1
|
Sievenpiper JL, Purkayastha S, Grotz VL, Mora M, Zhou J, Hennings K, Goody CM, Germana K. Dietary Guidance, Sensory, Health and Safety Considerations When Choosing Low and No-Calorie Sweeteners. Nutrients 2025; 17:793. [PMID: 40077663 PMCID: PMC11902030 DOI: 10.3390/nu17050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 03/14/2025] Open
Abstract
The growing global focus on the adverse health conditions associated with excessive sugar consumption has prompted health and policy organizations as well as the public to take a more mindful approach to health and wellness. In response, food and beverage companies have proactively innovated and reformulated their product portfolios to incorporate low and no-calorie sweeteners (LNCSs) as viable alternatives to sugar. LNCSs offer an effective and safe approach to delivering sweetness to foods and beverages and reducing calories and sugar intake while contributing to the enjoyment of eating. The objective of this paper is to enhance the understanding of LNCSs segmentation and definitions, dietary consumption and reduction guidance, front-of-package labeling, taste and sensory perception and physiology, metabolic efficacy and impact, as well as the overall safety of LNCSs and sugar.
Collapse
Affiliation(s)
- John L. Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Sidd Purkayastha
- SP Advisors Inc., Chicago, IL 60605, USA;
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - V. Lee Grotz
- ToxInsight, LLC, Fort Washington, PA 19034, USA;
| | - Margaux Mora
- Ingredion Inc., Bridgewater, NJ 08807, USA; (M.M.); (K.G.)
| | - Jing Zhou
- Ingredion Inc., Bridgewater, NJ 08807, USA; (M.M.); (K.G.)
| | | | | | | |
Collapse
|
2
|
Li M, Liu S, Xie T, Guo Z, Yang L, Kang C, Wang Z, Zhu J. Correlation analysis of taste phenotype and Gynostemma pentaphyllum saponins using computer virtual screening and UPLC-(HR)MS/MS metabolomics. Food Chem 2025; 465:142050. [PMID: 39581083 DOI: 10.1016/j.foodchem.2024.142050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Gynostemma pentaphyllum, a popular tea ingredient, can be categorized into bitter, sweet, and tasteless varieties based on flavor. However, the metabolic causes of these disparities remain unclear. In this paper, sensory evaluation, untargeted metabolomic analysis using UPLC-QTOF-MS/MS, molecular docking and e-tongue testing were conducted to reveal and verify the structural characteristics and mechanisms underlying these different flavor substances. Component analysis indicated sweet saponins were characterized by glucose chains and protopanaxadiol-type aglycones featuring diagnostic ions m/z 459/475/491 in MS2- spectra; whereas bitter saponins typically featured at least one terminal rhamnose and the higher unsaturated sapogenins with diagnostic ions m/z 473/489/521. Virtual screening on T2R14 and e-tongue testing consistently validated gypenosides with more terminal rhamnoses or higher unsaturated aglycone tended to be more bitter. Docking analysis revealed PHE 172, TYR 159 and ALA 77 were the key amino residue sites in bitterness conduction via hydrophobic and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Min Li
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Shanshan Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), No. 27, North Xisanhuan Road, Beijing 100089, China
| | - Tianze Xie
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Zhongyuan Guo
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16, Nanxiaojie, Dongzhimennei, Beijing 100700, China; Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Lixin Yang
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Chen Kang
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Zhimin Wang
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| | - Jingjing Zhu
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| |
Collapse
|
3
|
Xiong Y, He Z, Wu Q, Xiao H, Cao S, Yang X, Li Y, Jiang Z, Zhu C, Wang L. Dietary steviol glycosides mixture supplementation modulates the gene expression of gut chemoreceptors and enhances the antioxidant capacity in weaned piglets. Porcine Health Manag 2025; 11:6. [PMID: 39915811 PMCID: PMC11803942 DOI: 10.1186/s40813-024-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/15/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Stevia glycosides (SGs) have been widely used as an ideal sugar alternative in the food industry. However, the potential application of SGs mixture in the diets of weaned piglets remains unexplored. This study aimed to investigate the effect of dietary SGs mixture supplementation on growth performance, gene expression of gut chemoreceptors, and antioxidant capacity in weaned piglets. METHODS A total of 216 weaned piglets (Duroc × Landrace × Yorkshire, 7.36 ± 0.04 kg body weight) were randomly assigned to 6 groups (6 pens/group with 6 piglets/pen), and were fed with the basal diet supplemented with 0, 100, 150, 200, 250, or 300 mg/kg SGs mixture for 42 days. The serum, liver, longissimus thoracis, and jejunal samples were collected on day 43. RESULTS The results showed that inclusion the SGs mixture in the diet did not have a significant impact on growth performance from days 1 to 28 (P > 0.05). But increasing the concentration of SGs mixture tended to linearly decrease the average daily gain from days 1 to 42 (P = 0.052). However, 150 mg/kg SGs mixture supplementation significantly increased the mRNA expression of taste receptor family 1 member 2 (T1R2) and glucose transporters 2 (GLUT2) in the jejunum (P < 0.05), while 150 and 200 mg/kg SGs mixture supplementation significantly increased T1R3 mRNA expression (P < 0.05). Moreover, 150 mg/kg SGs mixture supplementation significantly reduced serum malondialdehyde content (P < 0.05). Increasing the concentration of SGs mixture linearly and quadratically increased serum total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity, as well as hepatic T-SOD, GSH-Px activity, and muscle total antioxidant capacity contents (P < 0.05). Furthermore, piglets fed a diet supplemented with 100 mg/kg SGs mixture had higher serum T-SOD, CAT, and GSH-Px activities compared with the other treatments (P < 0.05). CONCLUSIONS Therefore, our results suggest that dietary 100 ~ 150 mg/kg SGs mixture supplementation modulates gene expression of sweet taste recognition receptors and glucose transporters, while also enhancing the antioxidant capacity of weaned piglets.
Collapse
Affiliation(s)
- Yunxia Xiong
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zhentao He
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Qiwen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Hao Xiao
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Shuting Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Yajing Li
- Dongtai Hirye Biotechnology Co., Ltd, Dongtai, 224200, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Cui Zhu
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China.
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|
4
|
Xia Y, Hou J, Chen J, Spence C, Qian J, Zhao F, Dong G, Zhong F. An exploratory study on the development of a sensory wheel affiliated with the emotional lexicon for chrysanthemum infusion. Food Res Int 2025; 201:115428. [PMID: 39849683 DOI: 10.1016/j.foodres.2024.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 01/25/2025]
Abstract
Chrysanthemum infusion has gained popularity outside of the East Asian market in recent years. However, despite the growing international demand, standardized methods to evaluate the sensory attributes of chrysanthemum tea, which are essential for guiding consumers and ensuring quality control, remain underdeveloped. In this study, a trained panel conducted a quantitative descriptive analysis (QDA®) of eight chrysanthemum samples, successfully distinguishing between them. Additionally, consumer emotional responses to chrysanthemum infusion were assessed using the Check-All-That-Apply (CATA) method. By mapping the descriptive sensory data with emotional response data through Partial Least Squares Regression (PLSR), we identified sensory drivers that elicit specific emotional responses. For this analysis, the emotion lexicon from EsSense25 was clustered into six dimensions: pleasant, tame, warm, active, negative, and bored. Our findings indicate that attributes such as smoothness and chrysanthemum-cucumber flavour induce calm and reassuring emotions (e.g., secure, understanding, calm, and tame). Conversely, sweetness and floral flavour are associated with positive emotions such as happiness, joy, and general well-being, suggesting that floral sweet beverages can mitigate negative emotions. However, sensory attributes such as bitterness, astringency, and vegetal aroma were linked to negative emotions and were sometimes associated with feelings of activity. The development of a sensory wheel, integrated with the emotional lexicon for chrysanthemum infusion, provides a tool for identifying sensory drivers behind emotional experiences. This tool offers valuable insights for market applications and product development, enhancing consumer satisfaction by aligning product attributes with desired emotional outcomes.
Collapse
Affiliation(s)
- Yixun Xia
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Food Sensory Science and Technology, China National Light Industry, Wuxi 214122, China
| | - Jiaoliang Hou
- Amway (Shanghai) Innovation and Science Co., Limited, Shanghai 201203, China
| | - Jia Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Charles Spence
- Crossmodal Research Laboratory, University of Oxford, Oxford, UK
| | - Jiayi Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Feifei Zhao
- Amway (Shanghai) Innovation and Science Co., Limited, Shanghai 201203, China
| | - Gangqiang Dong
- Amway (Shanghai) Innovation and Science Co., Limited, Shanghai 201203, China
| | - Fang Zhong
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Food Sensory Science and Technology, China National Light Industry, Wuxi 214122, China.
| |
Collapse
|
5
|
Wang A, Hu H, Yuan Y, Mei S, Zhu G, Yue Q, Zhang Y, Jiang S. Structure, Properties, and Biomedical Activity of Natural Sweeteners Steviosides: An Update. Food Sci Nutr 2025; 13:e70002. [PMID: 39898123 PMCID: PMC11787980 DOI: 10.1002/fsn3.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Stevioside is a natural sweetener with the characteristics of low calorie and high sweetness. It comprises a diverse range of monomers that play crucial roles in numerous biological processes. Due to these attributes, it has gained widespread application in agriculture, food, and pharmaceutical industries. As a substitute for sugar, stevioside also shows good pharmacological activities on glucose metabolism, bodyweight keeping, blood pressure maintenance, and shows anti-inflammatory, anti-oxidation, anti-tumor, antibacterial, and immune regulation activities. This review summarized the update on the food safety, sweet structure-activity relationship, pharmacological activity of stevia glycosides recently, and discussed the limitations of its application in food and medicine.
Collapse
Affiliation(s)
- Aoyi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Huiqin Hu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Yadan Yuan
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Shiran Mei
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Qiaoyan Yue
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western MedicineNanjingChina
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western MedicineNanjingChina
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western MedicineNanjingChina
| |
Collapse
|
6
|
Cai L, Mou X, Hong J, Cui C. Cleaner preparation of N-lauroyl theanine with taste-enhancing properties and deciphering its taste-presenting mechanism. Food Chem 2025; 464:141912. [PMID: 39522374 DOI: 10.1016/j.foodchem.2024.141912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
With the improvement of people's living standards and health awareness, reducing salt, sugar, and fat is gradually becoming the mainstream trend. In this work, we delved into the development of an innovative taste enhancer, N-lauroyl theanine (NLT), and its taste presentation mechanism. NLT was synthesized in the aqueous phase by enzyme-catalyzed and direct-heating methods using food-grade enzymes in yields of up to 64.33 % and 49.11 %, respectively. Sensory evaluation and molecular docking techniques revealed the potential of NLT to enhance salty, umami, sweet, and kokumi taste sensations and its taste presentation mechanism. Results revealed significant taste enhancement of saltiness, umami, sweetness, and kokumi and prolonged their duration in the oral cavity by 0.25-1 mg/L NLT. Molecular docking analyses showed that NLT had a strong binding affinity for a variety of taste receptors. These findings highlight the potential of NLT as a potent taste enhancer for the development of healthier salt/sugar-reduced foods.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xiyu Mou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jieshee Hong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
7
|
Cai L, Hong J, Cui C. Application of multiple dynamic sensory techniques to N-lauroyl amino acids: Exposing the relationship between taste-enhancing properties and chemical structure. Food Chem 2025; 463:141419. [PMID: 39357345 DOI: 10.1016/j.foodchem.2024.141419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
This study investigated the taste enhancing effects of N-lauroyl amino acids, including N-lauroyl-phenylalanine, N-lauroyl-tryptophan and N-lauroyl-tyrosine. Sensory results obtained through TDS, TCATA, and TI assessments indicated that all N-Lau-AAs significantly increased the umami intensity and duration of solutions such as simulated chicken broth. Moreover, these compounds masked bitter taste, with LTR showing the most pronounced reduction of bitterness. LP had the effect of enhancing saltiness, whereas LTR and LTY diminished saltiness. Structural analysis revealed a correlation between the chemical structure of N-Lau-AAs and their sensory properties. The presence of carbon‑carbon double bond (CC) was positively correlated with umami intensity and negatively correlated with bitter and salty parameters. Phenolic hydroxyl groups (OH) were negatively correlated with umami intensity and positively correlated with a decrease in bitterness intensity and duration. Overall, this study provides valuable insights into the taste enhancement potential of N-Lau-AAs as taste enhancers in the food industry.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jieshee Hong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
8
|
Chen J, Pan H, Xie J, Tang K, Li Y, Jia H, Zhu L, Yan M, Wei P. Semirational Design of a UDP-Glycosyltransferase from Nicotiana tomentosiformis for Efficient Biosynthesis of Rebaudioside M2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27334-27345. [PMID: 39625115 DOI: 10.1021/acs.jafc.4c09051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Rebaudioside M2 (RebM2) is characterized as 13-[(2-O-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(2-O-β-d-glucopyranosyl-6-O-β-d-glucopyranosyl-β-d-glucopyranosyl) ester], an isomer of rebaudioside M with a 1 → 6 sugar linkage. The product was found in the biotransformation of rebaudioside D (RebD) catalyzed by a glycosyltransferase from Nicotiana tomentosiformis (NtUGT). Herein, guided by consensus engineering and molecular dynamics simulations, a variant NtUGTF72L/L123P/L157P with enhanced activity and thermostability was obtained. It exhibits a strikingly reduced Km (22.47 mM to 0.15 mM) toward RebD, and the catalytic efficiency was over 5000-fold higher than that of the wildtype. When an Arabidopsis sucrose synthase AtSuSy was used for UDP-glucose recycling, NtUGTF72L/L123P/L157P effectively converted 80 g/L RebD to 90.14 g/L RebM2. In a one-pot three-enzyme reaction involving an engineered glycosyltransferase UGTSL2N358F, which catalyzed the conversion of RebA into RebD, 78.8 g/L of RebM2 (with a yield of 84.56%) was produced from 70 g/L of RebA, avoiding the use of the naturally rare and poorly soluble RebD as the starting material. This work will provide a promising biocatalyst for RebM2 biosynthesis on a large scale and create an opportunity to accelerate the exploration of the biological activity of RebM2 and its potential as a candidate for superior SG sweeteners.
Collapse
Affiliation(s)
- Jiajie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiangtao Xie
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kexin Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liping Zhu
- Shandong Engineering Research Center for Natural Product Metabolic Engineering and Synthetic Biology, Weifang 255178, China
- Dongtai Hirye Biotechnology Co., Ltd, Jiangsu 224200, China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Jiang Y, Luo Z, Xiang F, Liu Y, Yan J, Wang J. Fabrication and Encapsulation of Soy Peptide Nanoparticles Using Ultrasound Followed by Spray Drying. Foods 2024; 13:3967. [PMID: 39683039 DOI: 10.3390/foods13233967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Peptide aggregation inevitably occurs during hydrolysis, and insoluble peptide aggregates (ISPA) are used as feed for animals due to their poor water solubility and unpleasant bitter flavor. Ultrasound was used to fabricate soy peptide nanoparticles by reassembling ISPA, followed by spray-drying encapsulation to develop low-bitterness peptide microcapsules with soluble soybean polysaccharide (SSPS) and stevioside (STE) as wall materials. Powder properties, bitter taste, and the morphology of the microcapsules were evaluated. The formation of soluble peptide nanoparticles (<200 nm) was observed after ultrasound due to the reassembly of ISPA through the disruption of non-covalent intermolecular interactions. A gradual reduction in bitter taste was observed with increasing ultrasonic time. Moreover, spray-drying encapsulation with STE could effectively improve the flowability and wettability of the microcapsule powder owing to the rapid migration of surface-active STE to the atomized droplet surface, as evidenced by the lower angle of repose and wettability time. Peptide microcapsules with STE (spherical particles with smooth surfaces) exhibited lower density and reduced bitterness because STE (0-0.1%, w/w) exhibited an excellent bitter-masking effect. With high STE concentrations (>0.5%, w/w), microcapsules exhibited a higher bitter taste than unencapsulated peptides due to the increased surface distribution of STE on the microcapsules. These results provide an effective technique to improve the physicochemical properties of ISPA.
Collapse
Affiliation(s)
- Yiqun Jiang
- National Engineering Laboratory of Wheat & Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhen Luo
- Infinitus (China) Co., Ltd., Guangzhou 510623, China
| | - Fenglan Xiang
- National Engineering Laboratory of Wheat & Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yubin Liu
- Infinitus (China) Co., Ltd., Guangzhou 510623, China
| | - Jin Yan
- Infinitus (China) Co., Ltd., Guangzhou 510623, China
| | - Jinmei Wang
- National Engineering Laboratory of Wheat & Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Okonkwo CE, Adeyanju AA, Onyeaka H, Nwonuma CO, Olaniran AF, Alejolowo OO, Inyinbor AA, Oluyori AP, Zhou C. A review on rebaudioside M: The next generation steviol glycoside and noncaloric sweetener. J Food Sci 2024; 89:6946-6965. [PMID: 39323262 DOI: 10.1111/1750-3841.17401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
So far, the use of artificial low-calorie sweeteners, like sucralose, saccharin, and so on, to replace the conventional-based sugars has not succeeded due to the long-term adverse health effects, for example, hypertension, and not well-known safety stand. In this review, we discussed the next generation SvGl (rebaudioside M [Reb M]), their biosynthetic pathway in plant, high-yield production via microbial fermentation and enzyme engineering, physicochemical properties, taste modification, kinetic metabolism, application in food and beverages, safety and toxicological evaluation, regulation and dosage recommendation, and health benefits. In stevia, the biosynthesis of stevia glycosides, especially Reb M, is derived from the bifurcation of the pathway leading to gibberellin, followed by subsequent enzymatic modification of rubusoside. Reb M is more economically produced via microbial fermentation of modified yeast Yarrowia lipolytica and enzymatic bioconversion of rebaudioside A (Reb A) or Reb E. Reb M can serve as a suitable alternative to the conventional-based sugars.
Collapse
Affiliation(s)
- Clinton E Okonkwo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE
| | - Adeyemi A Adeyanju
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Abiola F Olaniran
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Omokolade Oluwaseyi Alejolowo
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Adejumoke A Inyinbor
- Physical Sciences Department, Industrial Chemistry Programme, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Abimbola Peter Oluyori
- Physical Sciences Department, Industrial Chemistry Programme, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Huang P, Liu Y, Cai L, Cui C. Investigation of the multiple taste enhancement properties of N-succinyl-amino acids and their relationship to chemical structure using dynamic sensory techniques. Food Chem 2024; 453:139661. [PMID: 38772310 DOI: 10.1016/j.foodchem.2024.139661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
The present study aimed to explore the similarity and difference in taste enhancement properties of N-succinyl-L-phenylalanine (N-Suc-Phe), N-succinyl-L-tryptophan (N-Suc-Trp), and N-succinyl-L-tyrosine (N-Suc-Tyr) using temporal dominance of sensations (TDS), temporal check-all-that-apply (TCATA), and time-intensity (TI) techniques. Meanwhile, leading taste enhancers in the market, such as N'-[(2,4-dimethoxyphenyl)methyl]-N-(2-pyridin-2-ylethyl) oxamide (DE) was chosen to conduct a comparative analysis with the aforementioned three compounds. Findings from TDS and TCATA revealed that all compounds under investigation notably enhanced umami and saltiness while reducing bitterness in a concentration-dependent fashion (0.25-1 mg/L). Additionally, the TI results indicated that the duration of umami was extended by 50-75%, and the duration of bitterness was decreased by 20-40% upon addition of DE, N-Suc-Phe, N-Suc-Trp, and N-Suc-Tyr (1 mg/L). Among these, N-Suc-Trp was identified as the most effective in augmenting umami and mitigating bitterness, whereas N-Suc-Tyr excelled in enhancing saltiness intensity. Partial least squares regression (PLSR) pinpointed the carbon‑carbon double bond as the important structure influencing the enhancement of umami and reduction of bitterness, whereas the phenolic hydroxyl group was identified as critical for enhancing saltiness. This investigation provided insights into the different characteristics of taste enhancement of N-Suc-AAs and the impact of chemical structure on such specificity.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Ying Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lei Cai
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Pezzotti G, Zhu W, Aoki T, Miyamoto A, Fujita I, Nakagawa M, Kobayashi T. Raman Spectroscopic Analysis of Steviol Glycosides: Spectral Database and Quality Control Algorithms. Foods 2024; 13:3068. [PMID: 39410103 PMCID: PMC11476355 DOI: 10.3390/foods13193068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Besides all sharing an extraordinary high (i.e., up to ~450 times) sweetening power as compared to sucrose and while presenting strong similarities in their molecular structures, molecules belonging to the family of diterpene glycosides (i.e., the secondary metabolites of Stevia rebaudiana) differ in specific structural details that strongly impact on their levels of sweetness and bitter aftertaste. Given the nutritional and pharmacological benefits of steviol secondary metabolites as natural dietetic and anti-diabetic remedies, extraction and purification of steviol glycosides from plant material are nowadays widely spread among many countries. However, an unpleasant bitter aftertaste, which is linked to a genetic variation in human bitter taste receptors, hampers the full exploitation of such benefits and calls for a prompt improvement in organoleptic property control of stevia products. A deeper understanding of the molecular structure of different steviol glycosides and the consequent development of promptly measurable criteria for the organoleptic performance of their mixtures will support processing optimization and control of taste profiles within desired yields. The present research aimed at establishing Raman spectroscopic algorithms for quantitative characterizations of raw stevia-based sweetener products. First, a series of twelve high-purity diterpene glycosides were analyzed by high spectrally resolved Raman spectroscopy and their spectra analyzed in order to establish a complete Raman library of molecular structures. Then, quantitative spectroscopic parameters were built up and applied to characterize the organoleptic property of five different commercially available samples including the recently developed Rebaudioside M isoform. Raman spectroscopy was confirmed as a versatile analytical technique that could be used for quantitative quality control tasks on the production line and for prompt in situ characterizations of purchased products.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Takashi Aoki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Akihiro Miyamoto
- Morita Kagaku Kogyo Co., Ltd., 1-19-18 Inadaue-machi, Higashi Osaka, Osaka 577-0002, Japan; (A.M.); (I.F.)
| | - Isao Fujita
- Morita Kagaku Kogyo Co., Ltd., 1-19-18 Inadaue-machi, Higashi Osaka, Osaka 577-0002, Japan; (A.M.); (I.F.)
| | - Manabu Nakagawa
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (M.N.); (T.K.)
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (M.N.); (T.K.)
| |
Collapse
|
13
|
Cai L, Wang L, Zhao X, Gao W, Cheng Y, Huang P, Cui C. A Novel Compound with Kokumi Properties: Enzymatic Preparation and Taste Presentation Evaluation of N-Lauroyl Phenylalanine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18594-18605. [PMID: 39106328 DOI: 10.1021/acs.jafc.4c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
To satisfy the demands of the food industry, innovative flavor enhancers need to be developed urgently to increase the food flavor. In our work, N-lauroyl phenylalanine (LP) was prepared from phenylalanine (l-Phe) and lauric acid (Lau) in water through the use of commercial enzymes (Promatex, Sumizyme FP-G, and Trypsin), and its flavor-presenting properties and mechanism were investigated. The highest LP yields obtained under one-factor optimized conditions were 61.28, 63.43, and 77.58%, respectively. Sensory assessment and an e-tongue test revealed that 1 mg/L LP enhanced the kokumi, saltiness, and umami of the simulated chicken broth solution and attenuated the bitterness of the l-isoleucine solution. The molecular simulation results suggested that the mechanisms of LP enhancement of kokumi and umami were related to hCaSR and hT1R1-hT1R3, and that hydrophobic forces and hydrogen bonds were involved in the binding of LP to taste receptors. The results implied that LP is a potential flavor enhancer for food applications.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Lu Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Wenxiang Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yuqin Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|
14
|
Li C, Li Y, Sun Q, Abdurehim A, Xu J, Xie J, Zhang Y. Taste and its receptors in human physiology: A comprehensive look. FOOD FRONTIERS 2024; 5:1512-1533. [DOI: 10.1002/fft2.407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractIncreasing evidence shows that food has significance beyond traditional perception (providing nutrition and energy) in maintaining normal life activities. It is indicated that the sense of taste plays a crucial part in regulating human life activities. Taste is one of the basic physiological sensations in mammals, and it is the fundamental guarantee for them to perceive, select, and ingest nutrients in order to survive. With the advances in electrophysiology, molecular biology, and structural biology, studies on the intracellular and extracellular transduction mechanisms of taste have made great progress and gradually revealed the indispensable role of taste receptors in the regulation and maintenance of normal physiological activities. Up to now, how food regulates life activities through the taste pathway remains unclear. Thus, this review comprehensively and systematically summarizes the current study about the sense of taste, the function of taste receptors, the taste–structure relationship of gustatory molecules, the cross‐talking between distinctive tastes, and the role of the gut–organ axis in the realization of taste. Moreover, we also provide forward‐looking perspectives on taste research to afford a scientific basis for revealing the scientific connotation of taste receptors regulating body health.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Yaxin Li
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York City New York USA
| | - Qing Sun
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Aliya Abdurehim
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Jiawen Xu
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Junbo Xie
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Yanqing Zhang
- Biotechnology & Food Science College Tianjin University of Commerce Tianjin China
| |
Collapse
|
15
|
Beekwilder J, Schempp FM, Styles MQ, Zelder O. Microbial synthesis of terpenoids for human nutrition - an emerging field with high business potential. Curr Opin Biotechnol 2024; 87:103099. [PMID: 38447324 DOI: 10.1016/j.copbio.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Because of their complicated biosynthesis and hydrophobic nature, fermentative production of terpenoids did not play a significant role on a commercial scale until a few years ago. Driven by technological progress in metabolic engineering and process biotechnology, terpene-based food ingredients such as flavors, sweeteners, and vitamins produced by fermentation have now become viable and commercially competitive options. In recent years, several companies have developed microbial platforms for commercial terpene production. Impressive progress has been made in the fermentative production of sesquiterpenes used in flavorings. The development of sweeteners, such as steviol glycosides and mogrosides, and the production of vitamins A and E based on fermentation are also being explored. The production of monoterpenes remains challenging due to their antimicrobial effects.
Collapse
Affiliation(s)
| | - Florence M Schempp
- BASF SE, Industrial Biotechnology I, RGD/BD - A30, 67056 Ludwigshafen, Germany
| | | | - Oskar Zelder
- BASF SE, Industrial Biotechnology I, RGD/BD - A30, 67056 Ludwigshafen, Germany.
| |
Collapse
|
16
|
Servant G, Kenakin T. A Pharmacological perspective on the temporal properties of sweeteners. Pharmacol Res 2024; 204:107211. [PMID: 38744400 DOI: 10.1016/j.phrs.2024.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Several non-caloric sweeteners exhibit a delay in sweetness onset and a sweetness linger after sampling. These temporal properties are thought to be the result of non-specific interactions with cell membranes and proteins in the oral cavity. Data and analysis presented in this report also support the potential involvement of receptor affinity and binding kinetics to this phenomenon. In general, affected sweeteners exhibit distinctly higher binding affinity compared to carbohydrate sweeteners, which do not have temporal issues. In addition, binding kinetic simulations illustrate much slower receptor binding association and dissociation kinetics for a set of non-caloric sweeteners presenting temporal issues, in comparison to carbohydrate sweeteners. So, the higher affinity of some non-caloric sweeteners, dictating lower use levels, and affecting binding kinetics, could contribute to their delay and linger in sweetness perception. Simple pharmacology principles could explain, at least in part, some of the temporal issues of sweeteners.
Collapse
Affiliation(s)
- Guy Servant
- dsm-firmenich, 10636 Scripps Summit Court #201, San Diego, CA 92131, USA.
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Rd., 4042 Genetic Medicine CB #7365, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Li S, Luo S, Zhao X, Gao S, Shan X, Lu J, Zhou J. Efficient Conversion of Stevioside to Rebaudioside M in Saccharomyces cerevisiae by a Engineering Hydrolase System and Prolonging the Growth Cycle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8140-8148. [PMID: 38563232 DOI: 10.1021/acs.jafc.4c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rebaudioside (Reb) M is an important sweetener with high sweetness, but its low content in Stevia rebaudiana and low catalytic capacity of the glycosyltransferases in heterologous microorganisms limit its production. In order to improve the catalytic efficiency of the conversion of stevioside to Reb M by Saccharomyces cerevisiae, several key issues must be resolved including knocking out endogenous hydrolases, enhancing glycosylation, and extending the enzyme catalytic process. Herein, endogenous glycosyl hydrolase SCW2 was knocked out in S. cerevisiae. The glycosylation process was enhanced by screening glycosyltransferases, and UGT91D2 from S. rebaudiana was identified as the optimum glycosyltransferase. The UDP-glucose supply was enhanced by overexpressing UGP1, and co-expressing UGT91D2 and UGT76G1 achieved efficient conversion of stevioside to Reb M. In order to extend the catalytic process, the silencing information regulator 2 (SIR2) which can prolong the growth cycle of S. cerevisiae was introduced. Finally, combining these modifications produced 12.5 g/L Reb M and the yield reached 77.9% in a 5 L bioreactor with 10.0 g/L stevioside, the highest titer from steviol glycosides to Reb M reported to date. The engineered strain could facilitate the industrial production of Reb M, and the strategies provide references for the production of steviol glycosides.
Collapse
Affiliation(s)
- Shan Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Shuangshuang Luo
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Xingying Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Jian Lu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
18
|
Zhang X, Chen T, Li Z, Wang X, Bao H, Zhao C, Zhao X, Lu X, Xu G. Fine-Scale Characterization of Plant Diterpene Glycosides Using Energy-Resolved Untargeted LC-MS/MS Metabolomics Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:603-612. [PMID: 38391322 DOI: 10.1021/jasms.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Plant diterpene glycosides are essential for diverse physiological processes. Comprehensive structural characterization proved to be a challenge due to variations in glycosylation patterns, diverse aglycone structures, and the absence of comprehensive reference databases. In this study, a method for fine-scale characterization was proposed based on energy-resolved (ER) untargeted LC-MS/MS metabolomics analysis using steviol glycosides as a demonstration. Energy-dependent fragmentation patterns were unveiled by a series of model compounds. Distinct glycosylation sites were discerned by leveraging varying fragmentation energies for the precursor ions. The sugar moiety linkage at C19OOH (R1) exhibited facile and intact cleavage at low collision energies, while the sugar moiety at C13-OH (R2) demonstrated consecutive cleavage with increasing energy. Aglycone ions exhibited a higher relative intensity at NCE 50, with relative intensities ranging from 95% to 100%. Subsequently, aglycone candidates, R1 sugar composition, and R2 sugar sequence were deduced through ER-MS/MS analysis. The developed method was applied to Stevia rebaudiana leaves. A total of 91 diterpene glycosides were unambiguously identified, including 16 steviol glycosides with novel acetylglycosylation patterns. This method offers a rapid alternative for glycan analysis and the structural differentiation of isomers. The developed method enhances the understanding of diterpene glycosides in plants, providing a reliable tool for the in-depth characterization of complex metabolite profiles.
Collapse
Affiliation(s)
- Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Xinxin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Han Bao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| |
Collapse
|
19
|
Yang L, Yang M, Deng Z, Hou X, Zheng X, Ping Q, Rao Y, Shi J, Zhang Y. Selective synthesis of rebaudioside M2 through structure-guided engineering of glycosyltransferase UGT94D1. Front Bioeng Biotechnol 2024; 12:1334427. [PMID: 38375456 PMCID: PMC10875103 DOI: 10.3389/fbioe.2024.1334427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024] Open
Abstract
Rebaudioside M2 (Reb M2), a novel steviol glycoside derivative, has limited industrial applications due to its low synthetic yield and selectivity. Herein, we identify UGT94D1 as a selective glycosyltransferase for rebaudioside D (Reb D), leading to the production of a mono β-1,6-glycosylated derivative, Reb M2. A variant UGT94D1-F119I/D188P was developed through protein engineering. This mutant exhibited a 6.33-fold improvement in catalytic efficiency, and produced Reb M2 with 92% yield. Moreover, molecular dynamics simulations demonstrated that UGT94D1-F119I/D188P exhibited a shorter distance between the nucleophilic oxygen (OH6) of the substrate Reb D and uridine diphosphate glucose, along with an increased Ophosphate-C1-Oacceptor angle, thus improving the catalytic activity of the enzyme. Therefore, this study provides an efficient method for the selective synthesis of Reb M2 and paves the way for its applications in various fields.
Collapse
Affiliation(s)
- Lifeng Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Mengliang Yang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiwei Deng
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaodong Hou
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiangting Zheng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Qian Ping
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yijian Rao
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Yuan Y, Yiasmin MN, Tristanto NA, Chen Y, Liu Y, Guan S, Wang Z, Hua X. Computational simulations on the taste mechanism of steviol glycosides based on their interactions with receptor proteins. Int J Biol Macromol 2024; 255:128110. [PMID: 37981277 DOI: 10.1016/j.ijbiomac.2023.128110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Steviol glycoside (SG) is a potential natural sugar substitute. The taste of various SG structures differ significantly, while their mechanism has not been thoroughly investigated. To investigate the taste mechanism, molecular docking simulations of SGs with sweet taste receptor TAS1R2 and bitter taste receptor TAS2R4 were conducted. The result suggested that four flexible coils (regions) in TAS1R2 constructed a geometry open pocket in space responsible for the binding of sweeteners. Amino acids that form hydrogen bonds with sweeteners are located in different receptor regions. In bitterness simulation, fewer hydrogen bonds were formed with the increased size of SG molecules. Particularly, there was no interaction between RM and TAS2R4 due to its size, which explains the non-bitterness of RM. Molecular dynamics simulations further indicated that the number of hydrogen bonds between SGs and TAS1R2 was maintained during a simulation time of 50 ns, while sucrose was gradually released from the binding site, leading to the break of interaction. Conclusively, the high sweetness intensity of SG can be attributed to its durative concurrent interaction with the receptor's binding site, and such behavior was determined by the structure feature of SG.
Collapse
Affiliation(s)
- Yuying Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mst Nushrat Yiasmin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | - Yujie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Sevtia Biotechnology Co., Ltd., Wuxi 214181, China
| | - Yaxian Liu
- Department of Biotechnology and Enzyme Science, University of Hohenheim, Institute of Food Science and Biotechnology, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Shuyi Guan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zijie Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
21
|
Zhao S, Zheng H, Lu Y, Zhang N, Soladoye OP, Zhang Y, Fu Y. Sweet Taste Receptors and Associated Sweet Peptides: Insights into Structure and Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13950-13964. [PMID: 37698386 DOI: 10.1021/acs.jafc.3c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Long-term consumption of a high-sugar diet may contribute to the pathogenesis of several chronic diseases, such as obesity and type 2 diabetes. Sweet peptides derived from a wide range of food sources can enhance sweet taste without compromising the sensory properties. Therefore, the research and application of sweet peptides are promising strategies for reducing sugar consumption. This work first outlined the necessity for global sugar reduction, followed by the introduction of sweet taste receptors and their associated transduction mechanisms. Subsequently, recent research progress in sweet peptides from different protein sources was summarized. Furthermore, the main methods for the preparation and evaluation of sweet peptides were presented. In addition, the current challenges and potential applications are also discussed. Sweet peptides can stimulate sweetness perception by binding sweet taste receptors T1R2 and T1R3 in taste buds, which is an effective strategy for reducing sugar consumption. At present, sweet peptides are mainly prepared artificially by synthesis, hydrolysis, microbial fermentation, and bioengineering strategies. Furthermore, sensory evaluation, electronic tongues, and cell models have been used to assess the sweet taste intensity. The present review can provide a theoretical reference for reducing sugar consumption with the aid of sweet peptides in the food industry.
Collapse
Affiliation(s)
- Shulei Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
- Westa College, Southwest University, Chongqing 400715, People's Republic of China
| | - Hanyuan Zheng
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
- Westa College, Southwest University, Chongqing 400715, People's Republic of China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150076, People's Republic of China
| | - Olugbenga P Soladoye
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| |
Collapse
|
22
|
Bian J, Xia Y, Han R, Wang C, He J, Zhong F. How To Determine Iso-Sweet Concentrations For Various Sweeteners: Insights From Consumers and Trained Panels. Food Qual Prefer 2023. [DOI: 10.1016/j.foodqual.2023.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Zhang R, Tang R, Bi J, Shen S, Wu Q, Chen Q, Li Y. Efficient Bioconversion of Stevioside and Rebaudioside A to Glucosylated Steviol Glycosides Using an Alkalihalobacillus oshimesis-Derived Cyclodextrin Glucanotransferase. Molecules 2023; 28:1245. [PMID: 36770912 PMCID: PMC9919944 DOI: 10.3390/molecules28031245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The enzymatic transglycosylation of steviol glycosides can improve the edulcorant quality of steviol glycosides. Cyclodextrin glucanotransferase (CGTase) is one of the most popular glucanotransferases applied in this reaction. Herein, the CGTase-producing strain Alkalihalobacillus oshimensis CGMCC 23164 was isolated from Stevia planting soil. Using mass spectrometry-based secretome profiling, a high-efficiency CGTase that converted steviol glycosides to glucosylated steviol glycosides was identified and termed CGTase-13. CGTase-13 demonstrated optimal transglycosylation activity with 10 g/L steviol glycoside and 50 g/L soluble starch as substrates at <40 °C. Under the above conditions, the conversion rate of stevioside and rebaudioside A, two main components of steviol glycosides, reached 86.1% and 90.8%, respectively. To the best of our knowledge, this is the highest conversion rate reported to date. Compared with Toruzyme® 3.0 L, the commonly used commercial enzyme blends, glucosylated steviol glycosides produced using CGTase-13 exhibited weaker astringency and unpleasant taste, faster sweetness onset, and stronger sweetness intensity. Thus, CGTase provides a novel option for producing high-quality glucosylated steviol glycoside products and has great potential for industrial applications.
Collapse
Affiliation(s)
- Ruiqin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Research and Development Department, Hangzhou Wahaha Technology Co., Ltd., Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China
| | - Ruiqi Tang
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiahua Bi
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Research and Development Department, Hangzhou Wahaha Technology Co., Ltd., Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China
| | - Shanshan Shen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Research and Development Department, Hangzhou Wahaha Technology Co., Ltd., Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China
| | - Qin Wu
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Research and Development Department, Hangzhou Wahaha Technology Co., Ltd., Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Research and Development Department, Hangzhou Wahaha Technology Co., Ltd., Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China
| |
Collapse
|
24
|
Yang L, Ping Q, Yuan Z, Jiang J, Guo B, Liu C, Rao Y, Shi J, Zhang Y. Highly efficient synthesis of mono-β-1,6-Glucosylated Rebaudioside A derivative catalyzed by glycosyltransferase YjiC. Carbohydr Res 2023; 523:108737. [PMID: 36657220 DOI: 10.1016/j.carres.2022.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Steviol glycosides have attracted great interest because of their high levels of sweetness and safety, and absence of calories. Improvement of their sensory qualities via glycosylation modification by glycosyltransferase is a research hotspot. In this study, YjiC, a uridine diphosphate-dependent glycosyltransferase from Bacillus subtilis 168, was found with the ability to glycosylate rebaudioside A (Reb A) to produce a novel mono β-1, 6-glycosylated Reb A derivative rebaudioside L2 (Reb L2). It has an improved sweetness compared with Reb A. Next, a cascade reaction was established by combining YjiC with sucrose synthase AtSuSy from Arabidopsis thaliana for scale-up preparation of Reb L2. It shows that Reb L2 (30.94 mg/mL) could be efficiently synthesized with an excellent yield of 91.34% within 12 h. Therefore, this study provides a potential approach for the production and application of new steviol glycoside Reb L2, expanding the scope of steviol glycosides.
Collapse
Affiliation(s)
- Lifeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Qian Ping
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jiejuan Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
25
|
Wang Y, Luo X, Chen L, Mustapha AT, Yu X, Zhou C, Okonkwo CE. Natural and low-caloric rebaudioside A as a substitute for dietary sugars: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:615-642. [PMID: 36524621 DOI: 10.1111/1541-4337.13084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
For health and safety concerns, traditional high-calorie sweeteners and artificial sweeteners are gradually replaced in food industries by natural and low-calorie sweeteners. As a natural and high-quality sugar substitute, steviol glycosides (SvGls) are continually scrutinized regarding their safety and application. Recently, the cultivation of organic stevia has been increasing in many parts of Europe and Asia, and it is obvious that there is a vast market for sugar substitutes in the future. Rebaudioside A, the main component of SvGls, is gradually accepted by consumers due to its safe, zero calories, clear, and sweet taste with no significant undesirable characteristics. Hence, it can be used in various foods or dietary supplements as a sweetener. In addition, rebaudioside A has been demonstrated to have many physiological functions, such as antihypertension, anti-diabetes, and anticaries. But so far, there are few comprehensive reviews of rebaudioside A. In this review article, we discuss the physicochemical properties, metabolic process, safety, regulatory, health benefits, and biosynthetic pathway of rebaudioside A and summarize the modification methods and state-of-the-art production and purification techniques of rebaudioside A. Furthermore, the current problems hindering the future production and application of rebaudioside A are analyzed, and suggestions are provided.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | | | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates.,Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
| |
Collapse
|