1
|
Morais VND, Moreira LDPD, Gomes MJC, Grancieri M, Lucio HG, Toledo RCL, Mishima MDV, Costa NMB, da Silva BP, Stampini Duarte Martino H. Chia Oil ( Salvia hispanica L.) Improves the Intestinal Health of Wistar Rats Fed a Hypercaloric Diet. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025; 44:322-331. [PMID: 39689242 DOI: 10.1080/27697061.2024.2431271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND A diet rich in fat and sugar is present in society everyday life, leading to the development of metabolic changes, especially in intestinal microbiota. Chia oil is a source of alpha-linolenic acid, which has antioxidant and anti-glycemic effects. Based on this, we hypothesized that chia oil may promote intestinal health. OBJECTIVE The study aims to investigate the effects of chia oil on gut microbiota and intestinal health in Wistar rats fed a high-fat and high-fructose diet (HFHF). METHODS The animals were separated into two groups and received the following diets: standard murine diet (AIN-93M) (n = 10) and HFHF (n = 20) to induce metabolic changes (phase I) during eight weeks. After that, the AIN-93M group remained unchanged, while the HFHF group was divided into two groups: HFHF (n = 10) and HFHF with chia oil (HFHF+CO) (n = 10) for ten weeks (phase II, chia oil treatment). We analyzed immunoglobulin A (IgA) levels, cecal pH, short-chain fatty acids (SCFAs), intestinal permeability, intestinal microbiome composition, histomorphometry, and murinometric parameters. RESULTS Chia oil consumption increased alpha-linolenic acid intake, IgA levels, propionic acid production, cecum weight, goblet cell number, thickness and depth of intestinal crypts, and the thickness of both circular and longitudinal muscle layers of the colon, and decreased cecal pH. No change was observed in the alpha and beta diversity between the HFHF and HFHF+CO groups. The HFHF+CO diet increased the relative abundance of genera Lactobacillus sp., Faecalibacterium sp., and Erysipelatoclostridium sp., compared to the AIN-93M group. No difference was observed in the intestinal permeability among the groups. CONCLUSION Chia oil consumption is an alternative for improving the intestinal health of rats fed a HFHF diet.
Collapse
Affiliation(s)
- Violeta Nunes de Morais
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Mariana Grancieri
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Haira Guedes Lucio
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo, Alegre, Espírito Santo, Brazil
| | | | | |
Collapse
|
2
|
Jiang K, Bai Y, Hou R, Chen G, Liu L, Ciftci ON, Farag MA, Liu L. Advances in dietary polyphenols: Regulation of inflammatory bowel disease (IBD) via bile acid metabolism and the gut-brain axis. Food Chem 2025; 472:142932. [PMID: 39862607 DOI: 10.1016/j.foodchem.2025.142932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Dietary polyphenols represent a diverse group of plant-derived compounds known for their extensive biological activities, offering significant promise in the prevention and treatment of various chronic illnesses. Despite their potential, advancements in their research have been curtailed by challenges in structural analysis and limitations in existing research models. This review marks a pioneering exploration into how bile acids, gut microbiota, and the gut-brain axis serve as conduits through which dietary polyphenols can exert therapeutic effects on Inflammatory Bowel Disease (IBD). This review enriches understanding of their biological functions and addresses common obstacles in the study of natural polyphenols. It provides a comprehensive examination of the role of dietary polyphenols in modulating bile acid metabolism and mitigating IBD, covering aspects such as polyphenols, bile acid metabolism, oxidative stress, inflammation, and the nervous system. This work opens new vistas in appreciating the full spectrum of polyphenol benefits, laying the groundwork for future explorations in this domain.
Collapse
Affiliation(s)
- Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Yinuo Bai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lingyi Liu
- Department of food science and technology, University of Nebraska, Lincoln 68588, NE, USA
| | - Ozan N Ciftci
- Department of food science and technology, University of Nebraska, Lincoln 68588, NE, USA
| | - Mohamed A Farag
- Pharmacognosy department, faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Wang K, Chi C, Huang S, Yu M, Li X. Effect of starch molecular weight on the colon-targeting delivery and promoting GLP-1 secretion of starch-lecithin complex nanoparticles. Food Hydrocoll 2025; 158:110589. [DOI: 10.1016/j.foodhyd.2024.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Niu Y, Yu W, Kou X, Wu S, Liu M, Chen C, Ji J, Shao Y, Xue Z. Bioactive compounds regulate appetite through the melanocortin system: a review. Food Funct 2024; 15:11811-11833. [PMID: 39506527 DOI: 10.1039/d4fo04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Obesity, a significant health crisis, arises from an imbalance between energy intake and expenditure. Enhancing appetite regulation has garnered substantial attention from researchers as a novel and effective strategy for weight management. The melanocortin system, situated in the hypothalamus, is recognized as a critical node in the regulation of appetite. It integrates long-term and short-term hormone signals from the periphery as well as nutrients, forming a complex network of interacting feedback mechanisms with the gut-brain axis, significantly contributing to the regulation of energy homeostasis. Appetite regulation by bioactive compounds has been a focus of intensive research due to their favorable safety profiles and easy accessibility. These bioactive compounds, derived from a variety of plant and animal sources, modulate the melanocortin system and influence appetite and energy homeostasis through multiple pathways: central nervous system, peripheral hormones, and intestinal microbiota. Here, we review the anatomy, function, and receptors of the melanocortin system, outline the long-term and short-term regulatory hormones that act on the melanocortin system, and discuss the bioactive compounds and their mechanisms of action that exert a regulatory effect on appetite by targeting the melanocortin system. This review contributes to a better understanding of how bioactive compounds regulate appetite via the melanocortin system, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Amelioration impact of gut-brain communication on obesity control by regulating gut microbiota composition through the ingestion of animal-plant-derived peptides and dietary fiber: can food reward effect as a hidden regulator? Crit Rev Food Sci Nutr 2024; 64:11575-11589. [PMID: 37526310 DOI: 10.1080/10408398.2023.2241078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Various roles of intestinal flora in the gut-brain axis response pathway have received enormous attention because of their unique position in intestinal flora-derived metabolites regulating hormones, inducing appetite, and modulating energy metabolism. Reward pathways in the brain play a crucial role in gut-brain communications, but the mechanisms have not been methodically understood. This review outlined the mechanisms by which leptin, ghrelin, and insulin are influenced by intestinal flora-derived metabolites to regulate appetite and body weight, focused on the significance of the paraventricular nucleus and ventromedial prefrontal cortex in food reward. The vagus nerve and mitochondria are essential pathways of the intestinal flora involved in the modulation of neurotransmitters, neural signaling, and neurotransmission in gut-brain communications. The dynamic response to nutrient intake and changes in the characteristics of feeding activity requires the participation of the vagus nerve to transmit messages to be completed. SCFAs, Bas, BCAAs, and induced hormones mediate the sensory information and reward signaling of the host in the complex regulatory mechanism of food selection, and the composition of the intestinal flora significantly impacts this process. Food reward in the process of obesity based on gut-brain communications expands new ideas for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
- Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an, China
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
6
|
Li W, Sheng R, Cao M, Rui Y. Exploring the Relationship Between Gut Microbiota and Sarcopenia Based on Gut-Muscle Axis. Food Sci Nutr 2024; 12:8779-8792. [PMID: 39619957 PMCID: PMC11606894 DOI: 10.1002/fsn3.4550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 01/04/2025] Open
Abstract
Sarcopenia, as a disease characterized by progressive decline of quality, strength, and function of muscles, has posed an increasingly significant threat to the health of middle-aged and elderly individuals in recent years. With the continuous deepening of studies, the concept of gut-muscle axis has attracted widespread attention worldwide, and the occurrence and development of sarcopenia are believed to be closely related to the composition and functional alterations of gut microbiota. In this review, combined with existing literatures and clinical reports, we have summarized the role and impacts of gut microbiota on the muscle, the relevance between gut microbiota and sarcopenia, potential mechanisms of gut microbiota in the modulation of sarcopenia, potential methods to alleviate sarcopenia by modulating gut microbiota, and relevant advances and perspectives, thus contributing to adding more novel knowledge to this research direction and providing certain reference for future related studies.
Collapse
Affiliation(s)
- Wei Li
- Department of Spinal Surgery Unit 1Hanzhong Central Hospital of Shaanxi ProvinceHanzhongShaanxiChina
- Department of OrthopaedicsTianjin Hospital of NingqiangHanzhongShaanxiChina
| | - Ren‐Wang Sheng
- Department of Orthopaedics, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- School of MedicineSoutheast UniversityNanjingJiangsuChina
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingJiangsuChina
| | - Mu‐Min Cao
- Department of Orthopaedics, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- School of MedicineSoutheast UniversityNanjingJiangsuChina
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingJiangsuChina
| | - Yun‐Feng Rui
- Department of Orthopaedics, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- School of MedicineSoutheast UniversityNanjingJiangsuChina
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingJiangsuChina
| |
Collapse
|
7
|
Kumar T, Maitra S, Rai R, Priyanka, Maitra S, Tirkey NN, Kumari R. The dichotomy between probiotic lactic acid bacteria and Plasmodium: A promising therapeutic avenue. Acta Trop 2024; 257:107284. [PMID: 38857820 DOI: 10.1016/j.actatropica.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Our understanding of gut microbial populations and their immense influence on host immunity, health, and diseases has increased deeply in recent years. Numerous reports have identified the role of mosquito and mammalian gut microbiota in the modulation of host susceptibility to Plasmodium infection. Artemisinin resistance in malaria-endemic regions necessitates the development of new, safer, and more affordable treatments to supplement existing therapies. In this review, we compiled a colossal amount of data from numerous studies that have assessed the roles played by gut microbial communities in Plasmodium infection, progression, transmission, and severity. Most interestingly, our study points to the overwhelming evidence from experimental studies in mural malaria to human trials, suggesting that the presence of lactic acid bacteria in the gut microbiota of mammalian hosts provides a great degree of protection against malaria. Therefore, our study provides a compelling narrative for probiotic administration as an adjunct therapy for combatting malaria.
Collapse
Affiliation(s)
- Tarkeshwar Kumar
- Department of Zoology, Panch Pargana Kisan College, Ranchi University, Ranchi, Jharkhand, 835204, India.
| | - Satarupa Maitra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Richa Rai
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Priyanka
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Satwat Maitra
- Noida International Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| | | | - Rajesh Kumari
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
8
|
Partanen M, Luhio P, Gómez-Gallego C, Kolehmainen M. The role of fiber in modulating plant protein-induced metabolic responses. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39154210 DOI: 10.1080/10408398.2024.2392149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The rising consumption of plant protein foods and the emergence of meat alternatives have prompted interest in the health benefits of such products, which contain fiber in addition to protein. This review investigates the effect of fiber on plant-based protein metabolism and evaluates its contribution to gut-derived health impacts. Plant proteins, which often come with added fiber, can have varying health outcomes. Factors such as processing and the presence of fiber and starch influence the digestibility of plant proteins, potentially leading to increased proteolytic fermentation in the gut and the production of harmful metabolites. However, fermentable fiber can counteract this effect by serving as a primary substrate for gut microbes, decreasing proteolytic activity. The increased amount of fiber, rather than the protein source itself, plays a significant role in the observed health benefits of plant-based diets in human studies. Differences between extrinsic and intrinsic fiber in the food matrix further impact protein fermentation and digestibility. Thus, in novel protein products without naturally occurring fiber, the health impact may differ from conventional plant protein sources. The influence of various fibers on plant-based protein metabolism throughout the gastrointestinal tract is not fully understood, necessitating further research.
Collapse
Affiliation(s)
- Moona Partanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Petri Luhio
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Wang Y, Duan C, Du X, Zhu Y, Wang L, Hu J, Sun Y. Vagus Nerve and Gut-Brain Communication. Neuroscientist 2024:10738584241259702. [PMID: 39041416 DOI: 10.1177/10738584241259702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The vagus nerve, as an important component of the gut-brain axis, plays a crucial role in the communication between the gut and brain. It influences food intake, fat metabolism, and emotion by regulating the gut-brain axis, which is closely associated with the development of gastrointestinal, psychiatric, and metabolism-related disorders. In recent years, significant progress has been made in understanding the vagus-mediated regulatory pathway, highlighting its profound implications in the development of many diseases. Here, we summarize the latest advancements in vagus-mediated gut-brain pathways and the novel interventions targeting the vagus nerve. This will provide valuable insights for future research on treatment of obesity and gastrointestinal and depressive disorders based on vagus nerve stimulation.
Collapse
Affiliation(s)
- Yiyang Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenxi Duan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Du
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Jun Hu
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Sun
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Aagaard KM, Barkin SL, Burant CF, Carnell S, Demerath E, Donovan SM, Eneli I, Francis LA, Gilbert-Diamond D, Hivert MF, LeBourgeois MK, Loos RJF, Lumeng JC, Miller AL, Okely AD, Osganian SK, Ramirez AG, Trasande L, Van Horn LV, Wake M, Wright RJ, Yanovski SZ. Understanding risk and causal mechanisms for developing obesity in infants and young children: A National Institutes of Health workshop. Obes Rev 2024; 25:e13690. [PMID: 38204366 DOI: 10.1111/obr.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 10/02/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024]
Abstract
Obesity in children remains a major public health problem, with the current prevalence in youth ages 2-19 years estimated to be 19.7%. Despite progress in identifying risk factors, current models do not accurately predict development of obesity in early childhood. There is also substantial individual variability in response to a given intervention that is not well understood. On April 29-30, 2021, the National Institutes of Health convened a virtual workshop on "Understanding Risk and Causal Mechanisms for Developing Obesity in Infants and Young Children." The workshop brought together scientists from diverse disciplines to discuss (1) what is known regarding epidemiology and underlying biological and behavioral mechanisms for rapid weight gain and development of obesity and (2) what new approaches can improve risk prediction and gain novel insights into causes of obesity in early life. Participants identified gaps and opportunities for future research to advance understanding of risk and underlying mechanisms for development of obesity in early life. It was emphasized that future studies will require multi-disciplinary efforts across basic, behavioral, and clinical sciences. An exposome framework is needed to elucidate how behavioral, biological, and environmental risk factors interact. Use of novel statistical methods may provide greater insights into causal mechanisms.
Collapse
Affiliation(s)
- Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shari L Barkin
- Department of Pediatrics, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ellen Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sharon M Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Ihuoma Eneli
- Center for Healthy Weight and Nutrition, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
- Center of Nutrition, Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Lori A Francis
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Monique K LeBourgeois
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julie C Lumeng
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alison L Miller
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Anthony D Okely
- School of Health and Society, Faculty of Arts, Social Sciences and Humanities, University of Wollongong, Wollongong, New South Wales, Australia
- llawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
- Department of Sport, Food, and Natural Sciences, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Stavroula K Osganian
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amelie G Ramirez
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University (NYU) School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University (NYU) School of Medicine, New York, New York, USA
- Department of Population Health, New York University (NYU) School of Medicine, New York, New York, USA
| | - Linda V Van Horn
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois, USA
| | - Melissa Wake
- Population Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, New York, USA
| | - Susan Z Yanovski
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
12
|
Ye J, Li Y, Wang X, Yu M, Liu X, Zhang H, Meng Q, Majeed U, Jian L, Song W, Xue W, Luo Y, Yue T. Positive interactions among Corynebacterium glutamicum and keystone bacteria producing SCFAs benefited T2D mice to rebuild gut eubiosis. Food Res Int 2023; 172:113163. [PMID: 37689914 DOI: 10.1016/j.foodres.2023.113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Accumulating evidences strongly support the correlations between the compositions of gut microbiome and therapeutic effects on Type 2 diabetes (T2D). Notably, gut microbes such as Akkermansia muciniphila are found able to regulate microecological balance and alleviate dysmetabolism of mice bearing T2D. In order to search out similarly functional bacteria, bacteriophage MS2 with a good specificity to bacteria carrying fertility (F) factor were used to treat T2D mice. Based on multi-omics analysis of microbiome and global metabolism of mice, we observed that gavage of bacteriophage MS2 and metformin led to a significant increase in the abundance of Corynebacterium glutamicum and A. muciniphila, respectively. Consequently, the gut microbiota were remodeled, leading to variations in metabolites and a substantial increase in short-chain fatty acids (SCFAs). In which, the amount of acetate, propionate, and butyrate presented negative correlations to that of proinflammatory cytokines, which was beneficial to repairing the intestinal barriers and improving their functions. Moreover, main short fatty acid (SCFA) producers exhibited positive interactions, further facilitating the restoration of gut eubiosis. These findings revealed that C. glutamicum and its metabolites may be potential dietary supplements for the treatment of T2D. Moreover, our research contributes to a novel understanding of the underlying mechanism by which functional foods exert their anti-diabetic effects.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yihua Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiaochen Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Mengxi Yu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xuehua Liu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huaxin Zhang
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lijuan Jian
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Weiming Xue
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China.
| |
Collapse
|
13
|
Liu D, Wang S, Liu Y, Luo Y, Wen B, Wu W, Zeng H, Huang J, Liu Z. Fuzhuan brick tea ameliorates hepatic steatosis and steatohepatitis through gut microbiota-derived aryl hydrocarbon receptor ligands in high-fat diet-induced obese mice. Food Funct 2023; 14:8351-8368. [PMID: 37606634 DOI: 10.1039/d3fo01782f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
High-fat diet (HFD) induced obesity and its associated conditions, such as hepatic steatosis and steatohepatitis, are major health concerns worldwide. Previous studies have reported the excellent efficiency of Fuzhuan brick tea (FBT) in attenuating HFD-induced obesity and metabolic disorders. In this study, we investigated the effects of FBT on hepatic steatosis and simple steatohepatitis in HFD-induced obese mice, as well as the metabolic function of the gut microbiome using metagenomics and metabolomics. The results showed that FBT ameliorated dyslipidemia, hepatic steatosis and steatohepatitis in HFD-induced obese mice by normalizing the gut microbiota structure and tryptophan metabolism. FBT increased the cecal abundance of aryl hydrocarbon receptor (AhR)-ligand producing bacteria such as Lactobacillus_reuteri and Lactobacillus_johnsonii, at the expense of AhR-ligand consuming bacteria, such as Faecalibaculum_rodentium and Escherichia_coli, and elevated the cecal contents of AhR-ligands such as IAA, IPA, and KYNA. Furthermore, FBT regulated the expressions of AhR and its targeted lipometabolic genes such as Pemt, Fasn, and SREBP-1c, as well as other inflammatory genes including TNF-α, IL-6, and IL-1β in the liver of mice. Overall, these findings highlight the beneficial effects of FBT on obesity-related hepatic steatosis and steatohepatitis via microbiota-derived AhR signaling.
Collapse
Affiliation(s)
- Dongmin Liu
- Changsha University of Science & Technology, Changsha 410114, China
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Siyu Wang
- Changsha University of Science & Technology, Changsha 410114, China
| | - Yaqing Liu
- Changsha University of Science & Technology, Changsha 410114, China
| | - Yong Luo
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Beibei Wen
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Wenliang Wu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, China
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| |
Collapse
|
14
|
Batista P, Rodrigues Penas M, Vila-Real C, Pintado M, Oliveira-Silva P. Kombucha: Challenges for Health and Mental Health. Foods 2023; 12:3378. [PMID: 37761087 PMCID: PMC10530084 DOI: 10.3390/foods12183378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Increasing research into probiotics is showing potential benefits for health in general and mental health in particular. Kombucha is a recent beverage and can be considered a probiotic drink, but little is known about its effects on physical and mental health. This product is experiencing growth in the market; however, there are no scientific results to support its potential for physical and mental health. AIM This review article aims to draw attention to this issue and to highlight the lack of studies in this area. KEY FINDINGS AND CONCLUSIONS The lack of legislation for the correct marketing of this product may also constrain clinical studies. However, clinical studies are of utmost importance for an in-depth understanding of the effects of this product on the human body. More research is needed, not only to better understand the impact of Kombucha on the human body, but also to ensure the application of regulatory guidelines for its production and marketing and enable its safe and effective consumption.
Collapse
Affiliation(s)
- Patrícia Batista
- Research Centre for Human Development, Human Neurobehavioural Laboratory, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.R.P.); (P.O.-S.)
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.V.-R.); (M.P.)
| | - Maria Rodrigues Penas
- Research Centre for Human Development, Human Neurobehavioural Laboratory, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.R.P.); (P.O.-S.)
| | - Catarina Vila-Real
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.V.-R.); (M.P.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.V.-R.); (M.P.)
| | - Patrícia Oliveira-Silva
- Research Centre for Human Development, Human Neurobehavioural Laboratory, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.R.P.); (P.O.-S.)
| |
Collapse
|
15
|
Liu P, Zhang Y, Zhang Z, Huang X, Su X, Yang S, Xie Y. Antibiotic-Induced Dysbiosis of the Gut Microbiota Impairs Gene Expression in Gut-Liver Axis of Mice. Genes (Basel) 2023; 14:1423. [PMID: 37510327 PMCID: PMC10379678 DOI: 10.3390/genes14071423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotics can be a double-edged sword. The application of broad-spectrum antibiotics leads to the suppression of microorganisms in the human body without selective targeting, including numerous non-pathogenic microorganisms within the gut. As a result, dysbiosis of the gut microbiota can occur. The gut microbiota is a vast and intricate ecosystem that has been connected with various illnesses. Significantly, the gut and liver function in a closely coupled anatomical and physiological relationship referred to as the "gut-liver axis". Consequently, metabolites stemming from the gut microbiota migrate via the portal vein to the liver, thereby influencing gene expression and proper physiological activity within the liver. This study aimed to investigate the dysbiosis of gut microbiota ecology and the disruption of gene expression resulting from oral antibiotics and their subsequent recovery. In the experiment, mice were tube-fed neomycin (0.5 mg/mL) and ampicillin (1 mg/mL) for 21 days (ABX group) to conduct 16s rRNA sequencing. By simultaneously analyzing public datasets PRJDB6615, which utilized the same antibiotics, it was found that nearly 50% of the total microbiota abundance was attributed to the f__Lactobacillaceae family. Additionally, datasets GSE154465 and GSE159761, using the same antibiotics, were used to screen for differentially expressed genes pre-and post-antibiotic treatment. Quantitative real-time PCR was employed to evaluate gene expression levels before and after antibiotic treatment. It was discovered that oral antibiotics significantly disrupted gene expression in the gut and liver, likely due to the dysregulation of the gut microbiota ecology. Fecal microbiota transplantation (FMT) was found to be an effective method for restoring gut microbiota dysbiosis. To further enhance the restoration of gut microbiota and gene expression, an antioxidant, vitamin C, was added to the FMT process to counteract the oxidative effect of antibiotics on microorganisms. The results showed that FMTs with vitamin C were more effective in restoring gut microbiota and gene expression to the level of the fecal transplant donor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongfang Xie
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China (Y.Z.)
| |
Collapse
|
16
|
Liu D, Zhang J, Chen J, Zhang C, Yi H, Liu D. Carrot-based fermentation juice rich in sleep-promoting components improved sleep in mice. Front Nutr 2022; 9:1043055. [PMID: 36523330 PMCID: PMC9745110 DOI: 10.3389/fnut.2022.1043055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
The impact of fermentation by Levilactobacillus brevis YSJ3 on sleep-promoting components (SPCs) of carrot juice was evaluated. The contents of acetic acid, isovaleric acid, butyric acid, and γ-aminobutyric acid (GABA) significantly increased after fermentation. The beneficial effects of fermented carrot juice (FCJ) on sleep were evaluated in animal experiments. Behavioral test reveal SPCs-enriched FCJ could effectively relieve anxiety. The sleep duration in the FCJ group were extended compared to the control (NC) group and the unfermented carrot juice (UCJ) group. Moreover, the relative abundances of Ruminiclostridium and Akkermansia in the FCJ group and PC group, respectively, increased significantly, compared to the NC group the UCJ group. The contents of gut short-chain fatty acids in the FCJ group were significantly higher than that in the NC group and the UCJ group. The levels of GABA and 5-hydroxytryptamine in the brain for the FCJ group also increased significantly, compared to the NC group and the UCJ group. It indicated that SPCs-enriched FCJ effectively improved sleep in mice, which might be related to the fermentation of carrot juice and the compounds produced during the fermentation.
Collapse
Affiliation(s)
- Daiyao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jianming Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Juan Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chengcheng Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Daqun Liu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Xiao L, Yang Y, Han S, Rui X, Ma K, Zhang C, Wang G, Li W. Effects of genes required for exopolysaccharides biosynthesis in Lacticaseibacillus paracasei S-NB on cell surface characteristics and probiotic properties. Int J Biol Macromol 2022; 224:292-305. [DOI: 10.1016/j.ijbiomac.2022.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
18
|
The Obesity Amelioration Effect in High-Fat-Diet Fed Mice of a Homogeneous Polysaccharide from Codonopsis pilosula. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165348. [PMID: 36014584 PMCID: PMC9415953 DOI: 10.3390/molecules27165348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
A homogeneous polysaccharide coded as CPP-1 was extracted and purified from the root of Codonopsis pilosula (Franch.) Nannf. by water extraction, ethanol precipitation, and column chromatography. Its structure was analyzed by HPGPC-ELSD, HPLC, GC-MS, FT-IR, and NMR techniques. The results indicated that CPP-1 was composed of mannose (Man), glucose (Glc), galactose (Gal), and arabinose (Ara) at a molar ratio of 5.86 : 51.69 : 34.34 : 8.08. The methylation analysis revealed that the main glycosidic linkage types of CPP-1 were (1→)-linked-Glc residue, (1→3)-linked-Glc residues, (1→4)-linked-Gal residue, (1→2,3,4)-linked-Glc residue, (1→)-linked-Man residue, (1→3,4)-linked-Glc residue, and (1→)-linked-Ara residue. In vivo efficacy trial illustrated that CPP-1 supplements could alleviate HFD-induced mice obesity significantly, as well as improve obesity-induced disorders of glucose metabolism, alleviate insulin resistance, and improve the effects of lipid metabolism. The findings indicate that this polysaccharide has the potential for the treatment of obesity.
Collapse
|
19
|
Effects of Oats, Tartary Buckwheat, and Foxtail Millet Supplementation on Lipid Metabolism, Oxido-Inflammatory Responses, Gut Microbiota, and Colonic SCFA Composition in High-Fat Diet Fed Rats. Nutrients 2022; 14:nu14132760. [PMID: 35807940 PMCID: PMC9268892 DOI: 10.3390/nu14132760] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Coarse cereals rich in polyphenols, dietary fiber, and other functional components exert multiple health benefits. We investigated the effects of cooked oats, tartary buckwheat, and foxtail millet on lipid profile, oxido-inflammatory responses, gut microbiota, and colonic short-chain fatty acids composition in high-fat diet (HFD) fed rats. Rats were fed with a basal diet, HFD, oats diet (22% oat in HFD), tartary buckwheat diet (22% tartary buckwheat in HFD), and foxtail millet diet (22% foxtail millet in HFD) for 12 weeks. Results demonstrated that oats and tartary buckwheat attenuated oxidative stress and inflammatory responses in serum, and significantly increased the relative abundance of Lactobacillus and Romboutsia in colonic digesta. Spearman’s correlation analysis revealed that the changed bacteria were strongly correlated with oxidative stress and inflammation-related parameters. The concentration of the butyrate level was elevated by 2.16-fold after oats supplementation. In addition, oats and tartary buckwheat significantly downregulated the expression of sterol regulatory element-binding protein 2 and peroxisome proliferator-activated receptors γ in liver tissue. In summary, our results suggested that oats and tartary buckwheat could modulate gut microbiota composition, improve lipid metabolism, and decrease oxidative stress and inflammatory responses in HFD fed rats. The present work could provide scientific evidence for developing coarse cereals-based functional food for preventing hyperlipidemia.
Collapse
|
20
|
Lee AH, Manly A, Dong TS. Leveraging the Microbiome for Obesity: Moving From Form to Function. Front Endocrinol (Lausanne) 2022; 13:918923. [PMID: 35873002 PMCID: PMC9300920 DOI: 10.3389/fendo.2022.918923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Treatment of obesity, an ongoing global epidemic, is challenging, as weight-loss efforts require a multidisciplinary approach addressing both behavioral and biologic needs that are not completely understood. Recent studies of the gut microbiome may provide better insight into the condition, and ultimately serve to advance more effective therapies. Research in this field has shifted from analyzing microbiome compositional differences to investigating functional changes that affect disease pathophysiology and outcome. Bacteria-derived metabolites are a way to bridge compositional changes to functional consequences. Through the production of metabolites, such as short chain fatty acids, tryptophan derivatives and bile acids, and interactions with peripheral and central signaling pathways, the gut microbiome may alter the body's metabolic and behavioral responses to food. Here, we summarize these mechanisms driven by gut-derived metabolites, through which the microbiome is thought to contribute to obesity, as well as review recent investigations of interventions related to these metabolites. Limitations of existing research, primarily due to paucity of causal studies in humans, are also discussed in this review.
Collapse
Affiliation(s)
- Anna H. Lee
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Anna H. Lee,
| | - Amanda Manly
- Department of Medicine, Garden City Hospital, Garden City, MI, United States
| | - Tien S. Dong
- Department of Gastroenterology, Greater Los Angeles Veterans Affairs, Los Angeles, CA, United States
- Vatche & Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, United States
| |
Collapse
|