1
|
Wu T, Song F, Huang J, Cui S, Wang L, Yang Q, Wu Y, Li B, Tu Y, Wan X, Liu J. Gut microbiota: The pivotal conduit in the onset of constipation and its alleviation by tea flower polysaccharides (TFP) in a mouse model. Int J Biol Macromol 2025; 304:140808. [PMID: 39924042 DOI: 10.1016/j.ijbiomac.2025.140808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Plant-derived bioactive components, such as polysaccharides, provide promising alleviating effects on constipation with minimal side-effects compared to pharmacological interventions. This study aimed to explore the therapeutic potential of tea flower polysaccharides (TFP) on constipation and the involved mechanisms. In a loperamide-induced constipation mouse model, TFP administration significantly increased fecal water content from 54.23-57.30 % to 63.70-79.36 %, enhanced intestinal transit rate from 30.80 % to 38.81 %, and reduced gastrointestinal (GI) transit time from 234.4 min to 186.2 min. TFP restored levels of both excitatory and inhibitory hormones related to GI motility. Transcriptomic analysis of colonic epithelial cells revealed that TFP restored expression of 544 genes involved in various pathways, including the NF-κB and JAK-STAT signaling pathways, which are associated with the improvement of constipation. Gut microbiota analysis demonstrated that TFP mitigated dysbiosis by normalizing the Firmicutes/Bacteroidota ratio, inhibiting pathogenic genera (e.g., Helicobacter), and promoting beneficial genera (e.g., Muribaculaceae, Bacteroides, Parabacteroides). The mediating role of gut microbiota in the onset of constipation and its alleviation was confirmed through fecal microbiota transplantation (FMT). Furthermore, TFP and its combination with anti-constipation drugs alleviated constipation-induced hepatorenal damage. This study highlights TFP's potential in treating constipation and underscores the essential role of gut microbiota in its therapeutic effects.
Collapse
Affiliation(s)
- Tingbo Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Fanfen Song
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, St-Martems Latemlaan 2B, Kortrijk 8500, Belgium
| | - Jiahong Huang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Junsheng Liu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
2
|
Pang L, Huang Y, Li R, Guo L, Man C, Yang X, Jiang Y. Effects of postbiotics produced by Lactobacillus plantarum JM015 isolated from traditional fermented dairy products on Salmonella-induced intestinal inflammation: A preventive strategy. Food Chem 2025; 469:142549. [PMID: 39708644 DOI: 10.1016/j.foodchem.2024.142549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Huang
- Sanmenxia Polytechnic, Sanmenxia, 472000, China
| | - Runze Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Wu T, Yang M, Jin L, Yu H, Huang H, Wu Y, Li B, Tu Y, Wan X, Liu J. Theaflavin-3,3'-digallate (TF3) attenuated constipation by promoting gastrointestinal motility and modulating the gut microbiota: A comparative study of TF3 and the anti-constipation drug mosapride in mice. Food Chem 2025; 465:142048. [PMID: 39571432 DOI: 10.1016/j.foodchem.2024.142048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
TF3 is a functional pigment formed during the process of black tea. This study aims to explore the anti-constipation effects of TF3 and compare its efficacy with the anti-constipation drug mosapride. Result showed that both TF3 and mosapride increased fecal water content and promoted gastrointestinal (GI) motility, but TF3 was more effective in restoring excitatory neurotransmitters like gastrin (Gas), motilin (MTL), and substance P (SP). TF3 uniquely altered the gut microbiota profile and restored the bacterial community at the phylum level. TF3 targeted specific bacteria such as Alloprevotella, Bacteroides, and Parabacteroides, while mosapride affected different bacterial groups. Significant changes in Bacteroides and Prevotellaceae UCG-001 were linked to constipation improvement. Importantly, TF3 did not synergize with mosapride in alleviating constipation. These findings highlight TF3's unique role in modulating gut microbiota to relieve constipation and suggest great potential to develop functional foods with anti-constipation properties using tea-derived polyphenols.
Collapse
Affiliation(s)
- Tingbo Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Mingxue Yang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Leyi Jin
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Haonan Yu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Haitao Huang
- Tea Research Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, Zhejiang, PR China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Junsheng Liu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
4
|
Rao Z, Li Y, Yang X, Guo Y, Zhang W, Wang Z. Diet xylo-oligosaccharide supplementation improves growth performance, immune function, and intestinal health of broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:165-176. [PMID: 38779325 PMCID: PMC11109738 DOI: 10.1016/j.aninu.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 05/25/2024]
Abstract
The effects of xylo-oligosaccharides (XOS) on broiler growth performance, immune function, and intestinal health were investigated. A total of 540 one-d-old Arbor Acres Plus broilers were randomly divided into 5 groups with 6 replicates per group and 18 chickens per replicate. Broilers in the control (CON) group received a corn-soybean meal based basal diet, those in the antibiotics (ANT) group received the basal diet plus 500 mg/kg oxytetracycline, and those in XOS groups received the basal diet plus 150, 300, or 450 mg/kg XOS. Compared with CON, the body weight at 42 d and average daily gain from 1 to 42 d were significantly increased in the 150, 450 mg/kg XOS-added and ANT groups (P = 0.018), and the relative expression of claudin-1 and ZO-1 mRNA in the ileum was significantly higher in the 300 and 450 mg/kg XOS-added groups (P < 0.001). The feed conversion ratios (P < 0.001) and abdominal fat rates (P = 0.012) of broilers from 1 to 42 d of age were significantly lower in all XOS-added groups than in the control group. Splenic index (P = 0.036) and bursa of Fabricius index (P = 0.009) were significantly better in the ANT group and each XOS-added group than in the control group. Compared to CON and ANT, serum IgA (P = 0.007) and IgG (P = 0.002) levels were significantly higher in the 300 mg/kg XOS-added group, and the relative abundance of short-chain fatty acid-producing genera (Alistipes) was also significantly higher (P < 0.001). Meanwhile, ileal villus height (P < 0.001) and ratio of villus height to crypt depth (V:C) (P = 0.001) were significantly increased in XOS-added broilers. In analysis of relationships between cecal microbes and the physical barrier of the gut, [Ruminococcus]_torques_group was positively correlated with mRNA expression of ileal ZO-1 and claudin-1 (P < 0.05), and Bacteroides was positively correlated with increased ileal villus height and V:C (P < 0.05). Overall, XOS addition to broiler diets improved growth performance, promoted intestinal health by enhancing intestinal barrier function and regulating cecal microbiota diversity, and had positive effects on immunity.
Collapse
Affiliation(s)
- Zhiyong Rao
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Li
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaopeng Yang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongpeng Guo
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Zhang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhixiang Wang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Wang Z, Pan B, Su L, Yu H, Wu X, Yao Y, Zhang X, Qiu J, Tang N. SUMOylation inhibitors activate anti-tumor immunity by reshaping the immune microenvironment in a preclinical model of hepatocellular carcinoma. Cell Oncol (Dordr) 2024; 47:513-532. [PMID: 38055116 DOI: 10.1007/s13402-023-00880-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE High levels of heterogeneity and immunosuppression characterize the HCC immune microenvironment (TME). Unfortunately, the majority of hepatocellular carcinoma (HCC) patients do not benefit from immune checkpoint inhibitors (ICIs) therapy. New small molecule therapies for the treatment of HCC are the goal of our research. METHODS SUMOylation inhibitors (TAK-981 and ML-792) were evaluated for the treatment of preclinical mouse HCC models (including subcutaneous and orthotopic HCC models). We profile immune cell subsets from tumor samples after SUMOylation inhibitors treatment using single-cell RNA sequencing (scRNA-seq), mass cytometry (CyTOF), flow cytometry, and multiple immunofluorescences (mIF). RESULTS We discover that SUMOylation is higher in HCC patient samples compared to normal liver tissue. TAK-981 and ML-792 decrease SUMOylation at nanomolar levels in HCC cells and also successfully reduced the tumor burden. Analysis combining scRNA-seq and CyTOF demonstrate that treatment with SUMOylation inhibitors reduces the exhausted CD8+T (Tex) cells while enhancing the cytotoxic NK cells, M1 macrophages and cytotoxic T lymphocytes (CTL) in preclinical mouse HCC model. Furthermore, SUMOylation inhibitors have the potential to activate innate immune signals from CD8+T, NK and macrophages while promoting TNFα and IL-17 secretion. Most notably, SUMOylation inhibitors can directly alter the TME by adjusting the abundance of intestinal microbiota, thereby restoring anti-tumor immunity in HCC models. CONCLUSIONS This preclinical study suggests that SUMO signaling inhibitors may be beneficial for the treatment of HCC.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Lili Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huahui Yu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| |
Collapse
|
6
|
Yadav SA, Hasan S, Gnanaselvan S, Baskaran S, Danaraj J. Biological Activities and Nanoparticle Synthesis of Dioscorea bulbifera and its Mechanistic Action - An Extensive Review. Pharm Nanotechnol 2024; 12:379-390. [PMID: 38265372 DOI: 10.2174/0122117385284106240110065809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Dioscorea bulbifera is commonly known as air potato present in the tropical and subtropical regions. It is a perennial climber traditionally used for various therapeutic purposes by traditional healers. This review explores various medicinal uses of D. bulbifera and its active ingredients, as well as describes its nanoparticle synthesis for medical applications. METHODS The Google Scholar search engine was used to conduct this comprehensive review along with the databases of the following publishers: Elsevier, Springer, Taylor and Francis, Bentham, and PubMed. DISCUSSION D. bulbifera contains several bioactive compounds that are responsible for its pharmacological properties, such as antioxidant, anti-inflammatory, neuroprotective, anticancer, and antidiabetic properties. It is also used as a nutritive functional food. D. bulbifera-mediated nanoparticle synthesis has been established by the scientific communities for various medicinal applications. CONCLUSION D. bulbifera contains numerous active ingredients, including diosbulbins, bafoudiosbulbin, β-sitosterol, diosgenin, dioscin, pennogenin, myricetin, quercetin, and stigmasterols with numerous biological activities. In addition, it has a vital role in synthesizing nanoparticles with good pharmacological applications, especially in drug delivery systems. However, its potential characteristic features and functional properties of the active molecules present in this tuber need to be further explored in clinical trials. We suggest that using this edible tuber, we may formulate the valueadded food with good medicinal applications.
Collapse
Affiliation(s)
- Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Shiek Hasan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Suvathika Gnanaselvan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Santhoshraman Baskaran
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Jayapragash Danaraj
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| |
Collapse
|
7
|
Gao X, Yu J, Chang L, Wang Y, Sun X, Mu G, Qian F. In vitro antibacterial activity of Bacillus coagulans T242 on Caco-2 cells infected with Salmonella Typhimurium. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
8
|
Kuźmińska-Bajor M, Śliwka P, Korzeniowski P, Kuczkowski M, Moreno DS, Woźniak-Biel A, Śliwińska E, Grzymajło K. Effective reduction of Salmonella Enteritidis in broiler chickens using the UPWr_S134 phage cocktail. Front Microbiol 2023; 14:1136261. [PMID: 37180264 PMCID: PMC10174237 DOI: 10.3389/fmicb.2023.1136261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Salmonella is a poultry-associated pathogen that is considered one of the most important zoonotic bacterial agents of contaminated food of animal origin including poultry products. Many efforts are taken to eliminate it from the food chain, and phages are one of the most promising tools to control Salmonella in poultry production. We investigated the usefulness of the UPWr_S134 phage cocktail in reducing Salmonella in broiler chickens. For this purpose, we analyzed the survivability of phages in the harsh environment encountered in the chicken gastrointestinal tract, which has low pH, high temperatures, and digestive activity. Phages in the cocktail UPWr_S134 showed the ability to remain active after storage at temperatures ranging from 4 to 42°C, reflecting temperatures of storage conditions, broiler handling, and the chicken body, and exhibited robust pH stability. We found that although simulated gastric fluids (SGF) caused phage inactivation, the addition of feed to gastric juice allows maintenance of UPWr_S134 phage cocktail activity. Further, we analyzed UPWr_S134 phage cocktail anti-Salmonella activity in live animals such as mice and broilers. In an acute infection model in mice, the application of doses of 107 and 1014 PFU/ml UPWr_S134 phage cocktail resulted in delaying symptoms of intrinsic infection in all analyzed treatment schedules. In Salmonella-infected chickens orally treated with the UPWr_S134 phage cocktail the number of pathogens in internal organs in comparison to untreated birds was significantly lower. Therefore we concluded that the UPWr_S134 phage cocktail could be an effective tool against this pathogen in the poultry industry.
Collapse
Affiliation(s)
- Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- *Correspondence: Marta Kuźmińska-Bajor,
| | - Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Paweł Korzeniowski
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - David Sáez Moreno
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS Associate Laboratory, Guimarães, Braga, Portugal
| | - Anna Woźniak-Biel
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Emilia Śliwińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Grzymajło
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
9
|
Mustafa A, Nawaz M, Rabbani M, Tayyab M, Khan M. Characterization and evaluation of anti- Salmonella enteritidis activity of indigenous probiotic lactobacilli in mice. Open Life Sci 2022; 17:978-990. [PMID: 36060645 PMCID: PMC9386614 DOI: 10.1515/biol-2022-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022] Open
Abstract
Lactobacilli (n = 24), isolated from human infants and yogurt, showed variable in vitro activity against Salmonella enteritidis (8.0 ± 1.0 to 16.6 ± 0.5 mm) and other gut pathogens (9.0 ± 1.0 to 15.3 ± 0.5 mm), as determined by a well diffusion assay. The isolates were identified as Limosilactobacillus fermentum (FY1, FY3, FY4, IL2, and IL5), Lactobacillus delbrueckii (FY6 and FY7), Lactobacillus sp. (IL7), and Lactobacillus gasseri (IL12). All isolates showed variable in vitro tolerance to acidic pH for 3 h and visible growth at pH 4 and in the presence of 0.3% ox-bile. The antibiotic susceptibility profile of Lactobacillus isolates indicated resistance against vancomycin, ciprofloxacin, streptomycin, and lincomycin. Isolates had variable auto-aggregation and showed variable capabilities to co-aggregate with S. enteritidis. Based on all tested parameters, L. fermentum IL2, L. fermentum IL5, and L. gasseri IL12 were selected for co-culture experiments, followed by in vivo evaluation in Balb/c mice. All the selected isolates resulted in a 100% reduction in S. enteritidis in broth. Lactobacillus isolates efficiently colonized mouse guts and inhibited S. enteritidis colonization. Overall, there was ≥99.06% and ≤4.32 Mean log10 reduction in Salmonella counts in mice feces within 7 days. The study, thus, provided characterized lactobacilli that could be considered as potential ingredients for probiotic formulations intended to prevent S. enteritidis infection in humans.
Collapse
Affiliation(s)
- Amina Mustafa
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan.,Research School of Biology, Australian National University, Canberra, 2601, ACT, Australia
| | - Muhammad Nawaz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Masood Rabbani
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Tayyab
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Madiha Khan
- Department of Microbiology, University of Central Punjab, Lahore, 54000, Punjab, Pakistan
| |
Collapse
|
10
|
Yan B, Huang C, Lai C, Ling Z, Yong Q. Production of prebiotic xylooligosaccharides from industrial-derived xylan residue by organic acid treatment. Carbohydr Polym 2022; 292:119641. [DOI: 10.1016/j.carbpol.2022.119641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022]
|
11
|
Pereira WA, Piazentin ACM, de Oliveira RC, Mendonça CMN, Tabata YA, Mendes MA, Fock RA, Makiyama EN, Corrêa B, Vallejo M, Villalobos EF, de S Oliveira RP. Bacteriocinogenic probiotic bacteria isolated from an aquatic environment inhibit the growth of food and fish pathogens. Sci Rep 2022; 12:5530. [PMID: 35365686 PMCID: PMC8975912 DOI: 10.1038/s41598-022-09263-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
The conditions of aquatic environments have a great influence on the microbiota of several animals, many of which are a potential source of microorganisms of biotechnological interest. In this study, bacterial strains isolated from aquatic environments were bioprospected to determine their probiotic profile and antimicrobial effect against fish and food pathogens. Two isolates, identified via 16S rRNA sequencing as Lactococcus lactis (L1 and L2) and one as Enterococcus faecium 135 (EF), produced a bacteriocin-like antimicrobial substance (BLIS), active against Listeria monocytogenes, Salmonella Choleraesuis and Salmonella Typhimurium. Antimicrobial activity of BLIS was reduced when exposed to high temperatures and proteolytic enzymes (trypsin, pepsin, papain and pancreatin). All strains were sensitive to 7 types of antibiotics (vancomycin, clindamycin, streptomycin, gentamicin, chloramphenicol, rifampicin and ampicillin), exhibited a high rate of adherence to Caco-2 cells and expressed no hemolysin and gelatinase virulence factors. EF showed some resistance at pH 2.5 and 3.0, and L2/EF showed higher resistance to the action of bile salts. Finally, the presence of bacteriocin genes encoding for proteins, including Nisin (L1 and L2), Enterocin A, B, P, and Mundticin KS (EF) was detected. The molecular and physiological evidence suggests that the bacterial isolates in this study could be used as natural antimicrobial agents and may be considered safe for probiotic application.
Collapse
Affiliation(s)
- Wellison Amorim Pereira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil
| | - Anna Carolina M Piazentin
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil
| | - Rodrigo Cardoso de Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil
| | - Carlos Miguel N Mendonça
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil
| | - Yara Aiko Tabata
- Fishing Institute of São Paulo/Salmoniculture Experimental Station, Av. Campos Do Jordão, Residencial Horto Florestal, Campos do Jordão, São Paulo, 12460-000, Brazil
| | - Maria Anita Mendes
- Chemical Engineering Department, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil
| | - Ricardo Ambrósio Fock
- Laboratory of Experimental Hematology, University of São Paulo, Av. Prof. Lineu Prestes, 580, Cidade Universitária, São Paulo, 05508- 000, Brazil
| | - Edson Naoto Makiyama
- Laboratory of Experimental Hematology, University of São Paulo, Av. Prof. Lineu Prestes, 580, Cidade Universitária, São Paulo, 05508- 000, Brazil
| | - Benedito Corrêa
- Laboratory of Toxigenic Fungi and Mycotoxins, Av. Prof. Lineu Prestes, 1.374, Edifício Biomédicas II, 05508-900, São Paulo, Brasil
| | - Marisol Vallejo
- Bacterial Biotechnology Laboratory, Faculty of Natural Sciences and Health Sciences, UNPSJB, Sede Trelew, Chubut, Argentina
| | - Elias Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Ricardo Pinheiro de S Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil.
| |
Collapse
|
12
|
Ma YL, Yan BF, Liu J, Dai SL, Liu J, Wang XX, Fang F, Wu SC, Wang Y, Xu CY, Zhao Q, Wang HB, Wu DK. Limonitum Ameliorates Castor Oil-Induced Diarrhoea in Mice by Modulating Gut Microbiota. Folia Biol (Praha) 2022; 68:133-141. [PMID: 36871169 DOI: 10.14712/fb2022068040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Diarrhoea is a common clinical condition; its pathogenesis is strongly associated with gut microbiota dysbiosis. Limonitum is a well-known traditional Chinese medicine that exerts appreciable benefits regarding the amelioration of diarrhoea. However, the mechanism through which Limonitum ameliorates diarrhoea remains unclear. Here, the efficacy and underlying mechanism of Limonitum decoction (LD) regarding diarrhoea were explored from the aspect of gut microbiota. Castor oil (CO) was used to induce diarrhoea in mice, which were then used to evaluate the effects of LD regarding the timing of the first defecation, diarrhoea stool rate, degree of diarrhoea, diarrhoea score, intestinal propulsive rate, and weight of intestinal contents. The concentrations of short-chain fatty acids (SCFAs), including acetic, propionic, isobutyric, butyric and valeric acids, were analysed by gas chromatography-mass spectrometry (GC-MS). The 16S rRNA high-throughput sequencing technology was applied to evaluate changes in the gut microbiota under exposure to LD. LD was found to effectively ameliorate the symptoms of diarrhoea, and the diversity and relative abundance of gut microbiota were restored to normal levels following LD treatment. Additionally, LD significantly restored the observed reductions in SCFAs. These results provide strong evidence that LD can sufficiently ameliorate diarrhoea in mice by regulating their gut microbiota. The findings presented here highlight that Limonitum may constitute a prospective remedy for diarrhoea.
Collapse
Affiliation(s)
- Y L Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - B F Yan
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing, China
| | - J Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - S L Dai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - J Liu
- 3College of Pharmacy, Jiangsu Health Vocational College, Nanjing, China
| | - X X Wang
- Chemistry and Bio-medicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - F Fang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - S C Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Y Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - C Y Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Q Zhao
- Geological Survey of Jiangsu Province, Geological Society of Jiangsu Province, Nanjing, China
| | - H B Wang
- Suzhou Leiyunshang Pharmaceutical Co. Ltd., Suzhou, China
| | - D K Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| |
Collapse
|