1
|
de Matos RC, Bitencourt AFA, de Oliveira ADM, Prado VR, Machado RR, Scopel M. Evidence for the efficacy of anti-inflammatory plants used in Brazilian traditional medicine with ethnopharmacological relevance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118137. [PMID: 38574778 DOI: 10.1016/j.jep.2024.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE When exacerbated, inflammatory processes can culminate in physical and emotional disorders and, if not stopped, can be lethal. The high prevalence of inflammation has become a public health problem, and the need for new drugs to treat this pathology is imminent. The use of medicinal plants has emerged as an alternative, and a survey of data that corroborates its application in inflammatory diseases is the starting point. Furthermore, Brazil harbors a megadiversity, and the traditional use of plants is relevant and needs to be preserved and carefully explored for the discovery of new medicines. AIM OF THE STUDY This review sought to survey the medicinal plants traditionally used in Brazil for the treatment of inflammatory processes and to perform, in an integrative way, a data survey of these species and analysis of their phytochemical, pharmacological, and molecular approaches. MATERIALS AND METHODS Brazilian plants that are traditionally used for inflammation (ophthalmia, throat inflammation, orchitis, urinary tract inflammation, ear inflammation, and inflammation in general) are listed in the DATAPLAMT database. This database contains information on approximately 3400 native plants used by Brazilians, which were registered in specific documents produced until 1950. These inflammatory disorders were searched in scientific databases (PubMed/Medline, Scopus, Web of Science, Lilacs, Scielo, Virtual Health Library), with standardization of DECS/MESH descriptors for inflammation in English, Spanish, French, and Portuguese, without chronological limitations. For the inclusion criteria, all articles had to be of the evaluated plant species, without association of synthesized substances, and full articles free available in any of the four languages searched. Duplicated articles and those that were not freely available were excluded. RESULTS A total of 126 species were identified, culminating in 6181 articles in the search. After evaluation of the inclusion criteria, 172 articles representing 40 different species and 38 families were included in the study. Comparison of reproducibility in intra-species results became difficult because of the large number of extraction solvents tested and the wide diversity of evaluation models used. Although the number of in vitro and in vivo evaluations was high, only one clinical study was found (Abrus precatorius). In the phytochemical analyses, more than 225 compounds, mostly phenolic compounds, were identified. CONCLUSION This review allowed the grouping of preclinical and clinical studies of several Brazilian species traditionally used for the treatment of many types of inflammation, corroborating new searches for their pharmacological properties as a way to aid public health. Furthermore, the large number of plants that have not yet been studied has encouraged new research to revive traditional knowledge.
Collapse
Affiliation(s)
- Rafael C de Matos
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| | - Ana F A Bitencourt
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Alexsandro D M de Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Vanessa R Prado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Renes R Machado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Marina Scopel
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Noguera NH, Noguera DCLH, Machado APDF, Reguengo LM, Nascimento RDPD. Emerging berries from the Brazilian Amazon and Atlantic Forest biomes: new sources of bioactive compounds with potential health benefits. Food Funct 2024; 15:5752-5784. [PMID: 38753200 DOI: 10.1039/d4fo00182f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Brazil has a broad geographic biodiversity spread across its six different biomes. However, it has been suffering from the abusive exploitation of its resources, which poses a threat to the local fauna and flora. The Amazon and Atlantic Forest, for example, are birthplaces to rare and edible native species, such as bacaba (Oenocarpus bacaba, Arecaceae) and camu-camu (Myrciaria dubia, Myrtaceae), and cereja-do-Rio Grande (Eugenia involucrata, Myrtaceae) and grumixama (Eugenia brasiliensis, Myrtaceae), respectively. These plants produce fruits which are sources of macro and micronutrients, including sugars, dietary fibers, vitamins, minerals, and/or lipids. Nutritionally, their consumption have the ability to reach partially or totally the daily recommendations for adults of some nutrients. More recently, these fruits have also been exposed as interesting sources of minor bioactive compounds, such as carotenoids, terpenes, and/or polyphenols, the latter which include anthocyanins, phenolic acids, and tannins. Particularly, bacaba stands out for being a rich source of polyunsaturated fatty acids (around 22%, dry weight) and dietary fibers (6.5-21%, dry weight); camu-camu has very high contents of vitamin C (up to 5000 mg per 100 g of pulp, dry basis); and cereja-do-Rio-Grande and grumixama are abundant sources of anthocyanins. Although they are still underexplored, several in vitro and in vivo studies with different parts of the fruits, including the peel, seed, and pulp, indicate their health potential through anti-oxidative, anti-obesity, antihyperglycemic, antidyslipidemic, antimicrobial, and/or anticancer effects. All things considered, the focus of this research was to highlight the bioactive potential and health impact of native fruits from the Amazon and Atlantic Forest biomes.
Collapse
Affiliation(s)
- Nathan Hargreaves Noguera
- Universidade Estadual de Campinas, Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil
| | - Dyana Carla Lima Hargreaves Noguera
- Universidade Estadual de Campinas, Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil
| | - Ana Paula da Fonseca Machado
- Universidade Federal da Grande Dourados, Faculdade de Engenharia, 79804-970, Dourados, Mato Grosso do Sul, Brazil
| | - Livia Mateus Reguengo
- Universidade Estadual de Campinas, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil.
| | - Roberto de Paula do Nascimento
- Universidade Estadual de Campinas, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Amorim IS, Amorim DS, Godoy HT, Mariutti LRB, Chisté RC, da Silva Pena R, Bogusz Junior S, Chim JF. Amazonian palm tree fruits: From nutritional value to diversity of new food products. Heliyon 2024; 10:e24054. [PMID: 38288015 PMCID: PMC10823109 DOI: 10.1016/j.heliyon.2024.e24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
The rapid growth of the world population has increased the demand for new food sources, constituting a major challenge concerning the maximum use of existing food resources. The fruits of Amazonian palm trees have excellent nutritional composition and bioactive compounds. This review highlights four fruits of Amazonian palm trees that are still little explored by the food industry: açai (Euterpe oleracea), pupunha (Bactris gasipaes), buriti (Mauritia flexuosa), and tucumã (Astrocaryum aculeatum). This paper aims to inspire new ideas for researching and developing products for the food industry. It also explores the impacts of Amazonian palm fruits on health, highlighting their role in disease prevention through their nutritional effects.
Collapse
Affiliation(s)
- Isabelly Silva Amorim
- Center for Chemical, Pharmaceutical and Food Sciences – Federal University of Pelotas, 96010-900, Pelotas, Rio Grande do Sul, Brazil
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Danyelly Silva Amorim
- Center for Chemical, Pharmaceutical and Food Sciences – Federal University of Pelotas, 96010-900, Pelotas, Rio Grande do Sul, Brazil
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Helena Teixeira Godoy
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Renan Campos Chisté
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), 66075-110, Belém, Pará, Brazil
| | - Rosinelson da Silva Pena
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), 66075-110, Belém, Pará, Brazil
| | - Stanislau Bogusz Junior
- University of Sao Paulo (USP), Sao Carlos Institute of Chemistry (IQSC), 13566-590, Sao Carlos, Sao Paulo, Brazil
| | - Josiane Freitas Chim
- Center for Chemical, Pharmaceutical and Food Sciences – Federal University of Pelotas, 96010-900, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Santos PDDF, Batista PS, Torres LCR, Thomazini M, de Alencar SM, Favaro-Trindade CS. Application of spray drying, spray chilling and the combination of both methods to produce tucumã oil microparticles: characterization, stability, and β-carotene bioaccessibility. Food Res Int 2023; 172:113174. [PMID: 37689927 DOI: 10.1016/j.foodres.2023.113174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 09/11/2023]
Abstract
The aim of this work was to produce tucumã oil (PO) microparticles using different encapsulation methods, and to evaluate their properties, storage stability and bioaccessibility of the encapsulated β-carotene. Gum Arabic was used as carrier for spray drying (SD), while vegetable fat was the wall material for spray chilling (SC) and the combination of the methods (SDC). Powders were yellow (hue angle around 80°) and presented particles with small mean diameters (1.57-2.30 µm). PO and the microparticles possess high β-carotene contents (∼0.35-22 mg/g). However, some carotenoid loss was observed in the particles after encapsulation by SD and SDC (around 20%). After 90 days of storage, SDC particles presented the lowest degradation of total carotenoids (∼5%), while SD samples showed the highest loss (∼21%). Yet, the latter had the lowest contents of conjugated dienes (4.1-5.3 µmol/g) among treatments. At the end of simulated digestion, PO and the microparticles provided low β-carotene bioaccessibility (<10%), and only SC increased this parameter compared to the pure oil. In conclusion, carotenoid-rich microparticles with attractive color were obtained through microencapsulation of PO by SD, SC and SDC, revealing their potential as natural additives for the development of food products with improved nutritional properties. The SC method stood out for providing microparticles with high carotenoid content and retention, high oxidative stability, and improved β-carotene bioaccessibility.
Collapse
Affiliation(s)
- Priscila Dayane de Freitas Santos
- Departament of Food Engineering, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil.
| | - Pollyanna Souza Batista
- Departament of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil.
| | - Larissa Catelli Rocha Torres
- Center for Nuclear Energy in Agriculture, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13416-000, SP, Brazil.
| | - Marcelo Thomazini
- Departament of Food Engineering, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil.
| | - Severino Matias de Alencar
- Departament of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil.
| | - Carmen Sílvia Favaro-Trindade
- Departament of Food Engineering, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil.
| |
Collapse
|
5
|
Gomes de Souza P, Rosane P Azeredo D, da Silva TTC, Carneiro CDS, Junger Teodoro A, Menezes Ayres EM. Food neophobia, risk perception and attitudes associations of Brazilian consumers towards non-conventional edible plants and research on sale promotional strategies. Food Res Int 2023; 167:112628. [PMID: 37087204 DOI: 10.1016/j.foodres.2023.112628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/21/2022] [Accepted: 02/19/2023] [Indexed: 03/06/2023]
Abstract
Non-conventional edible plants (NCEP) are plants or parts of plants that are not usually consumed by the population and have limited geographic distribution. This study investigated the consumption of NCEP, the influence of Food Neophobia and risk perception on Brazilian consumers attitudes as well as purchase preferences to determinate the best sale promotional strategy. Participants (n = 271) answered the online questionnaire that consisted of socio-demographic questions, items about consumption (open questions), Food Neophobia Scale, risk perception (to assign the level risk) and attitudes towards NCEP (using 5-point Likert scale). Fisher's exact test was used to investigate possible associations. Task purchase choice was evaluated using the Best-Worst Scale. The most consumed conventional leafy vegetables were collard greens (Brassica oleracea L. var. acephala D.C) (95.6%) and lettuce (Lactuca sativa) (88.5%). As for NCEP, taioba (Xanthosoma taioba E.G) (26.7%), bertalha (Basela alba L.) (23.3%) and beldroega (Portulaca oleracea L.) (14.1%) were the most cited leafy vegetables. High food neophobia individuals demonstrated to try NCEP if its nutritional value and safety are proven, showing a demand for such strategy, this would increase the consumption of these vegetables. The perception of a high risk was also associated with the inclusion of NCEP in the diet. The inclusion of NCEP at the moment of purchase, even at a higher price, presented higher scores when compared to the purchase of only conventional vegetables, at lower prices. Despite this, the price can still be a limiting factor and the search for promotional strategies should be reinforced to increase the commercialization of NCEP at street markets.
Collapse
Affiliation(s)
- Pâmela Gomes de Souza
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Graduate Program in Food Safety Management and Nutritional Quality, Rua Senador Furtado, 121/125 - Maracanã, Rio de Janeiro, Brazil; Department of Basic Nutrition and Dietetics of the Josué de Castro Nutrition Institute, Federal University of do Rio de Janeiro, Av. Carlos Chagas, Ilha do Fundão, Rio de Janeiro, Brazil; Sensory and Consumer Science Laboratory, Postgraduate Program in Food and Nutrition, Federal University of the State of Rio de Janeiro Laboratório, Av. Pasteur, 296 - Urca, Rio de Janeiro, Brazil.
| | - Denise Rosane P Azeredo
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Graduate Program in Food Safety Management and Nutritional Quality, Rua Senador Furtado, 121/125 - Maracanã, Rio de Janeiro, Brazil
| | - Thadia T C da Silva
- Department of Basic Nutrition and Dietetics of the Josué de Castro Nutrition Institute, Federal University of do Rio de Janeiro, Av. Carlos Chagas, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Carla da Silva Carneiro
- Department of Natural Products and Food, Faculty of Pharmacy, Federal University of do Rio de Janeiro, Av. Carlos Chagas, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Anderson Junger Teodoro
- Laboratory of Food Analysis, Graduate Program in Food Nutrition, Fluminense Federal University, Rua Mário Santana Braga, 30 - Niterói, RJ, Brazil
| | - Ellen M Menezes Ayres
- Sensory and Consumer Science Laboratory, Postgraduate Program in Food and Nutrition, Federal University of the State of Rio de Janeiro Laboratório, Av. Pasteur, 296 - Urca, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Characterization of Cassava Starch Extruded Sheets Incorporated with Tucumã Oil Microparticles. Processes (Basel) 2023. [DOI: 10.3390/pr11030876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
The application of biopolymers and feasible technologies to obtain sheets is crucial for the large-scale production of food packages and for reducing plastic pollution. Additionally, the inclusion of additives in sheets can affect and improve their properties. This work aimed to incorporate tucumã oil (TO) and TO microparticles produced by spray drying (SD), spray chilling (SC), and their combination (SDC) into extruded cassava starch sheets and to evaluate the effect of such addition on their physical, optical, and mechanical properties. Gum Arabic and vegetable fat were used as wall materials for SD and SC/SDC, respectively. The sheets enriched with tucumã oil (FO) and the microparticles produced by SD, SC and SDC (FSD, FSC, and FSDC, respectively) presented yellow color (hue angle around 90°) and higher opacity (11.6–25.3%) when compared to the control (6.3%). All sheets showed high thickness (1.3–1.8 mm), and the additives reduced the water solubility of the materials (from 27.11% in the control to 24.67–25.54% in enriched samples). The presence of large SDC particles, as evidenced by Scanning Electron Microscopy (SEM), caused discontinuity of the sheet structure and decreased mechanical strength of the FSDC. One may conclude that potential active packages were obtained by extrusion of cassava starch sheets added with pure and encapsulated TO.
Collapse
|
7
|
Ramos SLF, Lopes MTG, Meneses C, Dequigiovanni G, de Macêdo JLV, Lopes R, Sebbenn AM, da Silva RF, de Jesus Pinto Fraxe T, Veasey EA. Natural Populations of Astrocaryum aculeatum Meyer in Amazonia: Genetic Diversity and Conservation. PLANTS (BASEL, SWITZERLAND) 2022; 11:2957. [PMID: 36365412 PMCID: PMC9655110 DOI: 10.3390/plants11212957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Astrocaryum aculeatum, a palm tree incipiently domesticated from upland ecosystems in the Brazilian Amazon, is especially adapted to anthropized areas. The pulp of the fruit, obtained by extractivism, is consumed fresh by the Amazonian population. The objective of the study is to evaluate the diversity and genetic structure of the natural populations of A. aculeatum, exploited by extractive farmers in Amazonas, Brazil, seeking to suggest conservation and management strategies for this species. A total of 218 plants were sampled in 15 populations in 14 municipalities in the state of Amazonas, evaluated by 12 microsatellite loci. A total of 101 alleles were observed. The means of the observed heterozygosities (HO = 0.6390) were higher than expected (HE = 0.557), with high levels of heterozygotes in the populations. The fixation index in the loci and populations was negative. The FST (0.07) and AMOVA showed moderate population structure. Bayesian analysis indicated the grouping k = 4 as the most adequate. There is a high genetic diversity in populations, with a moderate genetic structure due to possible historical events, which could be related to the process of subpopulation formation, possibly presenting three historical moments: before and after the beginning of deforestation and today. The conservation and management policies of this species must be carried out at a watershed level.
Collapse
Affiliation(s)
- Santiago Linorio Ferreyra Ramos
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Bairro Tiradentes, Itacoatiara 69100-000, AM, Brazil
| | - Maria Teresa Gomes Lopes
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida Rodrigo Otávio Ramos, 3.000, Bairro Coroado, Manaus 69077-000, AM, Brazil
| | - Carlos Meneses
- Programa de Pós-Graduação em Ciências Agrárias, Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, Rua Baraúnas, 351, Bairro Universitário, Campina Grande 58429-500, PB, Brazil
| | - Gabriel Dequigiovanni
- Centro Universitário de Cascavel, Avenida Tito Muffato, 2317, Bairro Santa Cruz, Cascavel 85806-080, PR, Brazil
| | | | - Ricardo Lopes
- Campo Experimental da Embrapa Amazônia Ocidental, Embrapa Amazônia Ocidental, Km 29, AM 010, CP. 319, Manaus 9010-970, AM, Brazil
| | - Alexandre Magno Sebbenn
- Seção de Melhoramento e Conservação Genética Florestal, Instituto Florestal de São Paulo, Rua do Horto, 931, Bairro Horto Florestal, São Paulo 01059-970, SP, Brazil
| | - Rogério Freire da Silva
- Programa de Pós-Graduação em Ciências Agrárias, Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, Rua Baraúnas, 351, Bairro Universitário, Campina Grande 58429-500, PB, Brazil
| | - Therezinha de Jesus Pinto Fraxe
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida Rodrigo Otávio Ramos, 3.000, Bairro Coroado, Manaus 69077-000, AM, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Bairro São Dimas, Piracicaba 13418-900, SP, Brazil
| |
Collapse
|