-C8, HP-C10 and HP-C12 significantly affected on the migration, invasion and apoptosis of MCF-7 cells. The apoptosis mechanism may depend on the upregulation of anti-apoptotic protein Bcl-2 as well as pro-apoptotic proteins Bax and caspase-8. The dead MCF-7 cells were analyzed with UHPLC-MS/MS using untargeted metabolomics, revealing key metabolic pathways.
Collapse
Affiliation(s)
- Yang Song
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhichun Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Hang Ji
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhongyou Jiang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Zhongyao Du
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| | - Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Chen R, Song Y, Wang Z, Ji H, Du Z, Ma Q, Yang Y, Liu X, Li N, Sun Y. Developments in small-angle X-ray scattering (SAXS) for characterizing the structure of surfactant-macromolecule interactions and their complex. Int J Biol Macromol 2023; 251:126288. [PMID: 37582436 DOI: 10.1016/j.ijbiomac.2023.126288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
The surfactant-macromolecule interactions (SMI) are one of the most critical topics for scientific research and industrial application. Small-angle X-ray scattering (SAXS) is a powerful tool for comprehensively studying the structural and conformational features of macromolecules at a size ranging from Angstroms to hundreds of nanometers with a time-resolve in milliseconds scale. The SAXS integrative techniques have emerged for comprehensively analyzing the SMI and the structure of their complex in solution. Here, the various types of emerging interactions of surfactant with macromolecules, such as protein, lipid, nuclear acid, polysaccharide and virus, etc. have been systematically reviewed. Additionally, the principle of SAXS and theoretical models of SAXS for describing the structure of SMI as well as their complex has been summarized. Moreover, the recent developments in the applications of SAXS for charactering the structure of SMI have been also highlighted. Prospectively, the capacity to complement artificial intelligence (AI) in the structure prediction of biological macromolecules and the high-throughput bioinformatics sequencing data make SAXS integrative structural techniques expected to be the primary methodology for illuminating the self-assembling dynamics and nanoscale structure of SMI. As advances in the field continue, we look forward to proliferating uses of SAXS based upon its abilities to robustly produce mechanistic insights for biology and medicine.
Collapse
Affiliation(s)
- Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Yang Song
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhichun Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Hang Ji
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhongyao Du
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Qingwen Ma
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Ying Yang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Xingxun Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Na Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, CAS, Shanghai, China.
| | - Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Sadiq U, Shahid F, Gill H, Chandrapala J. The Release Behavior of Anthraquinones Encapsulated into Casein Micelles during In Vitro Digestion. Foods 2023; 12:2844. [PMID: 37569113 PMCID: PMC10418339 DOI: 10.3390/foods12152844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The degradation of anthraquinones extracted from aloe vera plants can be prevented by encapsulating them in casein micelles (CMs). The oral, gastric, and intestinal digestion behavior of spray-dried microcapsules of casein micelles loaded with aloe vera-extracted anthraquinone powder (CMAQP), freeze-dried powder (CMFDP), and whole-leaf aloe vera gel (CMWLAG) obtained through ultrasonication was investigated. The results found that CMAQP and CMFDP dissolved slowly and coagulated into large curds during gastric digestion, improving the retention of anthraquinones in the digestive tract. In contrast, CMWLAG structure was destroyed and increased amounts of anthraquinones were released during oral and gastric digestion phases, indicating increased amounts of surface anthraquinones instead of the encapsulation of anthraquinones in the interior of CMs. The strong hydrophobic interactions protected anthraquinones within the core of CM for CMAQP and delayed diffusion. However, during SIF digestion, both CMAQP and CMFDP released significant amounts of anthraquinones, although CMAQP showed a much more controlled release for both aloin and aloe-emodin over SIF digestion time. The release behavior of anthraquinones from CM microcapsules was a function of the type of anthraquinone that was used to encapsulate. The present study provides insight into the release behavior of loaded bioactive compounds using food-grade CMs as the wall material during in vitro digestion and highlights the importance of the type of bioactive component form that will be encapsulated.
Collapse
Affiliation(s)
- Uzma Sadiq
- School of Science, RMIT University, Bundoora, Melbourne, VIC 3083, Australia; (U.S.); (H.G.)
| | - Fatima Shahid
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, Melbourne, VIC 3083, Australia; (U.S.); (H.G.)
| | - Jayani Chandrapala
- School of Science, RMIT University, Bundoora, Melbourne, VIC 3083, Australia; (U.S.); (H.G.)
| |
Collapse
|
5
|
Yue R, An C, Ye Z, Li X, Li Q, Zhang P, Qu Z, Wan S. A pH-responsive phosphoprotein washing fluid for the removal of phenanthrene from contaminated peat moss in the cold region. CHEMOSPHERE 2023; 313:137389. [PMID: 36455665 DOI: 10.1016/j.chemosphere.2022.137389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Oil pollution is one of the major environmental concerns in the petroleum industry. In this study, a cheap food-grade sodium caseinate (NaCas) was used as a pH-responsive washing fluid in the remediation of phenanthrene (PHE) affected peat moss. The effects of environmental factors on the removal of PHE were systematically investigated. The results showed that increasing NaCas concentration and washing temperature improved the PHE mobilization, while high salinity and humic acid dosage displayed a negative effect. The factorial analysis revealed that three individual factors and two interactions exhibited significant effects on the washing performance. Due to the pH-responsive property of NaCas, the turbidity, total organic carbon (TOC), and chemical oxygen demand (COD) of the washing effluent were remarkably reduced by simply adjusting the solution acidity, improving the practical application of such a washing method. Significantly, the toxicity modeling proved that NaCas can reduce the binding energy between PHE and superoxide dismutase (SOD) of the selected marine organism, and thus relieve the toxicity of PHE to the organisms. Given these advantages, NaCas-assisted washing can be a viable option for the remediation of contaminated peat moss.
Collapse
Affiliation(s)
- Rengyu Yue
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| | - Zhibin Ye
- Department of Chemical and Materials Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Xixi Li
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, A1B 3X5, Canada; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Peng Zhang
- Faculty of Engineering and Applied Science, University of Regina, Regina, S4S 0A2, Canada
| | - Zhaonian Qu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Shuyan Wan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| |
Collapse
|
6
|
Sun Y, Li X, Chen R, Liu F, Wei S. Recent advances in structural characterization of biomacromolecules in foods via small-angle X-ray scattering. Front Nutr 2022; 9:1039762. [PMID: 36466419 PMCID: PMC9714470 DOI: 10.3389/fnut.2022.1039762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 08/04/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) is a method for examining the solution structure, oligomeric state, conformational changes, and flexibility of biomacromolecules at a scale ranging from a few Angstroms to hundreds of nanometers. Wide time scales ranging from real time (milliseconds) to minutes can be also covered by SAXS. With many advantages, SAXS has been extensively used, it is widely used in the structural characterization of biomacromolecules in food science and technology. However, the application of SAXS in charactering the structure of food biomacromolecules has not been reviewed so far. In the current review, the principle, theoretical calculations and modeling programs are summarized, technical advances in the experimental setups and corresponding applications of in situ capabilities: combination of chromatography, time-resolved, temperature, pressure, flow-through are elaborated. Recent applications of SAXS for monitoring structural properties of biomacromolecules in food including protein, carbohydrate and lipid are also highlighted, and limitations and prospects for developing SAXS based on facility upgraded and artificial intelligence to study the structural properties of biomacromolecules are finally discussed. Future research should focus on extending machine time, simplifying SAXS data treatment, optimizing modeling methods in order to achieve an integrated structural biology based on SAXS as a practical tool for investigating the structure-function relationship of biomacromolecules in food industry.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Fei Liu
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
7
|
Du Z, Xu N, Yang Y, Li G, Tai Z, Li N, Sun Y. Study on internal structure of casein micelles in reconstituted skim milk powder. Int J Biol Macromol 2022; 224:437-452. [DOI: 10.1016/j.ijbiomac.2022.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
8
|
Song P, Zhang J, Li Y, Liu G, Li N. Solution Small-Angle Scattering in Soft Matter: Application and Prospective ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|