1
|
Zhou P, Zhang R, Gao Y, Guan J, Chen Z, Zhang Y, Li Y, Zhu G, Wang W, Zhou L, Li J, Wang J, Fang Z. Comparison of the effects of three different fungal laccases on the quality of rye bread. Food Chem 2025; 482:144035. [PMID: 40179564 DOI: 10.1016/j.foodchem.2025.144035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Rye bread is recognized for its high nutritional value but faces challenges such as sticky dough and an inelastic texture. Laccase, a green biological enzyme, can modify the key components of wheat and gluten-free flour products, showing promise in improving their quality. However, the use of fungal laccase on rye bread has not yet been explored, and the potential effects of different sources of fungal laccase on improving rye bread quality remain unexamined. This study comprehensively analyzed the effects of three fungal laccases on rye bread using multidimensional evaluation methods. The results indicated that each laccase had distinct effects on dough properties, with the acid laccase rLacA showing the most significant impact. This research confirmed the role of fungal laccase in enhancing the quality of rye bread and effectively evaluated the mechanisms of different fungal laccases. Additionally, it provided a foundation for developing new combinations to improve rye bakery products.
Collapse
Affiliation(s)
- Peng Zhou
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Ran Zhang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China; School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China
| | - Yuan Gao
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Jiaxin Guan
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Zifan Chen
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Yan Zhang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China; School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China
| | - Ying Li
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Guilan Zhu
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China; School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China
| | - Wei Wang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China; School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China
| | - Lulu Zhou
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Jun Li
- Great-Lab Biotechnology (Shenzhen) Co., Ltd, PR China
| | - Jingjing Wang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China; School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China.
| | - Zemin Fang
- School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China.
| |
Collapse
|
2
|
Pei J, Wang Z, Heng Y, Chen Z, Wang K, Xiao Q, Li J, Hu Z, He H, Cao Y, Ye X, Deng XW, Liu Z, Ma L. Selection of dysfunctional alleles of bHLH1 and MYB1 has produced white grain in the tribe Triticeae. PLANT COMMUNICATIONS 2025; 6:101265. [PMID: 39893516 PMCID: PMC12010413 DOI: 10.1016/j.xplc.2025.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/20/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Grain color is a key agronomic trait that greatly determines food quality. The molecular and evolutionary mechanisms that underlie grain-color regulation are also important questions in evolutionary biology and crop breeding. Here, we confirm that both bHLH and MYB genes have played a critical role in the evolution of grain color in Triticeae. Blue grain is the ancestral trait in Triticeae, whereas white grain caused by bHLH or MYB dysfunctions is the derived trait. HvbHLH1 and HvMYB1 have been the targets of selection in barley, and dysfunctions caused by deletion(s), insertion(s), and/or point mutation(s) in the vast majority of Triticeae species are accompanied by a change from blue grain to white grain. Wheat with white grains exhibits high seed vigor under stress. Artificial co-expression of ThbHLH1 and ThMYB1 in the wheat endosperm or aleurone layer can generate purple grains with health benefits and blue grains for use in a new hybrid breeding technology, respectively. Our study thus reveals that white grain may be a favorable derived trait retained through natural or artificial selection in Triticeae and that the ancient blue-grain trait could be regained and reused in molecular breeding of modern wheat.
Collapse
Affiliation(s)
- Jiawei Pei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zheng Wang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Yanfang Heng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhuo Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingmeng Xiao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Zhaorong Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
3
|
Fan X, Bao G, Xie Y, Jiang Y, Fan C, Li G. Seedlings of rye ( Secale cereale) respond to freeze-thaw, alkaline salt, and Solanum rostratum Dunal extract combined stress by increasing soluble protein and antioxidant enzyme activity. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24229. [PMID: 40245264 DOI: 10.1071/fp24229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
The grassland in north-east China has an important ecological service function. However, freeze-thaw, alkaline salt, and Solanum rostratum Dunal often have adverse effects on the stability of grassland ecosystem in this region. In this study, the effects of combined stress of freeze-thaw, alkaline salt, and S. rostratum extract on rye (Secale cereale ) were discussed. It was found that the combined stress of alkaline salt and S. rostratum extract (AR) inhibited the seed germination and seedling growth of rye. Compared with AR in the non-freeze-thaw group, the contents of soluble protein (SP), malondialdehyde (MDA) and hydrogen peroxide (H2 O2 ) of rye seedlings were significantly increased under the combined stress of freeze-thaw, alkaline salt, and S. rostratum extract (FAR), and the activities of superoxide dismutase (SOD) and peroxidase (POD) were significantly increased. Photosynthetic indices (Tr, Pn, gs , Ci) were significantly decreased. The results indicated that freeze-thaw could aggravate the adverse effects of AR treatment on rye seedlings. Therefore, in the period of frequent freeze-thaw, it is important to carry out timely targeted control measures for S. rostratum to reduce the adverse effects of combined stress on grassland ecosystem, which is conducive to the ecological security and stability maintenance of grassland ecosystem in north-east China.
Collapse
Affiliation(s)
- Xinyu Fan
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Guozhang Bao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunchao Xie
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunqi Jiang
- School of Geographical and Earth Sciences, University of Glasgow, Scotland, UK
| | - Cunxin Fan
- The Administration of Jingyu Water Conservation, Jingyu, Jilin Province 135200, China
| | - Guomei Li
- Yushu Forestry and Grassland Comprehensive Service Center, Yushu 815000, China
| |
Collapse
|
4
|
Landi N, Ragucci S, Campanile MG, Hussain HZF, Papa S, Di Maro A. Nutritional Values and Biochemical Traits of Rye ( Secale cereale L.) Seeds, a Landrace from Matese Mountains (Southern Italy). Foods 2025; 14:1120. [PMID: 40238282 PMCID: PMC11988677 DOI: 10.3390/foods14071120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Rye (Secale cereale L.) from Matese mountains is a local landrace cultivated in Southern Italy. To promote the benefits for the mountain economy, we report on the nutritional values (crude proteins, lipids, moisture, ash and total amino acids), metabolic traits (free amino acids, fatty acids and bioactive organic compounds) and mineral content of 'segale del Matese' seeds. Seeds were collected in 2023 and 2024 at two altitudes (~1000 and 150 m a.s.l.); these were analyzed, and the results were compared. Average data from two sites (crude proteins (9.6 g/100 g), lipids (1.3 g/100 g), ash (1.8 g/100 g), moisture (9.3 g/100 g) and carbohydrates (78.3 g/100 g)) show few significant statistical differences. The same trend was observed for total amino acid content, except for Glx (glutamic and glutamine), while statistical differences between the two sites were found among proteinogenic free amino acids. Moreover, segale del Matese' is rich in polyunsaturated (linoleic and linoleic) and monounsaturated (oleic) fatty acids. Furthermore, total phenolic content, some bioactive compounds (i.e., gallic acid, vanillic acid, p-coumaric acid and ferulic acid) and radical scavenging activity were estimated. Finally, the seeds subjected to thermal treatment showed a decrease in anti-trypsin and anti-chymotrypsin activities, resulting in a favorable depletion of antinutritional factors.
Collapse
Affiliation(s)
- Nicola Landi
- Institute of Crystallography, National Research Council, Via Vivaldi 43, 81100 Caserta, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (M.G.C.); (H.Z.F.H.); (S.P.)
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (M.G.C.); (H.Z.F.H.); (S.P.)
| | - Maria Giuseppina Campanile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (M.G.C.); (H.Z.F.H.); (S.P.)
| | - Hafiza Z. F. Hussain
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (M.G.C.); (H.Z.F.H.); (S.P.)
| | - Stefania Papa
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (M.G.C.); (H.Z.F.H.); (S.P.)
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (M.G.C.); (H.Z.F.H.); (S.P.)
| |
Collapse
|
5
|
Milanezzi GC, Silva EK. Pulsed electric field-induced starch modification for food industry applications: A review of native to modified starches. Carbohydr Polym 2025; 348:122793. [PMID: 39562069 DOI: 10.1016/j.carbpol.2024.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 11/21/2024]
Abstract
Starch, a polysaccharide primarily composed of amylose and amylopectin, serves as a critical energy source in plants. However, its native properties often limit its application in the food industry. To overcome these limitations, starch modification is essential for enhancing its technological characteristics. In this context, this review explored the impacts of pulsed electric field (PEF) technology on starch modification. PEF, along with other electrotechnologies, utilizes high-voltage electrical pulses to induce structural and chemical changes in starch granules, leading to improvements in properties such as gelatinization, solubility, viscosity, and swelling capacity. Although PEF is a non-thermal process, it enables significant structural and physicochemical modifications in starch. By avoiding high temperatures that can cause changes in color, flavor, and degradation of essential nutrients, PEF-modified starch results in better preservation of nutritional and sensory qualities, while also enhancing its performance in various industrial processes. Despite its advantages, challenges such as the need for standardized protocols and potential unwanted side reactions at high intensities remain. This review examined the effectiveness of PEF in modifying starch for enhanced technological applications in the food industry, addressing both its benefits and limitations. Additionally, the article provided a foundational overview of starch, including its chemical structure, functionalities, and sources, both conventional and non-conventional, ensuring a comprehensive understanding of how PEF can be applied to optimize starch properties for industrial use.
Collapse
Affiliation(s)
- Gabriela Carolina Milanezzi
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Eric Keven Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil.
| |
Collapse
|
6
|
Taesuwan S, Jirarattanarangsri W, Wangtueai S, Hussain MA, Ranadheera S, Ajlouni S, Zubairu IK, Naumovski N, Phimolsiripol Y. Unexplored Opportunities of Utilizing Food Waste in Food Product Development for Cardiovascular Health. Curr Nutr Rep 2024; 13:896-913. [PMID: 39276290 DOI: 10.1007/s13668-024-00571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
PURPOSE OF REVIEW Global food production leads to substantial amounts of agricultural and food waste that contribute to climate change and hinder international efforts to end food insecurity and poverty. Food waste is a rich source of vitamins, minerals, fibers, phenolic compounds, lipids, and bioactive peptides. These compounds can be used to create food products that help reduce heart disease risk and promote sustainability. This review examines the potential cardiovascular benefits of nutrients found in different food waste categories (such as fruits and vegetables, cereal, dairy, meat and poultry, and seafood), focusing on animal and clinical evidence, and giving examples of functional food products in each category. RECENT FINDINGS Current evidence suggests that consuming fruit and vegetable pomace, cereal bran, and whey protein may lower the risk of cardiovascular disease, particularly in individuals who are at risk. This is due to improved lipid profile, reduced blood pressure and increased flow-mediated dilation, enhanced glucose and insulin regulation, decreased inflammation, as well as reduced platelet aggregation and improved endothelial function. However, the intervention studies are limited, including a low number of participants and of short duration. Food waste has great potential to be utilized as cardioprotective products. Longer-term intervention studies are necessary to substantiate the health claims of food by-products. Technological advances are needed to improve the stability and bioavailability of bioactive compounds. Implementing safety assessments and regulatory frameworks for functional food derived from food waste is crucial. This is essential for maximizing the potential of food waste, reducing carbon footprint, and improving human health.
Collapse
Affiliation(s)
- Siraphat Taesuwan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia.
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
| | | | - Sutee Wangtueai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Malik A Hussain
- School of Science, Western Sydney University, Richmond, NSW, 2758, Australia
| | - Senaka Ranadheera
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Said Ajlouni
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Idris Kaida Zubairu
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nenad Naumovski
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, 2601, Australia
- Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | | |
Collapse
|
7
|
Shi H, Wan K, Dou B, Ren Y, Huo L, Zhang C, Yue S, Li Z, Guo H, Dai J. Genome-wide identification and expression analysis of the glutathione transferase gene family and its response to abiotic stress in rye (Secale cereale). BMC Genomics 2024; 25:1142. [PMID: 39604831 PMCID: PMC11600577 DOI: 10.1186/s12864-024-11080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Glutathione S-transferases (GSTs) are a crucial class of plant enzymes, playing pivotal roles in plant growth, development, and stress responses. However, studies on the functions and regulatory mechanisms of GSTs in plants remain relatively limited. RESULTS This study aimed to comprehensively identify and analyze GST proteins in rye. A total of 171 rye GST genes were identified and classified into four subfamilies, Tau, Phi, Theta, and Zeta, based on their sequence similarity and structural features. Notably, genes classified under the Tau subfamily were the most abundant at 118, while only one gene was under the Theta subfamily. Subsequent phylogenetic and collinearity analysis revealed 29 tandem duplications and 6 segmental duplication events. There were 13 collinear genes between rye and wheat, maize, and rice, demonstrating the expansion and evolution of the GST gene family. An analysis of the expression profiles of 20 representative ScGST genes in different tissues and under various environmental stresses was performed to further understand the functions and expression patterns of ScGST genes. The results showed that these genes exhibited the highest expression levels in stems, followed by fruits and leaves. CONCLUSIONS This study provides a comprehensive identity, classification, and analysis of rye GST genes, which offer valuable insights into the functionality and regulatory mechanisms of the GST gene family in rye. Especially, ScGST39 was identified as a candidate gene because it was significantly upregulated under multiple stress conditions, indicating its potential crucial role in plant stress tolerance mechanisms.
Collapse
Affiliation(s)
- Hongli Shi
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Ke Wan
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Bingde Dou
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Yanyan Ren
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Lihuan Huo
- Shangluo Institute of Agricultural Science, Shangluo, Shaanxi, 726000, China
| | - Chao Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Shuning Yue
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Zhongling Li
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Huan Guo
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Jiakun Dai
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China.
| |
Collapse
|
8
|
Kaszuba J, Czyż M, Cebulak T, Pycia K. Assessment of the Suitability of Flour Obtained from Mountain Rye Grain Milling and the Method of Dough Fermentation for the Production of Rye Bread. Foods 2024; 13:3035. [PMID: 39410070 PMCID: PMC11475135 DOI: 10.3390/foods13193035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Currently, there is an increase in consumer interest in food produced from raw materials from organic farming, which has an impact on the greater attention paid to the possibility of increasing the cultivation of old cereal species. One of the cereals that is suitable for these trends is mountain rye, which is a premise for undertaking research on the usefulness of this cereal grain in food production. Therefore, the aim of the study was to compare the baking value of flour with different milling yields obtained from milling mountain rye grain. The research material consisted of rye grain (Secale montanum Guss.), which was milled, and 6 different rye flours were obtained. The flour was tested for selected quality parameters such as moisture, crude protein content, total ash content, and acidity. Doughs were prepared and fermented using a single-phase method carried out in two different variants, with or without the addition of lactic acid. The obtained rye breads were quality assessed and subjected to organoleptic and consumer evaluations. The use of the fermentation method with dough acidification with lactic acid allowed us to obtain breads with a better specific volume and acidity compared to those obtained from dough without acidification. Breads baked from dough prepared using the method of non-acidification with lactic acid had better porosity of the crumb. In the quality classification, breads made from low-extract flour turned out to be the best, and breads baked from dough made using the non-lactic acid acidification method were more generally accepted by panelists. As confirmed by research, mountain rye grain is a raw material for the production of flour with good baking value, which depends on the preparation of the grain and milling method. The quality of rye bread made from mountain rye flour depends on the flour yield, the baking value of the flour, and the method used for dough fermentation for bread baking.
Collapse
Affiliation(s)
| | | | | | - Karolina Pycia
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Science, University of Rzeszow, Zelwerowicza Street 4, 35-601 Rzeszow, Poland; (J.K.); (T.C.)
| |
Collapse
|
9
|
Tagliasco M, Font G, Renzetti S, Capuano E, Pellegrini N. Role of particle size in modulating starch digestibility and textural properties in a rye bread model system. Food Res Int 2024; 190:114565. [PMID: 38945564 DOI: 10.1016/j.foodres.2024.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
In cereal products, the use of flour containing clusters of intact cells has been indicated as a potential strategy to decrease starch digestion. Rye possesses more uniform and thicker cell walls than wheat but its protective effect against starch digestion has not been elucidated. In this study, rye flours with three different particle sizes, large (LF) (∼1700 μm), medium (MF) (∼1200 μm), and small (SF) (∼350 μm), were used to produce model bread. The textural properties of these breads were analysed using Textural Profile Analysis (TPA). The starch digestibility of both the flour and the bread was measured using Englyst's method, while the presence of intact cell clusters was examined using Confocal Laser Scanning Microscopy (CLSM). Additionally, the disintegration of bread digesta during simulated digestion was assessed through image analysis. CLSM micrographs revealed that bread made with MF and LF retained clusters of intact cells after processing, whereas bread made with SF showed damaged cell walls. Starch digestibility in LF and MF was lower (p ≤ 0.05) than that in SF. Bread produced with MF and LF exhibited the least (p ≤ 0.05) cohesive and resilient texture, disintegrated more during digestion, and exhibited higher starch digestibility (p ≤ 0.05) than bread made with SF. These results highlight the central role of bread texture on in vitro starch digestibility.
Collapse
Affiliation(s)
- Marianna Tagliasco
- Department of Agricultural, Food, Environmental and Animal Sciences, Via Sondrio 2/A, University of Udine, 33100 Udine, Italy
| | - Guillem Font
- Food Quality and Design Group, Wageningen University, Wageningen, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Stefano Renzetti
- Wageningen Food and Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University, Wageningen, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, Via Sondrio 2/A, University of Udine, 33100 Udine, Italy; Food Quality and Design Group, Wageningen University, Wageningen, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
10
|
Murniece R, Reidzane S, Radenkovs V, Matisons R, Dabina-Bicka I, Klava D, Galoburda R. Impact of Rye Malt with Various Diastatic Activity on Wholegrain Rye Flour Rheology and Sugar Formation in Scalding and Fermentation Processes. Foods 2024; 13:2077. [PMID: 38998583 PMCID: PMC11241332 DOI: 10.3390/foods13132077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Amylase activity in rye flour plays a crucial role in the production of rye bread. When preparing a scald in rye bread production, diastatic rye malt is utilized to augment the amylase activity of the rye flour. This study investigated the effects of the diastatic power (DP) and concentration of rye malt on the Falling Number (FN) and the rheological properties of rye flour. Additionally, it examined reducing sugars in the scalding process and fermentation. Mixolab results provided comprehensive data on dough properties at different temperature stages, highlighting significant changes in starch gelatinization and enzyme activity due to varying malt diastatic power and concentrations. The decline in the gelatinization index (C3-C2) indicated faster starch gelatinization with increased diastatic power. Adding rye malt significantly increased maltose content in the saccharified and fermented scald, promoting a favorable environment for lactic acid bacteria and yeasts. FN and Amylograph results showed that less active malt (DP 170, 179 °WK), at a 1.5% concentration, could achieve similar effects as the more active malt (DP 362, 408 °WK) at 0.5%. Adding rye malt to rye flour allows for the regulation of the flour's rheological properties and FN, adjustable based on malt DP and concentration.
Collapse
Affiliation(s)
- Ruta Murniece
- Food Institute, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Sanita Reidzane
- Food Institute, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Vitalijs Radenkovs
- Institute of Horticulture (LatHort), Graudu Street 1, LV-3701 Dobele, Latvia
- Division of Smart Technologies, Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, Rigas Street 22b, LV-3004 Jelgava, Latvia
| | - Roberts Matisons
- Latvian State Forest Research Institute ‘Silava’, 111 Rigas Str., LV-2169 Salaspils, Latvia
| | - Ilona Dabina-Bicka
- Food Institute, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Dace Klava
- Food Institute, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Ruta Galoburda
- Food Institute, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| |
Collapse
|
11
|
Chen X, Yao C, Liu J, Liu J, Fang J, Deng H, Yao Q, Kang T, Guo X. Basic helix-loop-helix (bHLH) gene family in rye (Secale cereale L.): genome-wide identification, phylogeny, evolutionary expansion and expression analyses. BMC Genomics 2024; 25:67. [PMID: 38233751 PMCID: PMC10792839 DOI: 10.1186/s12864-023-09911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Rye (Secale cereale), one of the drought and cold-tolerant crops, is an important component of the Triticae Dumortier family of Gramineae plants. Basic helix-loop-helix (bHLH), an important family of transcription factors, has played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. However, no systemic analysis of the bHLH transcription factor family has yet been reported in rye. RESULTS In this study, 220 bHLH genes in S. cereale (ScbHLHs) were identified and named based on the chromosomal location. The evolutionary relationships, classifications, gene structures, motif compositions, chromosome localization, and gene replication events in these ScbHLH genes are systematically analyzed. These 220 ScbHLH members are divided into 21 subfamilies and one unclassified gene. Throughout evolution, the subfamilies 5, 9, and 18 may have experienced stronger expansion. The segmental duplications may have contributed significantly to the expansion of the bHLH family. To systematically analyze the evolutionary relationships of the bHLH family in different plants, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. Finally, the gene expression response characteristics of 22 ScbHLH genes in various biological processes and stress responses were analyzed. Some candidate genes, such as ScbHLH11, ScbHLH48, and ScbHLH172, related to tissue developments and environmental stresses were screened. CONCLUSIONS The results indicate that these ScbHLH genes exhibit characteristic expression in different tissues, grain development stages, and stress treatments. These findings provided a basis for a comprehensive understanding of the bHLH family in rye.
Collapse
Affiliation(s)
- Xingyu Chen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Caimei Yao
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Jiahao Liu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Jintao Liu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Jingmei Fang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Hong Deng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Qian Yao
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Tairan Kang
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China.
| | - Xiaoqiang Guo
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
12
|
Fan Y, Wan X, Zhang X, Zhang J, Zheng C, Yang Q, Yang L, Li X, Feng L, Zou L, Xiang D. GRAS gene family in rye (Secale cereale L.): genome-wide identification, phylogeny, evolutionary expansion and expression analyses. BMC PLANT BIOLOGY 2024; 24:46. [PMID: 38216860 PMCID: PMC10787399 DOI: 10.1186/s12870-023-04674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xianqi Wan
- Sichuan Academy of Agricultural Machinery Science, Chengdu, 610011, P.R. China
| | - Xin Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Jieyu Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Chunyu Zheng
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, P.R. China
| | - Qiaohui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Li Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xiaolong Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, 610000, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| |
Collapse
|
13
|
Kaur P, Sandhu KS, Purewal SS, Bhatia A. Physicochemical, morphological, thermal, pasting and tablet making properties along with drug releasing potential of rye (Secale cereale) starch: a report broadening its commercial uses. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Zeng S, Ying R, Gao X, Huang M. Characteristics of the composite film of arabinoxylan and starch granules in simulated wheat endosperm. Int J Biol Macromol 2023; 233:123416. [PMID: 36709817 DOI: 10.1016/j.ijbiomac.2023.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
We found that cell wall components of wheat grains differed significantly across different grain-filling stages; specifically, we observed significant differences in water content and water migration rate (p < 0.05). A composite film of arabinoxylan and starch granules was prepared to simulate wheat endosperm structure. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), and thermogravimetric analysis (TGA) showed that the crystallinity and structural stability of the film increased with increasing starch content. Water diffusion experiments of the films revealed that the water diffusion rate gradually decreased with increasing starch content. Therefore, the water mobility of the starch endosperm was lower than that of the aleurone layer. These findings provide a basis for further studies in the context of wheat grain water regulation.
Collapse
Affiliation(s)
- Shiqi Zeng
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaoquan Gao
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
15
|
Mancino W, Carnevali P, Terzi V, Pérez PG, Zhang L, Giuberti G, Morelli L, Patrone V, Lucini L. Hierarchical Effects of Lactic Fermentation and Grain Germination on the Microbial and Metabolomic Profile of Rye Doughs. Foods 2023; 12:998. [PMID: 36900515 PMCID: PMC10000819 DOI: 10.3390/foods12050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
A multi-omics approach was adopted to investigate the impact of lactic acid fermentation and seed germination on the composition and physicochemical properties of rye doughs. Doughs were prepared with either native or germinated rye flour and fermented with Saccharomyces cerevisiae, combined or not with a sourdough starter including Limosilactobacillus fermentum, Weissella confusa and Weissella cibaria. LAB fermentation significantly increased total titrable acidity and dough rise regardless of the flour used. Targeted metagenomics revealed a strong impact of germination on the bacterial community profile of sprouted rye flour. Doughs made with germinated rye displayed higher levels of Latilactobacillus curvatus, while native rye doughs were associated with higher proportions of Lactoplantibacillus plantarum. The oligosaccharide profile of rye doughs indicated a lower carbohydrate content in native doughs as compared to the sprouted counterparts. Mixed fermentation promoted a consistent decrease in both monosaccharides and low-polymerization degree (PD)-oligosaccharides, but not in high-PD carbohydrates. Untargeted metabolomic analysis showed that native and germinated rye doughs differed in the relative abundance of phenolic compounds, terpenoids, and phospholipids. Sourdough fermentation promoted the accumulation of terpenoids, phenolic compounds and proteinogenic and non-proteinogenic amino acids. Present findings offer an integrated perspective on rye dough as a multi-constituent system and on cereal-sourced bioactive compounds potentially affecting the functional properties of derived food products.
Collapse
Affiliation(s)
- Walter Mancino
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Paola Carnevali
- R&D Food Microbiology & Molecular Biology Research Barilla G. e R. Fratelli S.p.A., 43122 Parma, Italy
| | - Valeria Terzi
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, 29017 Fiorenzuola d’Arda, Italy
| | - Pascual García Pérez
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, 32004 Ourense, Spain
| | - Leilei Zhang
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
16
|
Purewal SS, Kaur P, Sandhu KS. Valorization of bioactive profile and antioxidant properties of Kinnow peel, and pulp residue: a step towards utilization of Kinnow waste for biscuit preparation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Calvi A, Preiti G, Poiana M, Marconi O, Gastl M, Zarnkow M. Multi-Response Optimization of the Malting Process of an Italian Landrace of Rye ( Secale cereale L.) Using Response Surface Methodology and Desirability Function Coupled with Genetic Algorithm. Foods 2022; 11:foods11223561. [PMID: 36429155 PMCID: PMC9689978 DOI: 10.3390/foods11223561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Rye is used in some applications in the food and beverage industry and for the preparation of functional foods. It is an interesting raw material in malting and brewing due to its characteristic contribution to the beer's color, turbidity, foam and aroma. The aim of this work was to optimize the micro-malting process of a rye landrace. The response surface methodology (RSM) was applied to study the influence of three malting parameters (germination time, germination temperature and degree of steeping) on the quality traits of malted rye. Long germination times at high temperatures resulted in an increase in the extract and Kolbach index. The model for the apparent attenuation limit showed a particular pattern, whereby time and temperature inversely influenced the response. The lowest viscosities were determined in the worts produced from highly modified malts. Optimization of the variables under study was achieved by means of a desirability function and a genetic algorithm. The two methodologies provided similar results. The best combination of parameters to optimize the malting process on the rye landrace under study was achieved at 6 days, 12 °C and 44 g/100 g.
Collapse
Affiliation(s)
- Antonio Calvi
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
- Correspondence: ; Tel.: +39-320-8012298
| | - Giovanni Preiti
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Marco Poiana
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Ombretta Marconi
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy
| | - Martina Gastl
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Martin Zarnkow
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| |
Collapse
|
18
|
Indian rye (Secale cereale) cultivars: fiber profile, minerals content, physical-functional and biscuit making properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Tiozon RJN, Sartagoda KJD, Serrano LMN, Fernie AR, Sreenivasulu N. Metabolomics based inferences to unravel phenolic compound diversity in cereals and its implications for human gut health. Trends Food Sci Technol 2022; 127:14-25. [PMID: 36090468 PMCID: PMC9449372 DOI: 10.1016/j.tifs.2022.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Background Scope and approach Key findings and conclusion Phenolic compounds are critical in avoiding metabolic disorders associated with oxidative stress. Breeding cereal crops to enrich phenolic compounds in grains contributes to personalized nutrition. A diet rich in cereal phenolics likely to increase human gut health, thereby lowering the risk of non-communicable illness.
Collapse
Affiliation(s)
- Rhowell Jr. N. Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Kristel June D. Sartagoda
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Luster May N. Serrano
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
- Corresponding author.
| |
Collapse
|