1
|
Zhang Y, Wang H, Ge Q, Shi J, Zhang H, Gao J, Han J. Polysaccharides of Melientha longistaminea regulates immune function and gut microbiota in cyclophosphamide (CTX)-induced immunosuppressed mice. Int Immunopharmacol 2025; 156:114702. [PMID: 40294471 DOI: 10.1016/j.intimp.2025.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/31/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
MLS is a bioactive extract of Melientha longistaminea shoots. In this study, we characterized the preliminary structure of MLS. And establish in vivo immune model experiments. To investigate the potential mechanism of immunomodulatory effects on CTX-induced immunosuppressed mice. From the experimental results, we found that MLS restored immune organ damage in immunosuppressed mice, increased cytokine and immunoglobulin secretion in the spleen, and attenuated oxidative damage to the liver by CTX. Meanwhile, MLS was also effective in ameliorating immune injury in immunosuppressed mice by activating the NF-κB and Nrf2 signaling pathways. MLS effectively improved the composition of the gut flora and increased the production of SCFAs in the gut. The results indicate that MLS has immunomodulatory effects and provides a research basis for developing Melientha longistaminea polysaccharides as immunomodulatory adjuvants.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hui Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qin Ge
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jing Shi
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiying Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiaqi Gao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiaxin Han
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Zhao M, Liu Z, Geng Y, Lv X, Xu J, Zhao X, Yu Z, Zhu R, Li M, Han F, Ma X, Gu N. Role of a low-molecular-weight polysaccharide from Boletus edulis Bull: Fr. in modulating gut microbiota and metabolic disorders. Int J Biol Macromol 2025; 309:142789. [PMID: 40210031 DOI: 10.1016/j.ijbiomac.2025.142789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
This study aimed to investigate the effects of Boletus edulis Bull: Fr. polysaccharide (BEP), extracted using a deep eutectic solvent based on l-lactic acid and glycine, on glucose and lipid metabolism in high-fat diet (HFD)-fed mice. The primary mechanism by which BEP improves symptoms of glucose and lipid imbalances involves the modulation of gut microbiota. Key beneficial bacteria, including S24-7, Lachnospiraceae, [Prevotella], and Lactobacillus, were significantly enriched in the intestines of BEP-treated mice, with abundances 2.48-, 1.62-, 6.33- and 2.60-fold higher, respectively, compared to the HFD group. In contrast, the abundance of harmful bacteria, particularly Desulfovibrio, was reduced by 1.81-fold. These microbial shifts contributed to the alleviation of intestinal mucus layer damage and a 50 % reduction in serum lipopolysaccharide (LPS) levels, a key driver of systemic inflammation, compared to the HFD group. As a result, BEP effectively inhibited LPS-induced activation of the hepatic TLR4/Myd88/MAPK signaling pathway, thereby normalizing the expression of proteins related to glucose and lipid metabolism. A fecal microbiota transplantation study further demonstrated that the gut microbiota changes induced by BEP were central to its anti-metabolic syndrome effects. Overall, BEP may serve as a dietary supplement for preventing and treating diet-induced metabolism disorders by targeting the gut microbiota.
Collapse
Affiliation(s)
- Meimei Zhao
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China; Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Zheng Zhou 450018, China
| | - Zhiqi Liu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Yuqi Geng
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Lv
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Jingyi Xu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyi Zhao
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Ziteng Yu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Mengcong Li
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Fang Han
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiao Ma
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Ning Gu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China; Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Zheng Zhou 450018, China.
| |
Collapse
|
3
|
Yang Y, Zhang Y, Zhang W, Lu K, Wang L, Liu Y, Du L, Yang J, Guan L, Ma H. Flammulina velutipes residue Polysaccharide Alleviates Immunosuppression and Intestinal Injury by Modulating Gut Microbiota and Associated Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7788-7806. [PMID: 40116376 DOI: 10.1021/acs.jafc.4c12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
This study elucidated the mechanisms underlying the immunoregulatory and gut-microbiota-modulating effects of Flammulina velutipes residue polysaccharide (FVRP) using cyclophosphamide (CTX)-induced mouse models. FVRP supplementation alleviated CTX-induced intestinal damage and boosted antioxidant enzyme activity and cytokine secretion. Additionally, FVRP enhanced the diversity and total species richness of the gut microbiota, promoting the proliferation of beneficial bacteria (e.g., Prevotellaceae), while reducing the abundance of CTX-derived bacteria (Lachnospiraceae and Rikenellaceae). FVRP facilitates the accumulation of short-chain fatty acids. Untargeted metabolomic analyses of cecal content revealed that FVRP treatment notably restored the levels of 32 endogenous metabolites altered by CTX. Based on a pseudosterility mice model, fecal microbiota transplantation (FMT), and fecal filtrate transplantation (FFT), gut microbiota and associated metabolites were demonstrated to play a crucial role in the immunomodulatory and protective effects of FVRP against intestinal injury. In conclusion, FVRP exhibits significant potential as an immune enhancer and natural therapeutic agent for alleviating intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yao Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Wenying Zhang
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, P. R. China
| | - Kunpeng Lu
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Liping Wang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yanfang Liu
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Linna Du
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jing Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Hongxia Ma
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| |
Collapse
|
4
|
Chen S, Zhu X, Guo Y, Kang N, Huang Q. Oxidized yeast glucan alleviates lead-induced toxicity in mice by improving intestinal health to inhibit Pb absorption and reducing kidney oxidative stress. Int J Biol Macromol 2025; 292:139205. [PMID: 39733907 DOI: 10.1016/j.ijbiomac.2024.139205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
This study investigated the protective effects and Pb-excretion mechanisms of yeast glucans (YG) with varying oxidation degrees in Pb-exposed mice. Results demonstrated that all three glucans effectively reduced blood lead levels, alleviated inflammation, and mitigated liver damage in Pb-exposed mice, with highly oxidized yeast glucan (OYG2) exhibiting the greatest efficacy. Furthermore, the glucans attenuated Pb-induced oxidative stress and pathological changes in the kidney by elevating glutathione and superoxide dismutase levels, thereby restoring renal excretory function (blood urea nitrogen and creatinine). This restoration contributed to maintaining electrolyte homeostasis (Na+, Cl-, K+) and significantly enhanced lead excretion efficiency via urine. Additionally, the glucans modulated intestinal microbiota balance, promoted short-chain fatty acid production, and repaired Pb-induced intestinal barrier damage by upregulating tight junction proteins (ZO-1, Occludin, Claudin-1). In conclusion, yeast glucans, particularly OYG2, effectively inhibited Pb absorption and facilitated its excretion through feces, highlighting their potential as a therapeutic strategy for lead toxicity.
Collapse
Affiliation(s)
- Shuai Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyi Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ningzhe Kang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Ma W, Sun H, Lian L, Guo L, Wang Y, Huang L. Immunomodulatory effects of Lactiplantibacillus plantarum CCFM8661 + stachyose on cyclophosphamide-induced immunosuppression mice. Front Immunol 2025; 16:1513531. [PMID: 39931067 PMCID: PMC11807972 DOI: 10.3389/fimmu.2025.1513531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction The increasing stress of modern life has led to a decline in immunity, sparking widespread interest in new strategies to boost immune function. Lactiplantibacillus plantarum and stachyose have gained attention for their immune-regulating effects, but the mechanisms of their combined application remain unclear. This study aims to investigate the immunoregulatory effects of Lactiplantibacillus plantarum CCFM8661 combined with stachyose in cyclophosphamide-induced immunocompromised mice. Methods Mice were divided into the normal control group, model control group (normal saline), positive drug control group (levamisole hydrochloride, 10 mg/kg), and low, medium, and high-dose groups (1.5×105, 1.5×106, and 1.5×107 CFU of Lactiplantibacillus plantarum CCFM8661 + 1.5 mg stachyose). Each treatment group received continuous oral gavage administration for 28 days. On days 23 and 24, except for the normal control group, all other groups were intraperitoneally injected with cyclophosphamide (40 mg/kg) to establish an immunosuppressed model. On day 28, 30 minutes after the final administration, the mice were euthanized to collect the thymus, spleen, serum, ileum, and feces for subsequent analysis of immune indicators, intestinal barrier function, serum cytokines, and intestinal microbiota. Results The combination significantly improved immune organ atrophy, restored intestinal morphology, and normalized cytokine levels in immunosuppressed mice, indicating enhanced immune function. Additionally, it restored intestinal microbiota diversity by increasing the abundance of Muribaculaceae while reducing Lachnospiraceae, potentially promoting intestinal homeostasis. Discussion The combination of Lactiplantibacillus plantarum CCFM8661 and stachyose has immune-enhancing effects, potentially achieved by regulating inflammation levels and maintaining intestinal homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Lili Huang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Wang Y, Zhou J, Yang M, Zhu L, Wang F. Tea Administration Facilitates Immune Homeostasis by Modulating Host Microbiota. Nutrients 2024; 16:3675. [PMID: 39519508 PMCID: PMC11547558 DOI: 10.3390/nu16213675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Tea, derived from the young leaves and buds of the Camellia sinensis plant, is a popular beverage that may influence the host microbiota. Its consumption has been shown to promote the growth of beneficial bacterial species while suppressing harmful ones. Simultaneously, host bacteria metabolize tea compounds, resulting in the production of bioactive molecules. Consequently, the health benefits associated with tea may stem from both the favorable bacteria it nurtures and the metabolites produced by these microbes. The gut microbiota plays a vital role in mediating the systemic immune homeostasis linked to tea consumption, functioning through complex pathways that involve the gut-lung, gut-brain, and gut-liver axes. Recent studies have sought to establish connections between tea, its bioactive compounds, and immune regulation via the gut microbiota. In this paper, we aim to summarize the latest research findings in this field.
Collapse
Affiliation(s)
- Yihui Wang
- Haide College, Ocean University of China, Qingdao 266100, China;
| | - Jiayu Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (J.Z.); (M.Y.); (L.Z.)
| | - Min Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (J.Z.); (M.Y.); (L.Z.)
| | - Liying Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (J.Z.); (M.Y.); (L.Z.)
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (J.Z.); (M.Y.); (L.Z.)
| |
Collapse
|
7
|
Zhang H, He Z, Chen Y, Chao J, Cheng X, Mao J, Chen Y, Li B, Yu J, Yan M, Chen S, Lv G, Su J. Cordyceps polysaccharide improves polycystic ovary syndrome by inhibiting gut-derived LPS/TLR4 pathway to attenuates insulin resistance. Int J Biol Macromol 2024; 280:135844. [PMID: 39326591 DOI: 10.1016/j.ijbiomac.2024.135844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder marked by aberrant glucose metabolism and reproductive dysfunction. It is characterized by polycystic ovaries, ovulatory dysfunction, and hyperandrogenemia. PCOS patients often experience a persistent, mild inflammation linked to various metabolic issues and insulin resistance (IR). Cordyceps polysaccharide (CP), extracted from the asexual form of the fungus Cordyceps gunnii, Hirsutella sinensis, is a bioactive crude polysaccharide with triple helix structure. CP was a spherical molecular polymer composed of rhamnose, arabinose, aminoglucose hydrochloride, galactose, glucose, and mannose, and has two molecular weights, 156.511 and 27.298 kDa. Our results corroborated that CP improve polycystic lesions in ovarian tissue and regulates hormone levels and the estrous cycle in rats with PCOS. However, the mechanism of action of this therapy in the treatment of polycystic ovary syndrome is not clear. In the present study, CP was found to modulates disturbances in glucose-lipid metabolism in model rats. In addition, it modulated gut microbiota by decreasing abundance of Gram-negative bacteria (norank_f__Desulfovibrionaceae, Helicobacter), hereby inhibiting the production and transfer of LPS into the systemic circulation. This suppressed the TLR4/MyD88/NF-κB inflammatory pathway in the liver and adipose tissue and restored insulin signaling, which improved IR in PCOS rats. Our findings demonstrate that based on the regulation of gut microbiota disorders and the repair of intestinal barrier damage, CP inhibited the gut-derived LPS/TLR4 inflammatory pathway in liver to attenuated IR, which led to the improvement of ovarian polycystic lesions. In addition, this study tapped into the role of Cordyceps polysaccharides in improving female reproductive function, expanding its clinical application in women with PCOS, which is innovative and offers valuable insights into the therapeutic potential of CP for treating PCOS.
Collapse
Affiliation(s)
- Huiwen Zhang
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Ziwen He
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Yigong Chen
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Jingtong Chao
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Xiamei Cheng
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Jiayin Mao
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Yulan Chen
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Xiacheng District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jingjing Yu
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Meiqiu Yan
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Xiacheng District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China.
| | - Jie Su
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
8
|
Lin Y, Xie S, Xiao L, Liu Z, Ke W, Huang JA, Liu Z, Quan W. Can drinking tea become an effective way to alleviate the extraintestinal manifestations of inflammatory bowel disease: A comprehensive review. FOOD BIOSCI 2024; 59:104168. [DOI: 10.1016/j.fbio.2024.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Liu Y, Li Y, Sun B, Kang J, Hu X, Zou L, Cui SW, Guo Q. Glucans from Armillaria luteo-virens: Structural Characterization and In Vivo Immunomodulatory Investigation under Different Administration Routes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6006-6018. [PMID: 38456292 DOI: 10.1021/acs.jafc.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Polysaccharides fromArmillaria luteo-virens (ALP) were investigated for structural characterization and immunomodulatory activities. Three fractions (ALP-1, ALP-2, and ALP-3) were obtained with the yield of 2.4, 3.7, and 3.0 wt %, respectively. ALP-1 was proposed as a β-(1 → 3)(1 → 6)-glucan with a triple-helix conformation; ALP-2 and ALP-3 were both identified as α-(1 → 4)(1 → 6)-glucan differing in their Mw and branching degree with a spherical conformation. The in vitro digestibility experiment and in vivo experiments using cyclophosphamide (CY)-treated mice demonstrated that intraperitoneal injection of α-glucan (1 mg·kg-1·day-1) and intragastric gavage of β-glucan (10 mg·kg-1·day-1) both effectively restored the decrease in body weight, immune organ indexes, immune cell activities, serum immune marker levels, colonic short-chain fatty acids (SCFA) levels, and Bacteroidetes/Firmicutes ratio in immunosuppression mice. This study provides novel insights into the immunomodulatory activity of α- and β-glucans under different administration routes, thereby promoting their application in both food and pharmaceutical areas.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, Hangzhou, 311300 Zhejiang Province, P. R. China
| | - Yanmei Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bo Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian 710119 Shaanxi, P. R. China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Steve W Cui
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
10
|
Han P, Tian X, Wang H, Ju Y, Sheng M, Wang Y, Cheng D. Purslane (Portulacae oleracea L.) polysaccharide relieves cadmium-induced colonic impairments by restricting Cd accumulation and inhibiting inflammatory responses. Int J Biol Macromol 2024; 257:128500. [PMID: 38040149 DOI: 10.1016/j.ijbiomac.2023.128500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
This study aimed to assess the protective effects of purslane polysaccharide (PP) on colonic impairments in mice exposed to cadmium (Cd). C57BL/6 mice were administered with PP (200-800 mg/kg/day) by gavage for 4 weeks after treatment with 100 mg·L-1 CdCl2. PP significantly reduced Cd accumulation in the colon tissue and promoted the excretion of Cd in the feces. PP could reduce the expression levels of inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6) and inhibit the activation of the TLR4/MyD88/NF-κB signaling pathway. In addition, the results of 16S rRNA analysis revealed that PP significantly increased the abundance of probiotics (Lactobacillus), while decreased the abundance of pathogenic bacteria (Lachnospiraceae_NK4A136_group). Following the augmentation of beneficial intestinal bacteria, the treatment with PP led to an increase in the levels of intestinal microbial metabolites, specifically short-chain fatty acids (SCFAs). The SCFAs are known for their anti-inflammatory properties, immune-regulatory effects, and promotion of intestinal barrier function. Additionally, the results suggested that PP effectively impeded the enterohepatic circulation by inhibiting the FXR-FGF15 axis in the intestines of Cd-exposed mice. In summary, PP mitigated the toxic effects of Cd by limiting its accumulation and suppressing inflammatory responses in colon.
Collapse
Affiliation(s)
- Pengyun Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuena Tian
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haozhe Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaojun Ju
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mian Sheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
11
|
Wang H, Li M, Jiao F, Ge W, Liu R, Zhi Z, Wu T, Sui W, Zhang M. Soluble dietary fibers from solid-state fermentation of wheat bran by the fungus Cordyceps cicadae and their effects on colitis mice. Food Funct 2024; 15:516-529. [PMID: 38167692 DOI: 10.1039/d3fo03851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ulcerative colitis is a chronic inflammatory disease with a complex pathogenesis for which there is no definitive therapeutic agent. Fermentation, as a green and efficient bioprocessing technique, has been shown to enhance the biological activity of food ingredients. Soluble dietary fiber isolated from plants is thought to have the potential to prevent and alleviate ulcerative colitis. This work was designed to study the differences in the chemical properties of the soluble dietary fiber from wheat bran fermented by Isaria cicadae Miq. (FSDF) and the unfermented soluble dietary fiber from wheat bran (UFSDF) and their effects on colitis mice. The results showed that FSDF and UFSDF differed in molecular weight, monosaccharide compositions, and surface morphology. In addition, supplementation with UFSDF and FSDF ameliorated the symptoms of DSS-induced colitis in mice by attenuating body weight loss, decreasing the disease activity index and splenic index, shortening the length of the colon, and attenuating colonic tissue damage. UFSDF and FSDF also increased the production of the anti-inflammatory cytokine IL-10 and inhibited the expression of IL-6, IL-1β, and TNF-α. The results of gut flora and short-chain fatty acid analyses showed that UFSDF and FSDF improved the diversity of gut microbiota, up-regulated the abundance of some beneficial bacteria such as Akkermansia and Muribaculaceae, increased the levels of acetic acid, propionic acid, and butyric acid, and restored dextran sodium sulfate (DSS)-induced dysbiosis of the intestinal flora in mice. These findings provide guidance for the development of FSDF and UFSDF as functional foods for the relief of ulcerative colitis.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Menglin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Furong Jiao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Wenxiu Ge
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China
| |
Collapse
|
12
|
Chen T, Xie L, Wang G, Jiao J, Zhao J, Yu Q, Chen Y, Shen M, Wen H, Ou X, Xie J. Anthocyanins-natural pigment of colored rice bran: Composition and biological activities. Food Res Int 2024; 175:113722. [PMID: 38129038 DOI: 10.1016/j.foodres.2023.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Rice by-products are a potential source of various bioactive substances with great processing potential, which are receiving increasing attention. Among them, rice bran is a by-product of rice milling, with high nutritional value and health benefits. Colored rice bran contains a large amount of anthocyanins responsible for color and bioactivities. And anthocyanins are often added to foods as a natural pigment, serving to enhance both the visual appeal and nutritional value. Recent advances in the composition and bioactivities of four common colored rice bran anthocyanins (black, purple, red, and purple red rice) are reviewed in this paper. Rice bran anthocyanins have been confirmed to exhibit biological potential for human health, with their main biological activities being antioxidant, anti-atherosclerosis, anti-cancer, neuroprotective, retinoprotective, immunomodulatory, anti-aging and anti-obesity effects. The structure of anthocyanins determines their biological activities. The anthocyanins composition of rice bran with different colors varied greatly, while that of rice bran with the same color is also slightly different, which is attributed to the rice varieties, growing environment and cropping conditions. However, it remains necessary to conduct further clinical studies to support the health activities of anthocyanins. The present review provides information value for the further development and comprehensive utilization of rice bran anthocyanins.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jilan Jiao
- Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China
| | - Junwei Zhao
- Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Ou
- Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
13
|
Li X, Luo J, Han C, Lu X. Nanoplastics enhance the intestinal damage and genotoxicity of sulfamethoxazole to medaka juveniles (Oryzias melastigma) in coastal environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164943. [PMID: 37329919 DOI: 10.1016/j.scitotenv.2023.164943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Antibiotics and nanoplastics are widely detected in the coastal ecosystem. However, the transcriptome mechanism elucidating the effect of antibiotics and nanoplastics co-exposure on the gene expression of aquatic organisms in coastal environment is still unclear. Here, single and joint effects of sulfamethoxazole (SMX) and polystyrene nanoplastics (PS-NPs) on the intestinal health and gene expression of medaka juveniles (Oryzias melastigma), which live in coastal environment, were investigated. The SMX and PS-NPs co-exposure decreased intestinal microbiota diversity compared to the PS-NPs, and caused more adverse effect on the intestinal microbiota composition and intestinal damage compared to the SMX, indicating that PS-NPs might enhance the toxicity of SMX on the medaka intestine. The increased abundance of Proteobacteria in the intestine was observed in the co-exposure group, which might induce the intestinal epithelium damage. In addition, the differentially expressed genes (DEGs) were mainly involved in the drug metabolism-other enzymes, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450 pathways in visceral tissue after the co-exposure. The expression of the host immune system genes (e.g., ifi30) could be associated with the increased pathogens in intestinal microbiota. This study is useful for understanding the toxicity effect of antibiotics and NPs on aquatic organisms in coastal ecosystem.
Collapse
Affiliation(s)
- Xue Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Chenglong Han
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Liu D, Wang S, Liu Y, Luo Y, Wen B, Wu W, Zeng H, Huang J, Liu Z. Fuzhuan brick tea ameliorates hepatic steatosis and steatohepatitis through gut microbiota-derived aryl hydrocarbon receptor ligands in high-fat diet-induced obese mice. Food Funct 2023; 14:8351-8368. [PMID: 37606634 DOI: 10.1039/d3fo01782f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
High-fat diet (HFD) induced obesity and its associated conditions, such as hepatic steatosis and steatohepatitis, are major health concerns worldwide. Previous studies have reported the excellent efficiency of Fuzhuan brick tea (FBT) in attenuating HFD-induced obesity and metabolic disorders. In this study, we investigated the effects of FBT on hepatic steatosis and simple steatohepatitis in HFD-induced obese mice, as well as the metabolic function of the gut microbiome using metagenomics and metabolomics. The results showed that FBT ameliorated dyslipidemia, hepatic steatosis and steatohepatitis in HFD-induced obese mice by normalizing the gut microbiota structure and tryptophan metabolism. FBT increased the cecal abundance of aryl hydrocarbon receptor (AhR)-ligand producing bacteria such as Lactobacillus_reuteri and Lactobacillus_johnsonii, at the expense of AhR-ligand consuming bacteria, such as Faecalibaculum_rodentium and Escherichia_coli, and elevated the cecal contents of AhR-ligands such as IAA, IPA, and KYNA. Furthermore, FBT regulated the expressions of AhR and its targeted lipometabolic genes such as Pemt, Fasn, and SREBP-1c, as well as other inflammatory genes including TNF-α, IL-6, and IL-1β in the liver of mice. Overall, these findings highlight the beneficial effects of FBT on obesity-related hepatic steatosis and steatohepatitis via microbiota-derived AhR signaling.
Collapse
Affiliation(s)
- Dongmin Liu
- Changsha University of Science & Technology, Changsha 410114, China
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Siyu Wang
- Changsha University of Science & Technology, Changsha 410114, China
| | - Yaqing Liu
- Changsha University of Science & Technology, Changsha 410114, China
| | - Yong Luo
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Beibei Wen
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Wenliang Wu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, China
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| |
Collapse
|
15
|
Xie L, Chen T, Qi X, Li H, Xie J, Wang L, Xie J, Huang Z. Exopolysaccharides from Genistein-Stimulated Monascus purpureus Ameliorate Cyclophosphamide-Induced Intestinal Injury via PI3K/AKT-MAPKs/NF-κB Pathways and Regulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12986-13002. [PMID: 37611142 DOI: 10.1021/acs.jafc.3c03186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Exopolysaccharides from genistein-stimulated Monascus purpureus (G-EMP) exhibited immunomodulatory potential in vitro, but whether it had immune-enhancing effects in vivo and its potential mechanism are not yet known. Here, the immunomodulatory effects of G-EMP were investigated by establishing an immunosuppressed mouse model treated with cyclophosphamide (Cy). The results suggested that G-EMP effectively alleviated the signs of weight reduction and diet reduction caused by Cy, increased fecal water content and splenic index, and decreased the oxidative stress of the liver. Simultaneously, G-EMP improved Cy-induced intestinal injury by restoring villus length, increasing the number of cupped cells, upregulating the expression of mucin and tight junction proteins, and downregulating the ratio of apoptotic proteins (Bax/Bcl-2). It also boosted the levels of mouse colonic cytokines, CD4+ and CD8+ T cells. Additionally, G-EMP markedly enhanced immunomodulation via the activation of PI3K/AKT-MAPKs/NF-κB signal pathways. Furthermore, G-EMP intervention displayed a positive association with most immunological indexes by elevating the levels of short-chain fatty acids, varying gut microbiota composition, and enhancing beneficial bacteria (Lactobacillaceae, Prevotellaceae, and S24-7). These findings demonstrated that G-EMP can strengthen immunity, repair intestinal mucosal damage, regulate gut microbiota, and be a potential source of prebiotics.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Linchun Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
16
|
Su LL, Li X, Guo ZJ, Xiao XY, Chen P, Zhang JB, Mao CQ, Ji D, Mao J, Gao B, Lu TL. Effects of different steaming times on the composition, structure and immune activity of Polygonatum Polysaccharide. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116351. [PMID: 36914038 DOI: 10.1016/j.jep.2023.116351] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a commonly used traditional Chinese herbal medicine, Polygonati Rhizoma has high medicinal value, it can enhance the immune capacity of the body, regulate the metabolism of blood glucose and lipids, treat weakness of the stomach and intestines and physical fatigue, and so on. There are three plant varieties of Polygonati Rhizoma recorded in Chinese Pharmacopoeia, including Polygonatum sibiricum Red., Polygonatum kingianum Coll. et Hemsl. and Polygonatum cyrtonema Hua, compared with the first two, Polygonatum cyrtonema Hua is less studied. Polygonatum cyrtonema Hua is one of the basal plants of the Chinese herb Polygonati Rhizoma, that strengthens the spleen, moistens the lungs, and benefits the kidneys. Polygonatum polysaccharide is the main active substance of Polygonatum cyrtonema Hua, which has various biological effects of regulating immune system, anti-inflammatory, anti-antidepressant, antioxidant and other effects. AIM OF THE STUDY In order to analyze the necessity and scientificity of multiple cycles of steaming during the traditional nine-steaming and nine-drying process of the concoction of Polygonatum, we investigated the changes in the composition and structure of polysaccharides, and explored its immunomodulatory activity and molecular biological mechanism. METHODS The structural characterization and molecular weight of polysaccharides were studied by scanning electron microscope (SEM), high-performance size exclusion chromatography-evaporative light scattering detector (HPSEC-ELSD) and Matrix.assisted laser resolutionu ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The composition and proportion of monosaccharides were determined by PMP-HPLC method. A mouse immunosuppression model was established by intraperitoneal injection of cyclophosphamide to compare the immunomodulatory effects and mechanisms of different steaming times of Polygonatum, The changes of body mass and immune organ indices of mice were measured; the secretion levels of interleukin-2 (IL-2), interferon γ (IFN-γ) and the expression levels of immunoglobulin M (IgM) and immunoglobulin A (IgA) in serum were determined by enzyme-linked immunosorbent assay; and then flow cytometry was used to detect T-lymphocyte subpopulations to evaluate the differences of immunomodulatory effects of polysaccharides during the processing and preparation of Polygonatum. Finally, the Illumina MiSeq high-throughput sequencing platform was used to analyze short-chain fatty acids and to investigate the effects of different steaming times of Polygonatum polysaccharides on immune function and intestinal flora in immunosuppressed mice. RESULTS The structure of the Polygonatum polysaccharide with different steaming times changed significantly, the relative molecular weight of Polygonatum polysaccharide decreased significantly, and the monosaccharide composition of Polygonatum cyrtonema Hua with different steaming times was the same but the content was different. The immunomodulatory activity of the Polygonatum polysaccharide was enhanced after concoction, which significantly increased the spleen index and thymus index, and increased the expression of IL-2, IFN-γ, IgA and IgM. The CD4+/CD8+ ratio of Polygonatum polysaccharide also increased gradually with different steaming times, indicating enhanced immune function and significant immunomodulatory effect. The content of short-chain fatty acids in the feces of mice in both six steaming six sun-drying of Polygonatum polysaccharides (SYWPP) and nine steaming nine sun-drying of Polygonatum polysaccharides (NYWPP) groups increased significantly, including the content of propionic acid, isobutyric acid, valeric acid, and isovaleric acid, and also had a good effect on the regulation and improvement of microbial community abundance and diversity, SYWPP and NYWPP increased the relative abundance of Bacteroides and the ratio of Bacteroides and Firmicutes (B:F), while SYWPP significantly increased the abundance of Bacteroides, Alistipes and norank_f__Lachnospiraceae, but the effect of raw Polygonatum polysaccharides (RPP) and NYWPP was not significant than SYWPP. CONCLUSION Overall, both SYWPP and NYWPP could significantly enhance the immune activity of the organism, improve the imbalance of intestinal flora in immunosuppressed mice, and increase the content of intestinal short chain fatty acids (SCFAs), it is noteworthy that SYWPP has a better effect on the improvement of the immune activity of the organism. These findings can explore the stage of the concoction process of Polygonatum cyrtonema Hua to achieve the best effect, provide a reference basis for the development of quality standards, and at the same time promote the application of new therapeutic agents and health foods in raw and different steaming times of Polygonatum polysaccharide.
Collapse
Affiliation(s)
- Lian-Lin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoman Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi-Jun Guo
- China Resources Sanjiu Pharmaceutical Co., Ltd, Shenzhen, 518000, China
| | - Xiao-Yan Xiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiu-Ba Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chun-Qin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - De Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Mao
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, China
| | - Bo Gao
- China Resources Sanjiu Pharmaceutical Co., Ltd, Shenzhen, 518000, China.
| | - Tu-Lin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
17
|
Yu B, Zhang D, Wu Y, Tao W, Luorong Q, Luo J, Tan L, Chen H, Cao W. A new polysaccharide from Hawk tea: Structural characterization and immunomodulatory activity associated with regulating gut microbiota. Food Chem 2023; 418:135917. [PMID: 36940546 DOI: 10.1016/j.foodchem.2023.135917] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
In this study, a novel 28.6 kDa acidic polysaccharide (HTP-1), containing → 4)-GalpA-(1→, →2)-Rhap-(1 → and → 3,6)-Galp-(1 → residues as the backbone, analogous to pectin, was isolated from mature Hawk tea leaves. HTP-1 exhibited significant immunoregulatory activities on CTX-induced immunosuppressed mice in a dose-depend manner by alleviating jejunum injury and improving the levels of immune organ indexes, cytokines and immunoglobulins. Moreover, HTP-1 supplementation boosted the content of SCFAs, altered the intestinalmicrobiota composition, and raised the abundances of beneficial bacteria Muribaculaceae, Lactobacillaceae, Bacteroidaceae, Prevotellaceae and Ruminococcaceae, which showed a strong positive correlation with most immune indicators. The current findings suggested that the immunomodulatory action of HTP-1 might rely on the regulation of the gut microbiota, and these results may also serve as a foundation for the future exploitation of HTP-1 as functional foods.
Collapse
Affiliation(s)
- Bao Yu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dan Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yingqin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wei Tao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Quji Luorong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Juan Luo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lihong Tan
- College of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Huan Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weiguo Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
18
|
Tian J, Zhao X, Tang C, Wang X, Zhang X, Xiao L, Li W. Protective effect of Paecilomyces cicadae TJJ11213 exopolysaccharide on intestinal mucosa and regulation of gut microbiota in immunosuppressed mice. Food Res Int 2023; 165:112477. [PMID: 36869490 DOI: 10.1016/j.foodres.2023.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The exopolysaccharide (EPS) form Paecilomyces cicadae TJJ1213 possessed immunomodulatory activity in vitro, but whether it could regulate the immune system and intestinal microbiota in vivo remained unknown. In this study, the cyclophosphamide (CTX)-induced immunosuppressive mouse model was established to explore the immunomodulatory activity of EPS. Results showed that EPS could increase the immune organ indices, promote the secretion of serum immunoglobulins and up-regulate the expression of cytokines. Additionally, EPS could repair CTX-induced intestinal injury by increasing the expression of tight junction proteins and promoting the production of short-chain fatty acids. Moreover, EPS could remarkably enhance immunity through TLR4/MyD88/NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, EPS regulated intestinal microbiota by increasing the abundance of beneficial bacteria (Muribaculaceae, Lachnospiraceae NK4A136, Bacteroides, Odoribacter) and reducing the level of harmful bacteria (Alistipes, Helicobacter). In conclusion, our study suggested that EPS had the abilities to enhance immunity, restore intestinal mucosal injury and modulate intestinal microbiota, and may serve as a potential prebiotic to maintain health in the future.
Collapse
Affiliation(s)
- Juanjuan Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; College of Tea and Food Science Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, PR China
| | - Xiaogan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chao Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaomeng Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xueliang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
19
|
Wu X, Huang X, Ma W, Li M, Wen J, Chen C, Liu L, Nie S. Bioactive polysaccharides promote gut immunity via different ways. Food Funct 2023; 14:1387-1400. [PMID: 36633119 DOI: 10.1039/d2fo03181g] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Numerous kinds of bioactive polysaccharides are identified as having intestinal immunomodulatory activity; however, the ways in which the different polysaccharides work differ. Therefore, we selected nine representative bioactive polysaccharides, including xanthan gum, inulin, guar gum, arabinogalactan, carrageenan, glucomannan, araboxylan, xylan, and fucoidan, and compared their intestinal immunomodulatory mechanisms. A cyclophosphamide (CTX)-induced immunosuppressed model was used in this experiment, and the effects of these polysaccharides on the number of T cells in the intestinal mucosa, expression of transcription factors and inflammatory factors, intestinal metabolome and gut microbiota were compared and discussed. The results revealed that the nine polysaccharides promote intestinal immunity in different ways. In detail, guar gum, inulin and glucomannan better alleviated immune suppression in intestinal mucosal T cells. Inulin improved the intestinal microenvironment by significantly upregulating the abundance of Lactobacillus and Monoglobus and promoted short chain fatty acid (SCFA) production. Fucoidan and carrageenan promoted the colonization of the beneficial bacteria Rikenella and Roseburia. In addition, fucoidan, inulin and carrageenan inhibited the colonization of harmful bacteria Helicobacter, upregulated the abundance of Clostridia_UCG-014 and alleviated the accumulation of amino acids, bile acids and indoles in the large intestine. In conclusion, our study uncovered the different intestinal immunomodulatory mechanisms of the different polysaccharides and provided a guideline for the development of superior intestinal immunomodulatory polysaccharides.
Collapse
Affiliation(s)
- Xincheng Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Wanning Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jiajia Wen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Liandi Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
20
|
Mendes TPS, Santana RA, Cedro PÉP, Miranda ACA, Junior BBN, Júnior GLV. Extraction, characterization, antioxidant and α-amylase inhibitory activities of (1 → 3)(1 → 6)-β-D-glucogalactan from Aspergillus niger ATCC 1004. 3 Biotech 2023; 13:56. [PMID: 36691433 PMCID: PMC9859964 DOI: 10.1007/s13205-023-03467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
The optimization of extraction, chemical characterization, and the evaluation of antioxidant activity and α-amylase inhibition capacities of the cell wall polysaccharides extracted from Aspergillus niger ATCC 1004 were studied in this paper. The response surface methodology through a factorial design of three levels indicated the optimal conditions for extraction: pH 13 and 180 min. Characterization results showed that the polysaccharide is glucogalactan, consisting of β-D-galactose-linked units (1 → 6) and β-D-linked glucose (1 → 3). The antioxidant activity was evaluated through three in vitro assays. It could effectively scavenge DPPH, ABTS and hydroxyl radicals with inhibition rates of 82.12%, 75.87% and 79.24, respectively, at 6.4 mg/mL, which were higher than those of the other polysaccharides. For inhibitory activity against α-amylase, a blocking effect of 53.7% was observed at a concentration of 2 mg/mL. Therefore, the cell wall polysaccharides of Aspergillus niger, (1 → 3)(1 → 6)-β-D-glucogalactan, seem to be a promising source for use as an antioxidant, in addition to holding an in vitro hypoglycemic potential.
Collapse
Affiliation(s)
- Tátilla P. S. Mendes
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | - Romário A. Santana
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | - Pâmala Évelin P. Cedro
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | - Alana Caise A. Miranda
- Sciences and Technology Department, State University of Southwest Bahia, Jequié, Bahia Brazil
| | | | | |
Collapse
|
21
|
Insight into the structural and immunomodulatory relationships of polysaccharides from Dendrobium officinale-an in vivo study. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Ma W, Li W, Yu S, Bian H, Wang Y, Jin Y, Zhang Z, Ma Q, Huang L. Immunomodulatory effects of complex probiotics on the immuno-suppressed mice induced by cyclophosphamide. Front Microbiol 2023; 14:1055197. [PMID: 36778877 PMCID: PMC9911820 DOI: 10.3389/fmicb.2023.1055197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Previous studies have reported the beneficial effects of Bifidobacterium animalis subsp. lactis XLTG11, Lacticaseibacillus casei Zhang, and Lactiplantibacillus plantarum P8, respectively. However, studies on the immunomodulatory enhancing effects of three complex probiotics have not been conducted. The aim of our study is to investigate the immunomodulatory effects of complex probiotics effect on the immunosuppressed mice induced by cyclophosphamide (CTX). Methods An immunocompromised mouse model was established by intraperitoneal injection of cyclophosphamide, which was gavage of different doses of complex probiotics and levamisole hydrochloride. The splenic and thymic indices, intestinal barrier, leukocyte and lymphocyte counts, percentage of splenic lymphocyte subpopulations, cytokine levels, and gut microbiota were determined. Results Results showed that the complex probiotics significantly elevated the spleen and thymus indices, increased the villi and crypt depth and the goblet cells. The leukocyte and lymphocyte counts and the percentage of splenic lymphocyte subpopulations in the CTX-treated mice were significantly elevated by the complex probiotics. In addition, the cytokines (IL-6, IL-10, IL-1β, and IFN-γ) were significantly increased after complex probiotic treatment. The complex probiotics restored the gut microbiota structure to the pattern of the control group by reducing the ratio of Firmicutes/Bacteroidetes and enhancing the relative abundances of specific microbiota that produced short-chain fatty acids. Discussion This study provides theoretical support for the immunity-enhancing function of the complex probiotics as well as a pharmacological basis for its further development and utilization.
Collapse
|
23
|
Zou MY, Wang YJ, Liu Y, Xiong SQ, Zhang L, Wang JH. Huangshan Floral Mushroom Polysaccharide Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Modulating Th17/Treg Balance in a Gut Microbiota-Dependent Manner. Mol Nutr Food Res 2023; 67:e2200408. [PMID: 36418892 DOI: 10.1002/mnfr.202200408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/19/2022] [Indexed: 11/25/2022]
Abstract
SCOPE Ulcerative colitis (UC) is a common chronic recurrent inflammatory bowel disease. This study attempts to reveal the improvement mechanism of floral mushroom polysaccharide (FMPS) on UC from the perspective of coordinated interaction between intestinal microbes and intestinal helper T cell 17 (Th17)/regulatory T cell (Treg) balance. METHODS AND RESULTS Dextran sulfate sodium (DSS)-induced colitis mice model is used for the experiment. The results suggest that FMPS up-regulated the expression of occludin, ZO-1, and MUC2, and down-regulated the secretion of TNF-α, IL-1β, and IL-6 in colitis mice. Importantly, FMPS restores intestinal Th17/Treg balance. Meanwhile, FMPS can regulate intestinal microorganisms and improve the level of short-chain fatty acids (SCFAs) in colitis mice. Intestinal microbial depletion and fecal microbiota transplantation (FMT) experiments reveal that FMPS ameliorated UC is mediated by intestinal microbiome. Flow cytometry further proves that FMPS restores intestinal Th17/Treg balance in a microbial-dependent manner. CONCLUSION These results indicate that FMPS has the potential to improve UC, and its mechanism depends on the restoration of Th17/Treg balance mediated by intestinal microorganisms. Therefore, it is suggested that FMPS dietary supplement can be potentially used to intervene UC.
Collapse
Affiliation(s)
- Ming-Yue Zou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yu-Jing Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shan-Qiang Xiong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lei Zhang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230061, China
| | - Jun-Hui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
24
|
Yin C, Li Y, Li J, Fan X, Yao F, Shi D, Cheng Y, Liu M, Lu Q, Gao H. Gastrointestinal digestion, probiotic fermentation behaviors and immunomodulatory effects of polysaccharides from Sanghuangporus vaninii. Int J Biol Macromol 2022; 223:606-617. [PMID: 36356870 DOI: 10.1016/j.ijbiomac.2022.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
In this study, the crude polysaccharides (CSVP) and the preliminary purified polysaccharides (PSVP) from Sanghuangporus vaninii were obtained. The physicochemical properties, gastrointestinal digestion, and probiotic fermentation behaviors of CSVP and PSVP as well as the immunomodulatory effects of PSVP in cyclophosphamide-treated mice were investigated. The results showed that PSVP had higher total polysaccharides content and solubility, but lower radical scavenging activity than CSVP. Moreover, PSVP showed lower hydrolysis degree and better probiotic effects than CSVP. In immunosuppression mice model, PSVP supplement increased the body weight, spleen and thymus index, improved the release of cytokines IFN-γ, immunoglobulins IgM and IgG, and enhanced the lysozyme activity. Moreover, PSVP supplement significantly prevented the oxidative stress in vivo, increased the level of beneficial gut microbiota, especially Bacteroidaceae and Lactobscillsceae, as well as the content of short-chain fatty acids (SCFAs). These results indicated that PSVP could recover the immune response in cyclophosphamide-treated mice by regulating gut microbiota and intestinal barrier. The findings will lay a theoretical foundation for equitable utilization of S. vaninii resources as well as the product development.
Collapse
Affiliation(s)
- Chaomin Yin
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yuhong Li
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jiangtao Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiuzhi Fan
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fen Yao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Defang Shi
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yaqing Cheng
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mengfan Liu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Lu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hong Gao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Research Center of Under-forest Economy in Hubei Province, Wuhan 430064, China.
| |
Collapse
|
25
|
Huojiaaihemaiti H, Mutaillifu P, Omer A, Nuerxiati R, Duan X, Xin X, Yili A. Isolation, Structural Characterization, and Biological Activity of the Two Acidic Polysaccharides from the Fruits of the Elaeagnus angustifolia Linnaeus. Molecules 2022; 27:molecules27196415. [PMID: 36234953 PMCID: PMC9571751 DOI: 10.3390/molecules27196415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Elaeagnus angustifolia Linnaeus is a medicinal plant and its fruit has pharmacological activity such as antiinflammatory, antiedema, antinociceptive, and muscle relaxant functions, etc. Two acidic homogeneous polysaccharides (EAP-H-a1 and EAP-H-a2) were isolated from the fruits of Elaeagnus angustifolia L. through DEAE-52 and Sephadex G-75 column chromatography, and the physicochemical, structural properties, and biological activities of the polysaccharides were investigated. Both EAP-H-a1 and EAP-H-a2 were composed of Rha, Ara, Xyl, Glc, and Gal with the molar ratios of 13.7:20.5:23.3:8.8:33.4 and 24.8:19.7:8.2:8.4:38.6, respectively, and with the molecular weights of 705.796 kDa and 439.852 kDa, respectively. The results obtained from Fourier transform infrared spectroscopy (FTIR) confirmed the polysaccharide nature of the isolated substances. Congo red assay confirmed the existence of a triple-helix structure. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis revealed that EAP-H-a1 and EAP-H-a2 had irregular fibrous, filament-like surfaces; and both had crystalline and amorphous structures. Bioactivity analysis showed that the crude polysaccharide, EAP-H-a1, and EAP-H-a2 had clear DPPH and ABTS free radical scavenging activity, and could promote the secretion of NO and the phagocytic activities of RAW 264.7 and THP cells, which showed clear antioxidant and immuno-regulatory activity. These results indicated that Elaeagnus angustifolia L fruit acidic polysaccharides may have potential value in the pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Haibaier Huojiaaihemaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Paiheerding Mutaillifu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Adil Omer
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Rehebati Nuerxiati
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
| | - Xiaomei Duan
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
- Correspondence: ; Tel.: +86-383-82-77
| |
Collapse
|
26
|
Purple red rice anthocyanins alleviate intestinal damage in cyclophosphamide-induced mice associated with modulation of intestinal barrier function and gut microbiota. Food Chem 2022; 397:133768. [PMID: 35908466 DOI: 10.1016/j.foodchem.2022.133768] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
The regulatory effects of purple red rice bran anthocyanins (PRBA) on intestinal barrier function and gut microbiota in mice were investigated. Results showed that PRBA had an ameliorative effect on intestinal barrier damage, including restoration of villus length, improvement in the number of cupped cells and promotion of sIgA secretion. PRBA stimulated the production of cytokines, reduced the levels of endotoxin (ET) and lipopolysaccharide binding protein (LBP) in serum, as well as upregulated the expression of tight junction proteins (TJs) and NF-κB pathway proteins. Furthermore, PRBA not only promoted the production of short-chain fatty acids (SCFAs), but also regulated the intestinal microbiota by increasing beneficial bacteria (Lachnospiraceae, Bacteroidaceae, Ruminococcaceae) and reducing pathogenic bacteria (Shigella) to maintained intestinal homeostasis. Above results indicated that PRBA could ameliorate cyclophosphamide-induced impairment of intestinal barrier function and dysregulation of the gut microbiota, which provides a new idea for broadening the exploitation of PRBA.
Collapse
|
27
|
Yao J, Liu H, Ma C, Pu L, Yang W, Lei Z. A Review on the Extraction, Bioactivity, and Application of Tea Polysaccharides. Molecules 2022; 27:molecules27154679. [PMID: 35897856 PMCID: PMC9329993 DOI: 10.3390/molecules27154679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Tea is a non-alcoholic drink containing various active ingredients, including tea polysaccharides (TPSs). TPSs have various biological activities, such as antioxidant, anti-tumor, hypoglycemic, and anti-cancer activities. However, TPSs have a complex composition, which significantly limits the extraction and isolation methods, thus limiting their application. This paper provides insight into the composition, methodological techniques for isolation and extraction of the components, biological activities, and functions of TPSs, as well as their application prospects.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiwei Lei
- Correspondence: ; Tel.: +86-851-83761972
| |
Collapse
|