1
|
Zhang M, Feng C, Zhang B, Yin Y, Chen J, Liu H, Farag MA, Mamadalieva NZ, Li N, Sun J, Sun S, Liu C. In vitro and in vivo immune-enhancing effects of punicic acid and the action mechanisms as revealed via microbiome and lipid profiling. Food Funct 2025; 16:3120-3133. [PMID: 40159912 DOI: 10.1039/d4fo05023a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Punicic acid (PA) is a chief component of pomegranate seed oil with several health benefits. In this study, the in vitro immunomodulatory activity of PA was assessed using RAW264.7 cells, revealing that PA activated the macrophages, facilitated the concentration of immune-related cytokines and enzymes, and regulated the immune-related NF-κB and MAPK signaling pathways. Further, the in vivo immune-enhancing effect of PA was evaluated with the cyclophosphamide (CTX)-induced immune-compromised mouse model with 16S rDNA amplicon sequencing and relative quantification of lipidome. Results indicated that high doses of PA (200 mg kg-1) remarkably restored CTX-induced immune injury by enhancing the innate and adaptive immunity to stimulate the secretion of immune-related factors. In addition, PA improved gut microbiota dysbiosis and ameliorated lipid metabolism disorders. Our research provides a theoretical basis for the exploitation of PA as a functional component with immune-enhancing effects and adds to the potential health uses of pomegranate seed oil.
Collapse
Affiliation(s)
- Mengqi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Caiyun Feng
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Bo Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China
| | - Yanlei Yin
- Shandong Institute of Pomology, Tai'an, 271000, China
| | - Jinlong Chen
- Work Station of Forest Fruit Industry in Kashi, Kashi, 844000, PR China
| | - Haoran Liu
- JiMei One Health Industry (Shandong) Co., Ltd, Zaozhuang, 277300, PR China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Nilufar Z Mamadalieva
- Institute of the Chemistry of Plant Substances of the Academy Sciences of Uzbekistan, Tashkent, 100170, Uzbekistan
| | - Ningyang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Shutao Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
- Shandong Aojing Biotechnology Co., Ltd, Jining, 273500, PR China
| |
Collapse
|
2
|
Thakur R, Kaur S. Use of postbiotics and parabiotics from lactobacilli in the treatment of infectious diarrhea. Microb Pathog 2025; 204:107580. [PMID: 40222563 DOI: 10.1016/j.micpath.2025.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/30/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
Probiotics are effective in the treatment of diarrheal disease which is the second leading cause of death in children below the age of five years via the production of antimicrobial peptides and lactic acid. These live bacteria are known to benefit the host by modulating their gut microbiome and competitively excluding pathogens from the gut. As probiotics are live microbial cells, their safety evaluation is a concern that shifts the focus from the usage of live cells to parabiotics and postbiotics. In recent years attempts have been made to study the efficacy of postbiotics and parabiotics against enteric pathogens. Enteric pathogens are the major cause of diarrhea resulting in watery stools and electrolyte imbalance. Among various gastrointestinal illnesses, 30 % are caused by bacteria. These gastrointestinal infections in adults have usually mild to moderate symptoms that disappear spontaneously but, in some cases, they can cause chronic diseases such as typhoid, irritable bowel syndrome, ulcerative colitis and bacteremia. The extensive use of antibiotics for the treatment of bacterial-infection-induced diarrhea has led to the emergence of drug resistance among these enteric pathogens. Drug resistance poses a major threat in the treatment of various other diseases as well. Further, the use of antibiotics is known to disrupt the homeostasis of the gut by killing the normal gut flora thereby worsening the situation. Therefore, the urgent need for new interventions to combat these enteric pathogens along with restoration of gut barrier. Lactobacillus-derived parabiotics and postbiotics have emerged as promising approaches for managing and treating diarrheal diseases. Therefore, our research is focused on studying the efficacy and underlying mechanisms of Lactobacillus spp.-derived postbiotics and parabiotics against enteric pathogens. Understanding these mechanisms helps in combatting diarrhea associated with enteric pathogens and results in reducing the morbidity and mortality rates associated with infectious diarrhea and its complications.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Medical Laboratory Sciences, Lovely Professional University, Punjab, 144411, India
| | - Sumanpreet Kaur
- Department of Medical Laboratory Sciences, Lovely Professional University, Punjab, 144411, India.
| |
Collapse
|
3
|
Xie Q, Liu J, Yu P, Qiu T, Jiang S, Yu R. Unlocking the power of probiotics, postbiotics: targeting apoptosis for the treatment and prevention of digestive diseases. Front Nutr 2025; 12:1570268. [PMID: 40230717 PMCID: PMC11994438 DOI: 10.3389/fnut.2025.1570268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Digestive diseases are becoming an increasingly serious health burden, creating an urgent need to develop more effective treatment strategies. Probiotics and postbiotics have been extensively studied for their potential to prevent and treat digestive diseases. Growing evidence suggests that programmed cell death, especially apoptosis, is a critical mechanism influencing the molecular and biological aspects of digestive diseases, contributing to disease progression. Understanding the mechanisms and signaling pathways by which probiotics and postbiotics regulate apoptosis could reveal new therapeutic targets for treating digestive diseases. This review focuses on the beneficial effects of probiotics and postbiotics in regulating apoptosis across a range of liver diseases, including non-alcoholic fatty liver disease, liver injury, cirrhosis, and liver cancer. It also explores their effects on gastrointestinal diseases, such as colorectal cancer, colitis, gastrointestinal injury, and infectious diarrhea. Furthermore, some probiotics help balance the gut microbiota, enhance intestinal barrier function, and regulate the immune system, all of which are closely associated with apoptosis. Moreover, emerging technologies, such as encapsulation methods, have been developed to stabilize probiotics, primarily based on experimental findings from rodent and human studies.
Collapse
Affiliation(s)
- Qiuyan Xie
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ji Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Yu
- Reproductive Medicine Centre, Affiliated Women’s Hospital of Jiangnan University, Wuxi, China
| | - Ting Qiu
- Department of Child Health Care, Affiliated Women’s Hospital of Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
4
|
Pang L, Huang Y, Li R, Guo L, Man C, Yang X, Jiang Y. Effects of postbiotics produced by Lactobacillus plantarum JM015 isolated from traditional fermented dairy products on Salmonella-induced intestinal inflammation: A preventive strategy. Food Chem 2025; 469:142549. [PMID: 39708644 DOI: 10.1016/j.foodchem.2024.142549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Huang
- Sanmenxia Polytechnic, Sanmenxia, 472000, China
| | - Runze Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Baek J, Kim BS, Kim Y, Bai J. Safety, Antagonistic Activity, and Probiotic Properties of Lactic Acid Bacteria Isolated from Jeotgal, Korean Fermented Seafoods. J Microbiol Biotechnol 2024; 35:e2411055. [PMID: 39663945 PMCID: PMC11813347 DOI: 10.4014/jmb.2411.11055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Probiotics are in high demand in the health functional food market as they effectively inhibit pathogens and improve host health. Therefore, in order to develop novel probiotic strains, new strains were isolated from various type of jeotgal, traditional Korean fermented seafood products, and their safety and probiotic properties have been evaluated. Based on 16S rRNA gene sequence analysis, six strains (JRD1, Pediococcus pentosaceus; JRD2, Lactiplantibacillus plantarum; JRD6, Pediococcus acidilactici; CLJ21, Lactiplantibacillus plantarum; CLJ24, Pediococcus pentosaceus; CLJ28, Leuconostoc mesenteroides subsp. dextranicum) were selected and subjected to further analysis. As a result, all six strains did not show hemolytic activity, antibiotics resistance, and cell cytotoxicity, confirming that they are safe for human use. Among them, JRD1, JRD6, and CLJ24 exhibited high survival rates under simulated gastrointestinal conditions. Additionally, these three strains demonstrated strong adhesion abilities on HT-29 cells, with values of 6.02, 5.77, and 5.86 log CFU/mL, respectively. Furthermore, JRD1, JRD6, and CLJ24 showed relatively high antagonistic activity against both Salmonella Typhimurium and Staphylococcus aureus through competition, exclusion, and displacement of their adhesion. Interestingly, cell-free supernatants (CFS) from three strains effectively inhibited the growth of both S. Typhimurium and S. aureus. Furthermore, CFS of CLJ24, JRD1, and JRD6 demonstrated anti-inflammatory effects in intestinal epithelial cells. The results suggest that CLJ24, JRD1, and JRD6 have potential to be development as functional probiotic strains with both antibacterial and anti-inflammatory activities.
Collapse
Affiliation(s)
- Jihyeon Baek
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Bong Sun Kim
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Yeonju Kim
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Jaewoo Bai
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| |
Collapse
|
6
|
Le MH, Humayun S, Lee HJ, Mi XJ, Justine EE, Tran THM, Park HR, Kim YJ. Structural identification and immunostimulatory effect of Bacillus velezensis GV1 polysaccharides via TLR4/NF-κB signaling pathway in RAW264.7 macrophages. Int J Biol Macromol 2024; 280:135808. [PMID: 39306178 DOI: 10.1016/j.ijbiomac.2024.135808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Microbial polysaccharides derived from bacterial sources possess unique properties because of their structural complexity contributing to exceptional characteristics, including potent immunostimulatory effects. In this study, we extracted crude polysaccharide from Bacillus velezensis GV1 (BPS) which was isolated from Korean ginseng vinegar, and subsequently characterized for sugar composition and functional groups using FT-IR and methylation method. Structural analysis indicated that BPS was composed of mannan and glucan in a ratio of 7.5:2.5. The immunostimulatory effect of BPS was investigated in RAW264.7 macrophages. The results revealed that BPS significantly increased NO production, as well as the secretion and expression of key cytokines, such as IL-6, TNF-α, and IL-1β. These effects were confirmed using a TLR4 antagonist (TAK-242). Moreover, BPS exhibited immunostimulatory potential by promoting the NF-κB signaling pathway. In conclusion, this study establishes a foundation for the potential application of BPS as an immunostimulatory adjuvant or alternative component in functional foods, particularly for enhancing innate immune responses.
Collapse
Affiliation(s)
- Minh Ha Le
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| | - Sanjida Humayun
- School of Natural Sciences and Health, Tallinn University, Narva mantee 25, 10120 Tallinn, Estonia.
| | - Hyo-Jun Lee
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| | - Xiao-Jie Mi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
| | - Elsa Easter Justine
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| | - Thi Hoa My Tran
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| | - Hye-Ryung Park
- Department of Hotel Food-service & Culinary Arts, Suwon Women's University, 1098 Juweok-ro, Hwaseong-si, Gyeonggi-do 18333, Republic of Korea.
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
7
|
Xue Q, Wang B, Feng J, Li C, Yu M, Zhao Y, Qi Z. Structural characterization and immune-enhancing effects of a novel polysaccharide extracted from Sargassum fusiforme. Int J Biol Macromol 2024; 270:132497. [PMID: 38763236 DOI: 10.1016/j.ijbiomac.2024.132497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
To alleviate the adverse effects of chemotherapy and bolster immune function, a novel polysaccharide derived from Sargassum fusiforme named as SFP-αII. The structural composition of SFP-αII predominantly consisted of guluronic and mannuronic acids in a molar ratio of 33.8:66.2, with an average molecular weight of 16.5 kDa. Its structure was primarily characterized by →4)-α-GulA-(1 → and →4)-β-ManA-(1 → linkages confirmed by FT-IR, methylation, and NMR analyses. The absence of a triple-helix structure was in SFP-αII was confirmed using circular dichroism and Congo red dye assays. The dimensions varied with lengths ranging from 20 nm up to 3 μm revealed by atomic force microscopy (AFM). SFP-αII has been found to enhance immunomodulatory activity in cyclophosphamide (CTX)-induced immunosuppressed mice. This was evidenced by improvements in immune organ indices, cytokine levels, and the release of nitric oxide (NO). Specifically, SFP-αII mitigated immunosuppression by upregulating the secretion of IL-1β (167.3 %) and TNF-α (227.1 %) at a dose of 400 mg/kg, compared with the CTX group in macrophages. Ultimately, SFP-αII may serve as a mechanism for immune enhancement through modulation of TLR4-mediated NF-κB and MAPK signaling pathways. This integration of traditional Chinese and Western medicine, leveraging SFP-αII as a potential functional food could be pivotal in alleviating immunosuppressive side effects in CTX treatment.
Collapse
Affiliation(s)
- Qinbing Xue
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Bing Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jie Feng
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Chaoyu Li
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China.
| | - Yan Zhao
- Medical Imaging Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zheng Qi
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China.
| |
Collapse
|
8
|
Shin HH, Kim JH, Jung YJ, Kwak MS, Sung MH, Imm JY. Postbiotic potential of Bacillus velezensis KMU01 cell-free supernatant for the alleviation of obesity in mice. Heliyon 2024; 10:e25263. [PMID: 38495172 PMCID: PMC10943329 DOI: 10.1016/j.heliyon.2024.e25263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 03/19/2024] Open
Abstract
Attention toward the preventive effects of postbiotics on metabolic diseases has increased because of greater stability and safety over probiotics. However, studies regarding the bioactive effects of postbiotics, especially from probiotic Bacillus strains, are relatively limited. The anti-obesity effects of the cell-free culture supernatant of Bacillus velezensis KMU01 (CFS-B.vele) were evaluated using high-fat-diet (HFD)-induced mice. HFD-induced mice (n = 8 per group) received equal volumes of (1) CFS-B.vele (114 mg/kg) in PBS, (2) Xenical in PBS, or (3) PBS alone by oral gavage daily for 13 weeks. The results demonstrated that CFS-B.vele changed the gut microbiota and showed anti-obesity effects in HFD-induced obese mice. The elevated Firmicutes/Bacteroidota ratio induced by HFD was decreased in the CFS-B.vele group compared to the other groups (p < 0.05). The CFS-B.vele intervention led to the enrichment of SCFA-producers, such as Roseburia and Eubacterium, in the cecum, suggesting their potential involvement in the amelioration of obesity. Due to these changes, the various obesity-related biomarkers (body weight, fat in tissue, white adipose tissue weight and size, serum LDL-cholesterol level, hepatic lipid accumulation, and adipogenesis/lipogenesis-related gene/protein expression) were improved. Our findings suggest that CFS-B.vele has potential as a novel anti-obesity agent through modulation of the gut microbiota.
Collapse
Affiliation(s)
- Hee Hyun Shin
- Department of Foods and Nutrition, Kookmin University, Seoul, 02707, South Korea
| | | | - Ye-Jin Jung
- KookminBio Corporation, Seoul, 02826, South Korea
| | - Mi-Sun Kwak
- KookminBio Corporation, Seoul, 02826, South Korea
| | | | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin University, Seoul, 02707, South Korea
| |
Collapse
|
9
|
Lee HJ, Tran MTH, Le MH, Justine EE, Kim YJ. Paraprobiotic derived from Bacillus velezensis GV1 improves immune response and gut microbiota composition in cyclophosphamide-treated immunosuppressed mice. Front Immunol 2024; 15:1285063. [PMID: 38455053 PMCID: PMC10918466 DOI: 10.3389/fimmu.2024.1285063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
Paraprobiotics that benefit human health have the capacity to modulate innate and adaptive immune systems. In this study, we prepared the paraprobiotic from Bacillus velezensis GV1 using the heat-killing method and investigated its effects on immunity and gut microbiota in vitro and in vivo. The morphology of inactivated strain GV1 was observed using scanning electron microscopy. Treatment with GV1 promoted nitric oxide production and augmented cytokine (IL-6, IL-1β, and TNF-α) expression and secretion in RAW 264.7 macrophages. Moreover, the strain GV1 could alleviate cyclophosphamide monohydrate (CTX)-induced immunosuppression by reversing spleen damage and restoring the immune organ index, as well as by increasing the expression of immune-related cytokines (TNF-α, IL-1β, IFN-γ, and IL-2) in the spleen and thymus, respectively. Furthermore, GV1 treatment dramatically healed the CTX-damaged colon and regulated gut microbiota by increasing the relative abundance of beneficial bacterial families (Lactobacillaceae, Akkermansiaceae, and Coriobacteriaceae) and decreasing that of harmful bacterial families (Desulfovibrionaceae, Erysipelotrichaceae, and Staphylococcaceae). Thus, the heat-killed GV1 can be considered a potential immunoregulatory agent for use as a functional food or immune-enhancing medicine.
Collapse
Affiliation(s)
| | | | | | | | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Falzone L, Lavoro A, Candido S, Salmeri M, Zanghì A, Libra M. Benefits and concerns of probiotics: an overview of the potential genotoxicity of the colibactin-producing Escherichia coli Nissle 1917 strain. Gut Microbes 2024; 16:2397874. [PMID: 39229962 PMCID: PMC11376418 DOI: 10.1080/19490976.2024.2397874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Recently, the mounting integration of probiotics into human health strategies has gathered considerable attention. Although the benefits of probiotics have been widely recognized in patients with gastrointestinal disorders, immune system modulation, and chronic-degenerative diseases, there is a growing need to evaluate their potential risks. In this context, new concerns have arisen regarding the safety of probiotics as some strains may have adverse effects in humans. Among these strains, Escherichia coli Nissle 1917 (EcN) exhibited traits of concern due to a pathogenic locus in its genome that produces potentially genotoxic metabolites. As the use of probiotics for therapeutic purposes is increasing, the effects of potentially harmful probiotics must be carefully evaluated. To this end, in this narrative review article, we reported the findings of the most relevant in vitro and in vivo studies investigating the expanding applications of probiotics and their impact on human well-being addressing concerns arising from the presence of antibiotic resistance and pathogenic elements, with a focus on the polyketide synthase (pks) pathogenic island of EcN. In this context, the literature data here discussed encourages a thorough profiling of probiotics to identify potential harmful elements as done for EcN where potential genotoxic effects of colibactin, a secondary metabolite, were observed. Specifically, while some studies suggest EcN is safe for gastrointestinal health, conflicting findings highlight the need for further research to clarify its safety and optimize its use in therapy. Overall, the data here presented suggest that a comprehensive assessment of the evolving landscape of probiotics is essential to make evidence-based decisions and ensure their correct use in humans.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonino Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology 'G.F. Ingrassia', University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Gurunathan S, Thangaraj P, Kim JH. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023; 13:89. [PMID: 38201117 PMCID: PMC10778838 DOI: 10.3390/foods13010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Postbiotics are (i) "soluble factors secreted by live bacteria, or released after bacterial lysis, such as enzymes, peptides, teichoic acids, peptidoglycan-derived muropeptides, polysaccharides, cell-surface proteins and organic acids"; (ii) "non-viable metabolites produced by microorganisms that exert biological effects on the hosts"; and (iii) "compounds produced by microorganisms, released from food components or microbial constituents, including non-viable cells that, when administered in adequate amounts, promote health and wellbeing". A probiotic- and prebiotic-rich diet ensures an adequate supply of these vital nutrients. During the anaerobic fermentation of organic nutrients, such as prebiotics, postbiotics act as a benevolent bioactive molecule matrix. Postbiotics can be used as functional components in the food industry by offering a number of advantages, such as being added to foods that are harmful to probiotic survival. Postbiotic supplements have grown in popularity in the food, cosmetic, and healthcare industries because of their numerous health advantages. Their classification depends on various factors, including the type of microorganism, structural composition, and physiological functions. This review offers a succinct introduction to postbiotics while discussing their salient features and classification, production, purification, characterization, biological functions, and applications in the food industry. Furthermore, their therapeutic mechanisms as antibacterial, antiviral, antioxidant, anticancer, anti-diabetic, and anti-inflammatory agents are elucidated.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Suthar P, Kumar S, Kumar V, Sharma V, Dhiman A. Postbiotics: an exposition on next generation functional food compounds- opportunities and challenges. Crit Rev Food Sci Nutr 2023; 65:1163-1182. [PMID: 38063352 DOI: 10.1080/10408398.2023.2289646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Consumer's interest for health promoting foods has reshaped the food industry to come up with novel biological compounds with diverse health benefits. Postbiotic are the cell fractions, or cell lysates which have emerged as potential functional food compounds during the last decade. The health benefits of postbiotic are well established while attempts are underway to understand their interaction, production, processing and safety. The review explore the challenges and opportunities to devise better growth mediums, cell lysis and extraction, characterization, stability and applications of postbiotics in both food and pharma industry along with the market trends, success stories and safety concerns regarding postbiotics. The scientific and commercial interest in postbiotic have resulted in extensive investigations and clinical documentation of various physiological benefits and additional bioactivity. The findings validate food and pharma application of the postbiotics and further emphasize on documentation of bioactivity and safety of these compounds.
Collapse
Affiliation(s)
- Priyanka Suthar
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, HP, India
| | - Satish Kumar
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, HP, India
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Vishal Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, HP, India
| | - Atul Dhiman
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, HP, India
| |
Collapse
|
13
|
Tran THM, Wang R, Kim H, Kim YJ. The anti-inflammation and skin-moisturizing effects of Boehmeria tricuspis-mediated biosynthesized gold nanoparticles in human keratinocytes. Front Pharmacol 2023; 14:1258057. [PMID: 37869754 PMCID: PMC10588637 DOI: 10.3389/fphar.2023.1258057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: Recently, nanotechnology has emerged as a potential technique for skin generation, which has several treatment advantages, such as decreased drug cytotoxicity and enhanced skin penetration. Boehmeria tricuspis (BT) belongs to the Urticaceae family and is rich in phenolic and flavonoid compounds. In this study, we biosynthesized gold nanoparticles (BT-AuNPs) using BT extract to explore their anti-inflammatory and skin-moisturizing properties in keratinocytes. Methods: Field-emission transmission electron microscopy, energydispersive X-ray spectrometry, dynamic light scattering, and Fourier-transforminfrared spectroscopy were used to examine the synthesized BT-AuNPs. qRT-PCR, western blot, and ELISA were applied for investigating the effect of BT-AuNPs on anti-inflammation and moisturizing activity in HaCaT cells. Results: At concentrations below 200 μg/mL, BT-AuNPs had no cytotoxic effect on keratinocytes. BT-AuNPs dramatically alleviated the expression and secretion of inflammatory chemokines/cytokine, such as IL-6, IL-8, TARC, CTACK, and RANTES in keratinocytes stimulated by tumor necrosis factor-α/interferon-γ (T + I). These anti-inflammatory properties of BT-AuNPs were regulated by inhibiting the NF-κB and MAPKs signaling pathways. Furthermore, BT-AuNPs greatly promoted hyaluronic acid (HA) production by enhancing the expression of hyaluronic acid synthase genes (HAS1, HAS2, and HAS3) and suppressing the expression of hyaluronidase genes (HYAL1 and HYAL2) in HaCaT cells. Discussion: These results suggest that BT-AuNPs can be used as a promising therapeutic alternative for treating skin inflammation. Our findings provide a potential platform for the use of BT-AuNPs as candidates for treating inflammatory skin diseases and promoting skin health.
Collapse
Affiliation(s)
- Thi Hoa My Tran
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Rongbo Wang
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung Ang University, Anseong, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
14
|
Park YK, Chin YW. Degradation of Bisphenol A by Bacillus subtilis P74 Isolated from Traditional Fermented Soybean Foods. Microorganisms 2023; 11:2132. [PMID: 37763976 PMCID: PMC10536603 DOI: 10.3390/microorganisms11092132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bisphenol A (BPA), one of the most widely used plasticizers, is an endocrine-disrupting chemical that is released from plastic products. The aim of this study was to screen and characterize bacteria with excellent BPA-degrading abilities for application in foods. BPA degradation ability was confirmed in 127 of 129 bacterial strains that were isolated from fermented soybean foods. Among the strains, B. subtilis P74, which showed the highest BPA degradation performance, degraded 97.2% of 10 mg/L of BPA within 9 h. This strain not only showed a fairly stable degradation performance (min > 88.2%) over a wide range of temperatures (30-45 °C) and pH (5.0-9.0) but also exhibited a degradation of 63% against high concentrations of BPA (80 mg/L). The metabolites generated during the degradation were analyzed using high-performance liquid chromatography-mass spectrometry, and predicted degradation pathways are tentatively proposed. Finally, the application of this strain to soybean fermentation was conducted to confirm its applicability in food.
Collapse
Affiliation(s)
| | - Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| |
Collapse
|
15
|
Monteiro SS, Schnorr CE, Pasquali MADB. Paraprobiotics and Postbiotics-Current State of Scientific Research and Future Trends toward the Development of Functional Foods. Foods 2023; 12:2394. [PMID: 37372605 DOI: 10.3390/foods12122394] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 06/29/2023] Open
Abstract
The potential of paraprobiotics and postbiotics to be used as beneficial agents for human health has caused an effort by the scientific community to gather information about the bioactivity of these compounds and production methods. Understanding the evolution of scientific research in this area of study is important to understand the future perspectives and the main bottlenecks of scientific and technological development involving these compounds. In this scenario, this review work used a bibliometric analysis tool intending to improve the scientific documentation, bringing information and communicating the results to the scientific community through the quantitative analysis of the current literature, available in one of the main databases, the Web of Science, also providing recent information on the evolution and future perspectives in the field of paraprobiotic and postbiotic development. The results of this study showed that the main studies discuss the bioactivity of these compounds. Concerning the development of functional foods, there is a need for extensive research on production methods and the interaction of these compounds with food. However, it concluded that much still needs to be studied to prove the claims of bioactivity, especially when used for the development of functional foods.
Collapse
Affiliation(s)
- Shênia Santos Monteiro
- Graduate Program in Engineering and Natural Resource Management, Center for Technology and Natural Resources, Federal University of Campina Grande, Campina Grande CEP 58429-140, Paraíba, Brazil
| | - Carlos Eduardo Schnorr
- Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, CUC, Calle 58 55-66, Barranquilla 080002, Atlántico, Colombia
| | - Matheus Augusto de Bittencourt Pasquali
- Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, CUC, Calle 58 55-66, Barranquilla 080002, Atlántico, Colombia
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande CEP 58429-140, Paraíba, Brazil
| |
Collapse
|
16
|
Tran THM, Mi XJ, Huh JE, Aditi Mitra P, Kim YJ. Cirsium japonicum var. maackii fermented with Pediococcus pentosaceus induces immunostimulatory activity in RAW 264.7 cells, splenocytes and CTX-immunosuppressed mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
17
|
Zhong Y, Wang T, Luo R, Liu J, Jin R, Peng X. Recent advances and potentiality of postbiotics in the food industry: Composition, inactivation methods, current applications in metabolic syndrome, and future trends. Crit Rev Food Sci Nutr 2022; 64:5768-5792. [PMID: 36537328 DOI: 10.1080/10408398.2022.2158174] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Postbiotics are defined as "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics have unique advantages over probiotics, such as stability, safety, and wide application. Although postbiotics are research hotspots, the research on them is still very limited. This review provides comprehensive information on the scope of postbiotics, the preparation methods of inanimate microorganisms, and the application and mechanisms of postbiotics in metabolic syndrome (MetS). Furthermore, the application trends of postbiotics in the food industry are reviewed. It was found that postbiotics mainly include inactivated microorganisms, microbial lysates, cell components, and metabolites. Thermal treatments are the main methods to prepare inanimate microorganisms as postbiotics, while non-thermal treatments, such as ionizing radiation, ultraviolet light, ultrasound, and supercritical CO2, show great potential in postbiotic preparation. Postbiotics could ameliorate MetS through multiple pathways including the modulation of gut microbiota, the enhancement of intestinal barrier, the regulation of inflammation and immunity, and the modulation of hormone homeostasis. Additionally, postbiotics have great potential in the food industry as functional food supplements, food quality improvers, and food preservatives. In addition, the SWOT analyses showed that the development of postbiotics in the food industry exists both opportunities and challenges.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Aggarwal S, Sabharwal V, Kaushik P, Joshi A, Aayushi A, Suri M. Postbiotics: From emerging concept to application. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.887642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The microbiome innovation has resulted in an umbrella term, postbiotics, which refers to non-viable microbial cells, metabolic byproducts and their microbial components released after lysis. Postbiotics, modulate immune response, gene expression, inhibit pathogen binding, maintain intestinal barriers, help in controlling carcinogenesis and pathogen infections. Postbiotics have antimicrobial, antioxidant, and immunomodulatory properties with favorable physiological, immunological, neuro-hormonal, regulatory and metabolic reactions. Consumption of postbiotics relieves symptoms of various diseases and viral infections such as SARS-CoV-2. Postbiotics can act as alternatives for pre-probiotic specially in immunosuppressed patients, children and premature neonates. Postbiotics are used to preserve and enhance nutritional properties of food, elimination of biofilms and skin conditioning in cosmetics. Postbiotics have numerous advantages over live bacteria with no risk of bacterial translocation from the gut to blood, acquisition of antibiotic resistance genes. The process of extraction, standardization, transport, and storage of postbiotic is more natural. Bioengineering techniques such as fermentation technology, high pressure etc., may be used for the synthesis of different postbiotics. Safety assessment and quality assurance of postbiotic is important as they may induce stomach discomfort, sepsis and/or toxic shock. Postbiotics are still in their infancy compared to pre- and pro- biotics but future research in this field may contribute to improved physiological functions and host health. The current review comprehensively summarizes new frontiers of research in postbiotics.
Collapse
|
19
|
Park M, Joung M, Park JH, Ha SK, Park HY. Role of Postbiotics in Diet-Induced Metabolic Disorders. Nutrients 2022; 14:nu14183701. [PMID: 36145077 PMCID: PMC9503758 DOI: 10.3390/nu14183701] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Although the prevalence of metabolic disorders has progressively increased over the past few decades, metabolic disorders can only be effectively treated with calorie restriction and improved physical activity. Recent research has focused on altering the gut microbiome using prebiotics, probiotics, and postbiotics because various metabolic syndromes are caused by gut microbial dysbiosis. Postbiotics, substances produced or released by microorganism metabolic activities, play an important role in maintaining and restoring host health. Because postbiotics have a small amount of literature on their consumption, there is a need for more experiments on short- and long-term intake. This review discusses current postbiotic research, categories of postbiotics, positive roles in metabolic syndromes, and potential therapeutic applications. It covers postbiotic pleiotropic benefits, such as anti-obesity, anti-diabetic, and anti-hypertensive qualities, that could aid in the management of metabolic disorders. Postbiotics are promising tools for developing health benefits and therapeutic goals owing to their clinical, technical, and economic properties. Postbiotic use is attractive for altering the microbiota; however, further studies are needed to determine efficacy and safety.
Collapse
|
20
|
Lu S, Na K, Li Y, Zhang L, Fang Y, Guo X. Bacillus-derived probiotics: metabolites and mechanisms involved in bacteria-host interactions. Crit Rev Food Sci Nutr 2022; 64:1701-1714. [PMID: 36066454 DOI: 10.1080/10408398.2022.2118659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacillus probiotics have a sporulation capacity that makes them more suitable for processing and storage and for surviving passage through the gastrointestinal tract. The probiotic functions and regulatory mechanisms of different Bacillus have been exploited in many reports, but little is known about how various Bacillus probiotics perform different functions. This knowledge gap results in a lack of specificity in the selection and application of Bacillus. The probiotic properties are strain-specific and cell-type-specific, and are related to the germination potential and to the diversity of metabolites produced following intestinal germination, as this causes the variation in probiotic function and mechanisms. In this review, we discuss the Bacillus metabolites produced during germination and sporulation in the GI tract, as well as possible processes affecting intestinal homeostasis. We conclude that the oxygen-capturing capability and the production of antimicrobials, exoenzymes, competence and sporulation factors (CSF), exopolysaccharides, lactic acid, and cell components are specifically associated with the functional mechanisms of probiotic Bacillus. The aim of this review is to guide the screening of potential Bacillus strains for probiotics and their application in nutrition research. The information provided will also promote further research on Bacillus-derived functional metabolites in human nutrition.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Yuanrong Li
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Ying Fang
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Hubei Province, China
| |
Collapse
|