1
|
Li J, Ji W, Chen G, Yu K, Zeng J, Zhang Q, Xiong G, Du C, Peng Y, Zeng X, Chen C. Peonidin-3-O-(3,6-O-dimalonyl-β-D-glucoside), a polyacylated anthocyanin isolated from the black corncobs, alleviates colitis by modulating gut microbiota in DSS-induced mice. Food Res Int 2025; 202:115688. [PMID: 39967148 DOI: 10.1016/j.foodres.2025.115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Polyacylated anthocyanins are known for their enhanced stability and immunosuppressive properties. Although peonidin-3-O-(3,6-O-dimalonyl-β-D-glucoside) (P3GdM) from black corncobs has demonstrated notable antibacterial and stress-resistance effects in plants, its regulatory role in inflammatory bowel disease (IBD) remains unexplored. In this study, P3GdM was isolated from black corncobs, and its potential as a treatment for dextran sulfate sodium (DSS)-induced colitis in mice was evaluated. The findings revealed that P3GdM significantly mitigated clinical symptoms, reduced the disease activity index (DAI), suppressed the production of pro-inflammatory cytokines and endotoxins, and repaired the intestinal barrier. Furthermore, P3GdM markedly improved DSS-induced gut microbiota dysbiosis, significantly increasing microbial diversity and enhancing the relative abundance of critical bacterial species such as Akkermansia muciniphila and Lactobacillus reuteri, while also stimulating the production of short-chain fatty acids (SCFAs) and lactic acid. Correlation analyses further revealed strong associations between key microbial taxa, pro-inflammatory factors, clinical symptoms, tight junction proteins, and SCFAs. These findings provide support for the potential of P3GdM as an adjunct therapy for intestinal disorders, particularly colitis.
Collapse
Affiliation(s)
- Junjie Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Wenting Ji
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kun Yu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Jianhua Zeng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Qi Zhang
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Guoyuan Xiong
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Chuanlai Du
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Yujia Peng
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Chunxu Chen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Chuzhou 233100, China.
| |
Collapse
|
2
|
Lu YP, Wang XH, Xia B, Wu HW, Lei Y, Cai KW, Deng ZY, Tang C, Bai WB, Zhu T, Zheng ZH. C3G improves lipid droplet accumulation in the proximal tubules of high-fat diet-induced ORG mice. Pharmacol Res 2025; 211:107550. [PMID: 39675540 DOI: 10.1016/j.phrs.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Obesity-related glomerulopathy (ORG) represents an escalating public health with no effective treatments currently available. Abnormal lipid metabolism and lipid droplet deposition in the kidneys are key contributors to ORG. Cyanidin-3-glucoside (C3G) has shown potential in regulating lipid metabolism and may offer reno-protective effects; however, its therapeutic efficacy and underlying mechanisms in ORG remain unclear. An ORG mouse model was established, followed by an 8-week C3G intervention. The mice were divided into three groups: normal control (CT) group, ORG group, and C3G treatment group. Fecal 16S rRNA sequencing, metabolomics of feces-serum-kidney, and kidney single-cell RNA sequencing (scRNA-seq) were performed to investigate the effects and mechanisms of C3G. Compared to CT mice, ORG mice exhibited elevated serum CHO, TG, Cys-C, UACR, urinary Kim-1, and NAG levels, along with glomerular hypertrophy and tubular injury. These biochemical and pathological indicators improved following C3G treatment. Fecal 16S analysis revealed reduced gut microbiota diversity in ORG mice compared to CT mice, while C3G intervention increased gut microbiota diversity. Metabolic profiling of feces, serum, and kidney indicated reprogramming of glycerophospholipid metabolism in ORG mice, ameliorated by C3G treatment. Further analysis demonstrated that abnormal glycerophospholipid metabolites correlated with blood lipids, urinary protein, urinary tubular injury markers, and gut microbiota, specifically Lachnospiraceae and Blautia. Additionally, scRNA-seq analysis identified activation of the PPARγ/CD36 pathway in proximal tubule cells (PTCs) of ORG mice. C3G improved abnormal glycerophospholipid metabolism and alleviated injury in PTCs by inhibiting the PPARγ/CD36 pathway. C3G reduces lipid droplet accumulation in the PTCs of ORG mice by modulating the gut microbiota and inhibiting the PPARγ/CD36 pathway. These findings offer new insights and therapeutic targets for ORG.
Collapse
Affiliation(s)
- Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bin Xia
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Chinese Health Risk Management Collaboration (CHRIMAC), Shenzhen, Guangdong, China
| | - Hong-Wei Wu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kai-Wen Cai
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zi-Yan Deng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wei-Bin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China.
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Zhang X, Liu W, Li C. Preparation of polyvinyl alcohol/carboxymethyl cellulose sodium/chitosan paper-based antimicrobial indicator cards using mixed anthocyanin with stability-colorimetric sensitivity: Monitoring freshness of carp. Int J Biol Macromol 2024; 282:137329. [PMID: 39522902 DOI: 10.1016/j.ijbiomac.2024.137329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, an anthocyanin solution with both high stability and sensitivity was successfully prepared through a blending method, and the optimal ratio was determined. Ultraviolet-visible spectroscopy analysis demonstrated that an increase in the proportion of black bean peel anthocyanins resulted in a deeper color and a more pronounced color change effect. Moreover, the stability of the blended anthocyanins was markedly enhanced with an increase in the proportion of purple cabbage anthocyanins, resulting in a slower decomposition rate under light, temperature, oxidation, and varying pH conditions. The blended anthocyanins, employed as a pH indicator, were utilized to prepare an antibacterial indicator card. It was observed that the mechanical properties of the coated paper remained unaltered by the ratio of the mixed pigments. The mixed pigments enhanced the stability of the antibacterial indicator card with respect to environmental fluctuations while facilitating more rapid and sensitive color transitions in the presence of ammonia and under disparate pH conditions. The application of indicator cards with five different anthocyanin ratios to fish resulted in a shelf life extension of 1-2 days compared to the control group and enabled real-time monitoring of fish freshness. A comprehensive evaluation demonstrated that the optimal indicator performance was attained when the mass ratio of black bean peel anthocyanins to purple cabbage anthocyanins was 1:1.
Collapse
Affiliation(s)
- Xu Zhang
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Wenjing Liu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
4
|
Zhu Z, Song X, Huang Y, Jiang Y, Yao J, Li Z, Huang Z, Dai F. Acylated anthocyanins from Dendrobium officinale Kimura & Migo: Structural characteristics, antioxidant and hypoglycemic activities. Food Chem 2024; 455:139952. [PMID: 38850968 DOI: 10.1016/j.foodchem.2024.139952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Dendrobium officinale Kimura & Migo (D. officinale) has been widely used as Chinese medicine and functional food. In present study, the structural characteristics of anthocyanins in D. officinale were investigated by ultra-performance liquid chromatography with diode array detector (UPLC-DAD) and ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS/MS). Totally, 14 anthocyanins were detected and identified, and 13 of them were first reported in D. officinale. Results showed that the vast majority of anthocyanins had multi-glycosylated cyanidin core, with variable acylation pattern mainly comprising phenolic acids. The composition and content of anthocyanins in D. officinale stems with different cultivation modes and years have been compared. The anthocyanins showed potent antioxidant activity in terms of radicals scavenging capacity and reducing power, as well as superior α-amylase and α-glucosidase inhibitory activity. The results provided a complete profile of anthocyanins in D. officinale and laid a foundation for further utilizing them as functional foods.
Collapse
Affiliation(s)
- Zuoyi Zhu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Xinyue Song
- College of Chemical Engineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yali Huang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Yunzhu Jiang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Jiarong Yao
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Zhen Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Zhongping Huang
- College of Chemical Engineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Fen Dai
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.
| |
Collapse
|
5
|
Serrano C, Lamas B, Oliveira MC, Duarte MP. Exploring the Potential of Anthocyanin-Based Edible Coatings in Confectionery-Temperature Stability, pH, and Biocapacity. Foods 2024; 13:2450. [PMID: 39123641 PMCID: PMC11312276 DOI: 10.3390/foods13152450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
This study aims to develop purple-coloured polymeric coatings using natural anthocyanin and desoxyanthocianidins (3-DXA) colourants for application to chocolate almonds. The objective is to achieve a stable and uniform colour formulation throughout processing and storage, enhancing the appearance and durability of the almonds to appeal to health-conscious consumers and align with market demands. Plant materials like sweet potato pulp, sweet potato peel, radish peel, black carrot, and sorghum were employed to obtain the desired purple hue. Anthocyanidins and 3-DXA were extracted from the matrices using solvent extraction and ultrasound-assisted methods at different pH values. High-performance liquid chromatography with diode array detection (HPLC-DAD) and high-resolution tandem mass spectrometry (HRMS/MS) were used to identify the compounds in the extracts. The highest antioxidant capacities, as measured by the DPPH• and FRAP methods, were observed in purple sweet potato and dye factory extracts, respectively; meanwhile, sorghum extract inhibited both α-amylase and α-glucosidase, indicating its potential for managing postprandial hyperglycemia and type 2 diabetes. The degradation kinetics of coloured coatings in sugar syrup formulations with anthocyanins and 3-DXA revealed that locust bean gum offered the best colour stabilization for plant extracts, with sorghum extracts showing the highest and black carrot extracts the lowest colour variation when coated with Arabic gum. Sweet potato pulp extracts exhibited less colour variation in sugar pastes, both with and without blue spirulina dye, compared to factory dye, highlighting their potential as a more stable and suitable alternative for colouring purple almonds, particularly over a five-month storage period. This study supports sustainable practices in the confectionery industry while aligning with consumer preferences for healthier and environmentally friendly products.
Collapse
Affiliation(s)
- Carmo Serrano
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-157 Oeiras, Portugal
- Associated Laboratory TERRA, LEAF–Linking Landscape, Environment, Agriculture and Food–Research Center, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Beatriz Lamas
- The Mechanical Engineering and Resource Sustainability Center (MEtRICs), Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.L.); (M.P.D.)
| | - M. Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Maria Paula Duarte
- The Mechanical Engineering and Resource Sustainability Center (MEtRICs), Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.L.); (M.P.D.)
| |
Collapse
|
6
|
Minj J, Riordan J, Teets C, Fernholz-Hartman H, Tanggono A, Lee Y, Chauvin T, Carbonero F, Solverson P. Diet-Induced Rodent Obesity Is Prevented and the Fecal Microbiome Is Improved with Elderberry ( Sambucus nigra ssp. canadensis) Juice Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12555-12565. [PMID: 38776153 DOI: 10.1021/acs.jafc.4c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Anthocyanin-rich edible berries protect against diet-induced obesity in animal models. Prevention is mediated through the bidirectional relationship with the fecal microbiome, and gut-derived phenolic metabolite absorption increases with physical activity, which may influence bioactivity. The objective of this study was to test elderberry juice powder on the development of diet-induced obesity and its influence on the fecal microbiome alone or in combination with physical activity. Male C57BL/6J mice were assigned to one of four treatments, including (1) high-fat diet without wheel access; (2) high-fat diet with unlimited wheel access; (3) high-fat diet supplemented with 10% elderberry juice powder without wheel access; and (4) high-fat diet supplemented with 10% elderberry juice powder with unlimited wheel access. Body weight gain, fat pads, and whole-body fat content in mice fed elderberry juice were significantly less than in mice fed the control diet independent of wheel access. At the end of the study, active mice fed elderberry juice ate significantly more than active mice fed a control diet. There was no difference in the physical activity between active groups. Elderberry juice increasedBifidobacterium, promotedAkkermansia and Anaeroplasma, and prevented the growth of Desulfovibrio. Elderberry juice is a potent inhibitor of diet-induced obesity with action mediated by the gut microbiota.
Collapse
Affiliation(s)
- Jagrani Minj
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Joseph Riordan
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Christy Teets
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Hadyn Fernholz-Hartman
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Alfian Tanggono
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Yool Lee
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Theodore Chauvin
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Patrick Solverson
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
7
|
Li J, Gao M, Wang P, Li H, Liu J, Yuan F, Zhang X, Zhang S. Troxerutin improves cognitive function and forkhead box F2 expression in the hippocampus via modulating the microbial composition and the intestinal barrier function in diabetes mellitus mice. J Investig Med 2024; 72:438-448. [PMID: 38373896 DOI: 10.1177/10815589241235657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Recent studies have found that gut microbes may affect blood-brain barrier (BBB) integrity. This study was to investigate the relationship between gut microbes and forkhead box F2 (FOXF2) and the mechanism of troxerutin improving diabetic cognitive dysfunction (DCD). Diabetic mice were used in this study for the prophylactic application of troxerutin (60 mg/kg/d) for 8 weeks. The cognitive function was assessed using the Morris water maze (MWM) and novel object recognition (NOR) tasks, and the changes of intestinal microbial composition were observed through 16S rRNA gene sequencing. The content of short-chain fatty acids (SCFAs) in feces was determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and the intestinal barrier function was assessed by enzyme-linked immunosorbent assay (ELISA) and western blotting. Troxerutin up-regulated FOXF2 expression in the hippocampus of mice, improving DCD. Meanwhile, it reversed the intestinal microbial composition (increased the abundance of the phylum Bacteroidota, as well as fecal propionic acid and butyric acid levels) and improved the intestinal barrier (increased the level of claudin-1 and significantly reduced the circulating lipopolysaccharide binding protein (LBP) levels). When intestinal microorganisms were removed with an antibiotic cocktail, the improvement of hippocampal FOXF2 expression and DCD by troxerutin attenuated accordingly, suggesting that troxerutin improved DCD by up-regulating the expression of hippocampal FOXF2 through the regulation of intestinal microbial composition and the intestinal barrier. In summary, troxerutin improved DCD by up-regulating the expression of hippocampal FOXF2 through the regulation of intestinal microbial composition and the intestinal barrier.
Collapse
Affiliation(s)
- Jie Li
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ming Gao
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pin Wang
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongyan Li
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiankun Liu
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiangjian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Songyun Zhang
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Menconi J, Perata P, Gonzali S. In pursuit of purple: anthocyanin biosynthesis in fruits of the tomato clade. TRENDS IN PLANT SCIENCE 2024; 29:589-604. [PMID: 38177013 DOI: 10.1016/j.tplants.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Over the past decade, progress has been made in the characterization of anthocyanin synthesis in fruits of plants belonging to the tomato clade. The genomic elements underlying the activation of the process were identified, providing the basis for understanding how the pathway works in these species. In this review we explore the genetic mechanisms that have been characterized to date, and detail the various wild relatives of the tomato, which have been crucial for recovering ancestral traits that were probably lost during evolution from green-purple to yellow and red tomatoes. This knowledge should help developing strategies to further enhance the status of the commercial tomato lines on sale, based on both genome editing and breeding techniques.
Collapse
Affiliation(s)
- Jacopo Menconi
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| | - Silvia Gonzali
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| |
Collapse
|
9
|
Liu Y, Fernandes I, Mateus N, Oliveira H, Han F. The Role of Anthocyanins in Alleviating Intestinal Diseases: A Mini Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5491-5502. [PMID: 38446808 DOI: 10.1021/acs.jafc.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Anthocyanins are phytonutrients with physiological activity belonging to the flavonoid family whose transport and absorption in the human body follow specific pathways. In the upper gastrointestinal tract, anthocyanins are rarely absorbed intact by active transporters, with most reaching the colon, where bacteria convert them into metabolites. There is mounting evidence that anthocyanins can be used for prevention and treatment of intestinal diseases, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and colorectal cancer (CRC), through the protective function on the intestinal epithelial barrier, immunomodulation, antioxidants, and gut microbiota metabolism. Dietary anthocyanins are summarized in this comprehensive review with respect to their classification and structure as well as their absorption and transport mechanisms within the gastrointestinal tract. Additionally, the review delves into the role and mechanism of anthocyanins in treating common intestinal diseases. These insights will deepen our understanding of the potential benefits of natural anthocyanins for intestinal disorders.
Collapse
Affiliation(s)
- Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Iva Fernandes
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China
- Heyang Experimental Demonstration Station, Northwest A&F University, Weinan 715300, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yongning 750104, China
| |
Collapse
|
10
|
Vita AA, Roberts KM, Gundersen A, Farris Y, Zwickey H, Bradley R, Weir TL. Relationships between Habitual Polyphenol Consumption and Gut Microbiota in the INCLD Health Cohort. Nutrients 2024; 16:773. [PMID: 38542685 PMCID: PMC10974568 DOI: 10.3390/nu16060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
While polyphenol consumption is often associated with an increased abundance of beneficial microbes and decreased opportunistic pathogens, these relationships are not completely described for polyphenols consumed via habitual diet, including culinary herb and spice consumption. This analysis of the International Cohort on Lifestyle Determinants of Health (INCLD Health) cohort uses a dietary questionnaire and 16s microbiome data to examine relationships between habitual polyphenol consumption and gut microbiota in healthy adults (n = 96). In this exploratory analysis, microbial taxa, but not diversity measures, differed by levels of dietary polyphenol consumption. Taxa identified as exploratory biomarkers of daily polyphenol consumption (mg/day) included Lactobacillus, Bacteroides, Enterococcus, Eubacterium ventriosum group, Ruminococcus torques group, and Sutterella. Taxa identified as exploratory biomarkers of the frequency of polyphenol-weighted herb and spice use included Lachnospiraceae UCG-001, Lachnospiraceae UCG-004, Methanobrevibacter, Lachnoclostridium, and Lachnotalea. Several of the differentiating taxa carry out activities important for human health, although out of these taxa, those with previously described pro-inflammatory qualities in certain contexts displayed inverse relationships with polyphenol consumption. Our results suggest that higher quantities of habitual polyphenol consumption may support an intestinal environment where opportunistic and pro-inflammatory bacteria are represented in a lower relative abundance compared to those with less potentially virulent qualities.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen M. Roberts
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Herbert Wertheim School of Public Health, University of California, San Diego, CA 92037, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
11
|
Mao S, Ren Y, Chen S, Liu D, Ye X, Tian J. Development and characterization of pH responsive sodium alginate hydrogel containing metal-phenolic network for anthocyanin delivery. Carbohydr Polym 2023; 320:121234. [PMID: 37659819 DOI: 10.1016/j.carbpol.2023.121234] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 09/04/2023]
Abstract
Favorable hydrogels can be used as a material to deliver bioactive molecules and improve the stability of bioactive substances, while their safety needs to be improved. In this study, protocatechuic acid (PCA) and Fe3+ were rapidly self-assembled to form a metal-phenolic network under different pH conditions, and then sodium alginate (SA) was added to prepare the SA/PCA/Fe hydrogel without adding other chemical reagents. The structural characteristic of SA/PCA/Fe hydrogel was characterized by infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy. The results showed that the structures of SA/PCA/Fe hydrogels prepared at different pH values were significantly different. The texture analysis, water-holding measurement and rheological analysis indicated that the SA/PCA/Fe hydrogel showed higher gel strength, water holding capacity and storage modulus. Thermogravimetric analysis illuminated that the SA/PCA/Fe hydrogel enhanced the thermal stability of free anthocyanins through encapsulating anthocyanins. Moreover, in vitro simulated digestion experiment revealed that SA/PCA/Fe hydrogel could control the release of anthocyanins in the simulated gastrointestinal tract. To sum up, this present study might provide a safer and feasible way for the delivery of bioactive substances.
Collapse
Affiliation(s)
- Shuifang Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China.
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China.
| |
Collapse
|
12
|
Yavorov-Dayliev D, Milagro FI, Ayo J, Oneca M, Goyache I, López-Yoldi M, Aranaz P. Glucose-lowering effects of a synbiotic combination containing Pediococcus acidilactici in C. elegans and mice. Diabetologia 2023; 66:2117-2138. [PMID: 37584728 PMCID: PMC10542285 DOI: 10.1007/s00125-023-05981-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 08/17/2023]
Abstract
AIMS/HYPOTHESIS Modulation of gut microbiota has emerged as a promising strategy to treat or prevent the development of different metabolic diseases, including type 2 diabetes and obesity. Previous data from our group suggest that the strain Pediococcus acidilactici CECT9879 (pA1c) could be an effective probiotic for regulating glucose metabolism. Hence, the objectives of this study were to verify the effectiveness of pA1c on glycaemic regulation in diet-induced obese mice and to evaluate whether the combination of pA1c with other normoglycaemic ingredients, such as chromium picolinate (PC) and oat β-glucans (BGC), could increase the efficacy of this probiotic on the regulation of glucose and lipid metabolism. METHODS Caenorhabditis elegans was used as a screening model to describe the potential synbiotic activities, together with the underlying mechanisms of action. In addition, 4-week-old male C57BL/6J mice were fed with a high-fat/high-sucrose diet (HFS) for 6 weeks to induce hyperglycaemia and obesity. Mice were then divided into eight groups (n=12 mice/group) according to dietary supplementation: control-diet group; HFS group; pA1c group (1010 colony-forming units/day); PC; BGC; pA1c+PC+BGC; pA1c+PC; and pA1c+BGC. Supplementations were maintained for 10 weeks. Fasting blood glucose was determined and an IPGTT was performed prior to euthanasia. Fat depots, liver and other organs were weighed, and serum biochemical variables were analysed. Gene expression analyses were conducted by real-time quantitative PCR. Sequencing of the V3-V4 region of the 16S rRNA gene from faecal samples of each group was performed, and differential abundance for family, genera and species was analysed by ALDEx2R package. RESULTS Supplementation with the synbiotic (pA1c+PC+BGC) counteracted the effect of the high glucose by modulating the insulin-IGF-1 signalling pathway in C. elegans, through the reversal of the glucose nuclear localisation of daf-16. In diet-induced obese mice, all groups supplemented with the probiotic significantly ameliorated glucose tolerance after an IPGTT, demonstrating the glycaemia-regulating effect of pA1c. Further, mice supplemented with pA1c+PC+BGC exhibited lower fasting blood glucose, a reduced proportion of visceral adiposity and a higher proportion of muscle tissue, together with an improvement in the brown adipose tissue in comparison with the HFS group. Besides, the effect of the HFS diet on steatosis and liver damage was normalised by the synbiotic. Gene expression analyses demonstrated that the synbiotic activity was mediated not only by modulation of the insulin-IGF-1 signalling pathway, through the overexpression of GLUT-1 and GLUT-4 mediators, but also by a decreased expression of proinflammatory cytokines such as monocyte chemotactic protein-1. 16S metagenomics demonstrated that the synbiotic combinations allowed an increase in the concentration of P. acidilactici, together with improvements in the intestinal microbiota such as a reduction in Prevotella and an increase in Akkermansia muciniphila. CONCLUSIONS/INTERPRETATION Our data suggest that the combination of pA1c with PC and BGC could be a potential synbiotic for blood glucose regulation and may help to fight insulin resistance, diabetes and obesity.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL, Navarra, Spain
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Josune Ayo
- Genbioma Aplicaciones SL, Navarra, Spain
| | | | - Ignacio Goyache
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Miguel López-Yoldi
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
13
|
Ye J, Li Y, Wang X, Yu M, Liu X, Zhang H, Meng Q, Majeed U, Jian L, Song W, Xue W, Luo Y, Yue T. Positive interactions among Corynebacterium glutamicum and keystone bacteria producing SCFAs benefited T2D mice to rebuild gut eubiosis. Food Res Int 2023; 172:113163. [PMID: 37689914 DOI: 10.1016/j.foodres.2023.113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Accumulating evidences strongly support the correlations between the compositions of gut microbiome and therapeutic effects on Type 2 diabetes (T2D). Notably, gut microbes such as Akkermansia muciniphila are found able to regulate microecological balance and alleviate dysmetabolism of mice bearing T2D. In order to search out similarly functional bacteria, bacteriophage MS2 with a good specificity to bacteria carrying fertility (F) factor were used to treat T2D mice. Based on multi-omics analysis of microbiome and global metabolism of mice, we observed that gavage of bacteriophage MS2 and metformin led to a significant increase in the abundance of Corynebacterium glutamicum and A. muciniphila, respectively. Consequently, the gut microbiota were remodeled, leading to variations in metabolites and a substantial increase in short-chain fatty acids (SCFAs). In which, the amount of acetate, propionate, and butyrate presented negative correlations to that of proinflammatory cytokines, which was beneficial to repairing the intestinal barriers and improving their functions. Moreover, main short fatty acid (SCFA) producers exhibited positive interactions, further facilitating the restoration of gut eubiosis. These findings revealed that C. glutamicum and its metabolites may be potential dietary supplements for the treatment of T2D. Moreover, our research contributes to a novel understanding of the underlying mechanism by which functional foods exert their anti-diabetic effects.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yihua Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiaochen Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Mengxi Yu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xuehua Liu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huaxin Zhang
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lijuan Jian
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Weiming Xue
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China.
| |
Collapse
|
14
|
Hou Y, Bai L, Wang X, Zhang S, Liu S, Hu J, Gao J, Guo S, Ho CT, Bai N. Gut Microbiota Combined with Serum Metabolomics to Investigate the Hypoglycemic Effect of Actinidia arguta Leaves. Nutrients 2023; 15:4115. [PMID: 37836402 PMCID: PMC10574697 DOI: 10.3390/nu15194115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Actinidia arguta leaves (AAL) are an excellent source of bioactive components for the food industry and possess many functional properties. However, the hypoglycemic effect and mechanism of AAL remain unclear. The aim of this work was to investigate the potential hypoglycemic effect of AAL and explore its possible mechanism using 16S rRNA sequencing and serum metabolomics in diabetic mice induced by high-fat feeding in combination with streptozotocin injection. A total of 25 flavonoids from AAL were isolated and characterized, and the contents of the extract from the AAL ranged from 0.14 mg/g DW to 8.97 mg/g DW. The compound quercetin (2) had the highest content of 8.97 ± 0.09 mg/g DW, and the compound kaempferol-3-O-(2'-O-D-glucopyl)-β-D-rutinoside (12) had the lowest content of 0.14 ± 0.01 mg/g DW. In vivo experimental studies showed that AAL reduced blood glucose and cholesterol levels, improved insulin sensitivity, and ameliorated oxidative stress and liver and kidney pathological damage. In addition, gut microbiota analysis found that AAL significantly reduced the F/B ratio, enriched the beneficial bacteria Bacteroides and Bifidobacterium, and inhibited the harmful bacteria Lactobacillus and Desulfovibrio, thereby playing an active role in intestinal imbalance. In addition, metabolomics analysis showed that AAL could improve amino acid metabolism and arachidonic acid metabolism, thereby exerting a hypoglycemic effect. This study confirmed that AAL can alleviate type 2 diabetes mellitus (T2DM) by regulating intestinal flora and interfering with related metabolic pathways, providing a scientific basis for its use as a dietary supplement and for further exploration of the mechanism of AAL against T2DM.
Collapse
Affiliation(s)
- Yufei Hou
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| | - Lu Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
- Instrument Analysis Center, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710048, China
| | - Xin Wang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| | - Shanshan Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| | - Shaojing Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China
- College of Pharmacy, Xi’an Medical University, 1 Xinwang Road, Xi’an 710021, China
| | - Jiabing Hu
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| | - Jing Gao
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| | - Sen Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| |
Collapse
|
15
|
Shu C, Wu S, Li H, Tian J. Health benefits of anthocyanin-containing foods, beverages, and supplements have unpredictable relation to gastrointestinal microbiota: A systematic review and meta-analysis of random clinical trials. Nutr Res 2023; 116:48-59. [PMID: 37336096 DOI: 10.1016/j.nutres.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/21/2023]
Abstract
Anthocyanins are a type of natural pigment that has numerous health benefits. In recent years, the interaction of anthocyanins with gastrointestinal (GI) microbiota has been presented as a viable paradigm for explaining anthocyanin activities. The current study performed a systematic review and meta-analysis to determine the potential modulation of GI microbiota by anthocyanins in human health improvement. Clinical trials were retrieved from PubMed, Cochrane, Web of Knowledge, China Biology Medicine, China National Knowledge Infrastructure, and ClinicalTrials.gov with no language restrictions. Eight clinical trials (252 participants) were selected from the 1121 identified studies and the relative phylum abundance extracted from the trials was analyzed using a random-effects model. Based on the analysis, anthocyanins had no effect on the relative abundance of Firmicutes (standard mean difference [SMD]: -0.46 [-1.25 to 0.34], P = .26), Proteobacteria (SMD, -0.32 [-0.73 to 0.09], P = .13), nor Actinobacteria (SMD, -0.19 [-0.50 to 0.12], P = 0.24), but influenced the abundance of Bacteroidetes (SMD, 0.84 [0.17 to 1.52], P = .01) when compared with placebo/control. No significant influence on the relative abundance was detected when the data were analyzed following the "posttreatment vs. pretreatment" strategy. Our preliminary analysis revealed that the effects of anthocyanins on human GI microbiota vary between studies and individuals, and at the current stage, the clinical trials regarding the effects of anthocyanin interventions on human GI microbiota are lacking. More trials with larger sample sizes are needed to promote the clinical application of anthocyanins.
Collapse
Affiliation(s)
- Chi Shu
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866.
| | - Siyu Wu
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| | - Haikun Li
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| |
Collapse
|
16
|
Narayanan Z, Glick BR. Biotechnologically Engineered Plants. BIOLOGY 2023; 12:biology12040601. [PMID: 37106801 PMCID: PMC10135915 DOI: 10.3390/biology12040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
The development of recombinant DNA technology during the past thirty years has enabled scientists to isolate, characterize, and manipulate a myriad of different animal, bacterial, and plant genes. This has, in turn, led to the commercialization of hundreds of useful products that have significantly improved human health and well-being. Commercially, these products have been mostly produced in bacterial, fungal, or animal cells grown in culture. More recently, scientists have begun to develop a wide range of transgenic plants that produce numerous useful compounds. The perceived advantage of producing foreign compounds in plants is that compared to other methods of producing these compounds, plants seemingly provide a much less expensive means of production. A few plant-produced compounds are already commercially available; however, many more are in the production pipeline.
Collapse
Affiliation(s)
- Zareen Narayanan
- Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA 98011, USA
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
17
|
Effect of anthocyanins on gut health markers, Firmicutes-Bacteroidetes ratio and short-chain fatty acids: a systematic review via meta-analysis. Sci Rep 2023; 13:1729. [PMID: 36720989 PMCID: PMC9889808 DOI: 10.1038/s41598-023-28764-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/24/2023] [Indexed: 02/02/2023] Open
Abstract
Researchers discovered that diets rich in anthocyanin-rich fruits and vegetables significantly impacted gut flora. To conclude, large-scale randomized controlled clinical trials are challenging to conduct; therefore, merging data from multiple small studies may aid. A systematic review collects and analyses all research on a particular subject and design. This comprehensive review and meta-analysis examined the influence of dietary anthocyanins on Firmicutes/Bacteroide (Fir/Bac) and short-chain fatty acids (SCFAs) content. The current meta-analysis followed the guidelines of PRISMA-the preferred reporting items for systematic reviews and meta-analyses. Diets high in anthocyanins substantially reduced the Fir/Bac ratio in the assessed trials. Among three SCFAs, the highest impact was observed on acetic acid, followed by propionic acid, and then butanoic acid. The meta-analysis results also obtained sufficient heterogeneity, as indicated by I2 values. There is strong evidence that anthocyanin supplementation improves rodent gut health biomarkers (Fir/Bac and SCFAs), reducing obesity-induced gut dysbiosis, as revealed in this systematic review/meta-analysis. Anthocyanin intervention duration and dosage significantly influenced the Fir/Bac ratio and SCFA. Anthocyanin-rich diets were more effective when consumed over an extended period and at a high dosage.
Collapse
|
18
|
Chen K, Kortesniemi MK, Linderborg KM, Yang B. Anthocyanins as Promising Molecules Affecting Energy Homeostasis, Inflammation, and Gut Microbiota in Type 2 Diabetes with Special Reference to Impact of Acylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1002-1017. [PMID: 36515085 PMCID: PMC9853865 DOI: 10.1021/acs.jafc.2c05879] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Anthocyanins, the red-orange to blue-violet colorants present in fruits, vegetables, and tubers, have antidiabetic properties expressed via modulating energy metabolism, inflammation, and gut microbiota. Acylation of the glycosyl moieties of anthocyanins alters the physicochemical properties of anthocyanins and improves their stability. Thus, acylated anthocyanins with probiotic-like property and lower bioavailability are likely to have different biological effects from nonacylated anthocyanins on diabetes. This work highlights recent findings on the antidiabetic effects of acylated anthocyanins from the perspectives of energy metabolism, inflammation, and gut microbiota compared to the nonacylated anthocyanins and particularly emphasizes the cellular and molecular mechanisms associated with the beneficial effects of these bioactive molecules, providing a new perspective to explore the different biological effects induced by structurally different anthocyanins. Acylated anthocyanins may have greater modulating effects on energy metabolism, inflammation, and gut microbiota in type 2 diabetes compared to nonacylated anthocyanins.
Collapse
|
19
|
Bertram HC. NMR foodomics in the assessment of diet and effects beyond nutrients. Curr Opin Clin Nutr Metab Care 2023:00075197-990000000-00051. [PMID: 36942870 DOI: 10.1097/mco.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW This review provides an overview of most recent research studies employing nuclear magnetic resonance (NMR)-based metabolomics in the assessment of effects of diet and food ingestion. RECENT FINDINGS NMR metabolomics is a useful tool in the elucidation of specific diets, for example, the Mediterranean diet, the New Nordic diet types, and also for comparing vegan, vegetarian and omnivore diets where specific diet-linked metabolite perturbations have been identified. Another core area where NMR metabolomics is employed involves research focused on examining specific food components or ingredients, including dietary fibers and other functional components. In several cases, NMR metabolomics has aided to document how specific food components exert effects on the metabolic activity of the gut microbiota. Research has also demonstrated the potential use of NMR metabolomics in assessing diet quality and interactions between specific food components such as meat and diet quality. The implications of these findings are important as they address that background diet can be decisive for if food items turn out to exert either harmful or health-promoting effects. SUMMARY NMR metabolomics can provide important mechanistic insight and aid to biomarker discovery with implications for compliance and food registration purposes.
Collapse
|
20
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
21
|
Chen K, Wei X, Zhang J, Kortesniemi M, Zhang Y, Yang B. Effect of Acylated and Nonacylated Anthocyanins on Urine Metabolic Profile during the Development of Type 2 Diabetes in Zucker Diabetic Fatty Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15143-15156. [PMID: 36410712 PMCID: PMC9732871 DOI: 10.1021/acs.jafc.2c06802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The effect of nonacylated and acylated anthocyanins on urinary metabolites in diabetic rats was investigated. Nonacylated anthocyanins extract from bilberries (NAAB) or acylated anthocyanins extract from purple potatoes (AAPP) was given to Zucker diabetic fatty (ZDF) rats for 8 weeks at daily doses of 25 and 50 mg/kg body weight. 1H NMR metabolomics was applied to study alterations in urinary metabolites from three time points (weeks 1, 4, and 8). Both types of anthocyanins modulated the metabolites associated with the tricarboxylic acid cycle, gut microbiota metabolism, and renal function at weeks 1 and 4, such as 2-oxoglutarate, fumarate, alanine, trigonelline, and hippurate. In addition, only a high dose of AAPP decreased monosaccharides, formate, lactate, and glucose levels at week 4, suggesting improvement in energy production in mitochondria, glucose homeostasis, and oxidative stress. This study suggested different impacts of AAPP and NAAB on the metabolic profile of urine in diabetes.
Collapse
Affiliation(s)
- Kang Chen
- Food
Sciences, Department of Life Technologies, University of Turku, FI-20014 Turu, Finland
| | - Xuetao Wei
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Jian Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Maaria Kortesniemi
- Food
Sciences, Department of Life Technologies, University of Turku, FI-20014 Turu, Finland
| | - Yumei Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Baoru Yang
- Food
Sciences, Department of Life Technologies, University of Turku, FI-20014 Turu, Finland
| |
Collapse
|
22
|
Huang L, Lu X, Zhang H, Zheng B, Zhang Y, Liang P. Effect of gut microbiota and metabolites in normal rats treated with large yellow croaker (Larimichthys crocea) roe phospholipids. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Liu Y, Lin J, Cheng T, Liu Y, Han F. Methylation, Hydroxylation, Glycosylation and Acylation Affect the Transport of Wine Anthocyanins in Caco-2 Cells. Foods 2022; 11:foods11233793. [PMID: 36496602 PMCID: PMC9740975 DOI: 10.3390/foods11233793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Anthocyanins are substances with multiple physiological activities widely present in red wine, but the influence of structure (methylation, hydroxylation, acylation, glycosylation) on the transport remains ill-defined. In the present study, Caco-2 monolayers were used as an in vitro model of the absorptive intestinal epithelium to transport different types of anthocyanin samples. Results showed that both methylation and acetylation promote the level of transport. Monoglycoside standard exhibited higher transport amount and rate compared to diglycoside standard while the transport level of the monoglycoside mixture was unexpectedly lower than that of the diglycoside mixture. Caco-2 monolayers appeared to be more capable of transporting the single standard than the mixed standard. Meanwhile, the transport of anthocyanins in Caco-2 cell model showed time- and concentration-dependent trends. Anthocyanin treatment had a greater effect on sodium-dependent glucose transporter 1 (SGLT1) mRNA expression than glucose transporter 2 (GLUT2), and significantly down-regulated the protein expression of SGLT1. Although the low bioavailability of anthocyanins requires much more research, further evidence of the role of structure is provided.
Collapse
Affiliation(s)
- Yang Liu
- College of Enology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jiali Lin
- College of Enology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tiantian Cheng
- College of Enology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yangjie Liu
- College of Enology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling, Xianyang 712100, China
- Shanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Xianyang 712100, China
- Heyang Experimental Demonstration Station, Northwest A&F University, Weinan 715300, China
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yongning, Yinchuan 750104, China
- Correspondence:
| |
Collapse
|
24
|
Damián-Medina K, Milenkovic D, Salinas-Moreno Y, Corral-Jara KF, Figueroa-Yáñez L, Marino-Marmolejo E, Lugo-Cervantes E. Anthocyanin-rich extract from black beans exerts anti-diabetic effects in rats through a multi-genomic mode of action in adipose tissue. Front Nutr 2022; 9. [DOI: https:/doi.org/10.3389/fnut.2022.1019259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Black beans (BB) are an important source of a range of plant bioactive compounds including polyphenols, particularly anthocyanins. Several studies support that consumption of BB is associated with health benefits, including prevention of type 2 diabetes mellitus (T2DM). However, molecular mechanisms underlying the potential health properties of BB on adipose tissue (AT) are still largely unknown. The purpose of this study was to investigate multi-genomic effects of BB intake and identify regulatory networks potentially mediating T2DM on AT. Male Wistar diabetic rats consumed an anthocyanin-rich black bean extract for 5 weeks. Global gene expression from AT, protein coding and non-coding RNA profiles were determined using RNAseq. Biological function analyses were performed using a variety of bioinformatic tools. The evaluation of global gene expression profiles exhibited significant change following BB consumption with 406 significantly differentially expressed genes, 33 miRNA and 39 lncRNA and 3 snRNA. Functional analyses indicated that these genes play an important role in regulation of PI3K signaling, NIN/NF-kB signaling, insulin secretion, and endoplasmic reticulum (ER) organization. Interestingly, transcription factors such as GATA2, or POU2AF1 demonstrated to modulate their activity by BB extract by direct interaction with polyphenol metabolites, or by interactions with cell signaling proteins, like PKB, AKT or PI3K, that could control transcription factor activity and as a result impact on adipogenesis regulation. Therefore, the constant consumption of an anthocyanin-rich black bean extract may have anti-diabetic protective effects by modulating gene expression, resulting in a promising alternative for T2DM patients.
Collapse
|
25
|
Damián-Medina K, Milenkovic D, Salinas-Moreno Y, Corral-Jara KF, Figueroa-Yáñez L, Marino-Marmolejo E, Lugo-Cervantes E. Anthocyanin-rich extract from black beans exerts anti-diabetic effects in rats through a multi-genomic mode of action in adipose tissue. Front Nutr 2022; 9:1019259. [PMID: 36451736 PMCID: PMC9702351 DOI: 10.3389/fnut.2022.1019259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2023] Open
Abstract
Black beans (BB) are an important source of a range of plant bioactive compounds including polyphenols, particularly anthocyanins. Several studies support that consumption of BB is associated with health benefits, including prevention of type 2 diabetes mellitus (T2DM). However, molecular mechanisms underlying the potential health properties of BB on adipose tissue (AT) are still largely unknown. The purpose of this study was to investigate multi-genomic effects of BB intake and identify regulatory networks potentially mediating T2DM on AT. Male Wistar diabetic rats consumed an anthocyanin-rich black bean extract for 5 weeks. Global gene expression from AT, protein coding and non-coding RNA profiles were determined using RNAseq. Biological function analyses were performed using a variety of bioinformatic tools. The evaluation of global gene expression profiles exhibited significant change following BB consumption with 406 significantly differentially expressed genes, 33 miRNA and 39 lncRNA and 3 snRNA. Functional analyses indicated that these genes play an important role in regulation of PI3K signaling, NIN/NF-kB signaling, insulin secretion, and endoplasmic reticulum (ER) organization. Interestingly, transcription factors such as GATA2, or POU2AF1 demonstrated to modulate their activity by BB extract by direct interaction with polyphenol metabolites, or by interactions with cell signaling proteins, like PKB, AKT or PI3K, that could control transcription factor activity and as a result impact on adipogenesis regulation. Therefore, the constant consumption of an anthocyanin-rich black bean extract may have anti-diabetic protective effects by modulating gene expression, resulting in a promising alternative for T2DM patients.
Collapse
Affiliation(s)
- Karla Damián-Medina
- Food Technology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Yolanda Salinas-Moreno
- National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Guadalajara, Jalisco, Mexico
| | | | - Luis Figueroa-Yáñez
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Erika Marino-Marmolejo
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Eugenia Lugo-Cervantes
- Food Technology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|
26
|
Wang P, Liu J, Zhuang Y, Fei P. Acylating blueberry anthocyanins with fatty acids: Improvement of their lipid solubility and antioxidant activities. Food Chem X 2022; 15:100420. [PMID: 36211770 PMCID: PMC9532753 DOI: 10.1016/j.fochx.2022.100420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
|
27
|
Dietary Supplementation with Sea Buckthorn Berry Puree Alters Plasma Metabolomic Profile and Gut Microbiota Composition in Hypercholesterolemia Population. Foods 2022; 11:foods11162481. [PMID: 36010480 PMCID: PMC9407212 DOI: 10.3390/foods11162481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sea buckthorn berries have been reported to have beneficial effects on plasma lipid profile and cardiovascular health. This study aimed to investigate the impact of intervention with sea buckthorn berry puree on plasma metabolomics profile and gut microbiota in hypercholesterolemic subjects. A total of 56 subjects with hypercholesterolemia consumed 90 g of sea buckthorn berry puree daily for 90 days, and plasma metabolomic profile was studied at 0 (baseline), 45, and 90 days of intervention by using proton nuclear magnetic resonance spectroscopy (1H NMR). Gut microbiota composition was analyzed at the baseline and after 90 days of supplementation by using high-throughput sequencing. The plasma metabolic profile was significantly altered after 45 days of intervention as compared to the baseline (day 0). A clear trend of returning to the baseline metabolomic profile was observed in plasma when the intervention extended from 45 days to 90 days. Despite this, the levels of several key plasma metabolites such as glucose, lactate, and creatine were lowered at day 90 compared to the baseline levels, suggesting an improved energy metabolism in those patients. In addition, intervention with sea buckthorn puree enriched butyrate-producing bacteria and other gut microbes linked to lipid metabolisms such as Prevotella and Faecalibacterium while depleting Parasutterella associated with increased risks of cardiovascular disease. These findings indicate that sea buckthorn berries have potential in modulating energy metabolism and the gut microbiota composition in hypercholesterolemic patients.
Collapse
|
28
|
He L, Chen R, Zhang B, Zhang S, Khan BA, Zhu D, Wu Z, Xiao C, Chen B, Chen F, Hou K. Fecal microbiota transplantation treatment of autoimmune-mediated type 1 diabetes mellitus. Front Immunol 2022; 13:930872. [PMID: 36032108 PMCID: PMC9414079 DOI: 10.3389/fimmu.2022.930872] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Type 1 diabetes mellitus (T1DM) is an autoimmune-mediated disease characterized by a reduced or absolute lack of insulin secretion and often associated with a range of vascular and neurological complications for which there is a lack of effective treatment other than lifestyle interventions and pharmacological treatments such as insulin injections. Studies have shown that the gut microbiota is involved in mediating the onset and development of many fecal and extrafecal diseases, including autoimmune T1DM. In recent years, many cases of gut microbiota transplantation for diseases of the bowel and beyond have been reported worldwide, and this approach has been shown to be safe and effective. Here, we conducted an experimental treatment study in two adolescent patients diagnosed with autoimmune T1DM for one year. Patients received one to three rounds of normal fecal microbiota transplants (FMT) and were followed for up to 30 weeks. Clinical outcomes were measured, including biochemical indices, medication regimen, and dosage adjustment. Fecal microbiota metagenomic sequencing after transplantation provides a reference for more reasonable and effective microbiota transplantation protocols to treat autoimmune T1DM. Our results suggest that FMT is an effective treatment for autoimmune T1DM. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn, identifier ChiCTR2100045789.
Collapse
Affiliation(s)
- Lina He
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Rongping Chen
- School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bangzhou Zhang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Basic Medical Science, Central South University, Changsha, China
| | - Shuo Zhang
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Barkat Ali Khan
- Drug Delivery and Cosmetics Lab, Good Clinical Practice (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
| | - Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chuanxing Xiao
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Basic Medical Science, Central South University, Changsha, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Baolong Chen
- Center for Research and Development, Xiamen Treatgut Biotechnology Co. Ltd., Xiamen, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu People’s Hospital, Shantou, China
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
29
|
The Effect of Polyphenol Extract from Rosa Roxburghii Fruit on Plasma Metabolome and Gut Microbiota in Type 2 Diabetic Mice. Foods 2022; 11:foods11121747. [PMID: 35741945 PMCID: PMC9222671 DOI: 10.3390/foods11121747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Rosa roxburghii fruit is an underutilized functional food abundant in polyphenols. Polyphenols have been proved to have antidiabetic effects. This study investigates the effects of Rosa roxburghii fruit polyphenols extract (RPE) on plasma metabolites and gut microbiota composition in streptozotocin (STZ)- and high-fat diet- induced type 2 diabetes using metabolomics and 16S rRNA gene sequencing. The induced diabetic mice were fed with 400 mg/kg body weight RPE for 8 weeks. RPE demonstrated hypoglycemic, hypolipidemic, and anti-inflammatory effects. Colonic oxidative stress biomarkers were also lowered by RPE. Besides, RPE decreased plasma ceramides and tyrosine levels and increased carnitine and phosphatidylinositols levels, indicating improved insulin resistance, lipid metabolism, and immune response. Furthermore, RPE decreased abundances of Lachnospiraceae and Rikenellaceae and increased abundances of Erysipelotrichaceae and Faecalibaculum. Metabolic function prediction of the gut microbiota by PICRUSt demonstrated that RPE downregulated the phosphotransferase system. Taken together, these findings demonstrated that RPE has the potential to prevent type 2 diabetes by regulating the plasma metabolites and gut microbes.
Collapse
|
30
|
Hao J, Gao Y, Xue J, Yang Y, Yin J, Wu T, Zhang M. Phytochemicals, Pharmacological Effects and Molecular Mechanisms of Mulberry. Foods 2022; 11:1170. [PMID: 35454757 PMCID: PMC9028580 DOI: 10.3390/foods11081170] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
There are numerous varieties of mulberry, and each has high medicinal value and is regarded as a promising source of traditional medicines and functional foods. Nevertheless, the nutrients and uses of mulberry differ from species (Morus alba L., Morus nigra L. and Morus rubra L.). Phenolic compounds are prominent among the biologically active ingredients in mulberry, especially flavonoids, anthocyanins and phenolic acids. Epidemiologic studies suggest that mulberry contains a rich, effective chemical composition and a wide range of biological activity, such as antioxidant, anti-inflammatory, anti-tumor and so on. However, compared with other berries, there has been a lack of systematic research on mulberry, and this hinders its further expansion as a functional fruit. The main purpose of this review is to provide the latest data regarding the effective chemical constituents and pharmacological effects of mulberry to support its further therapeutic potential and health functions.
Collapse
Affiliation(s)
- Junyu Hao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yufang Gao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Jiabao Xue
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yunyun Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|