1
|
Yu YH, Wu LB, Li LQ, Jin MY, Liu X, Yu X, Liu F, Li Y, Li L, Yan JK. Effect of pectic polysaccharides from fresh passion fruit (Passiflora edulis f. flavicarpa L.) peel on physicochemical, texture and sensory properties of low-fat yoghurt. Food Chem 2025; 479:143801. [PMID: 40073563 DOI: 10.1016/j.foodchem.2025.143801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
This study explored the effects of pectic polysaccharide (PFP-T) obtained from passion fruit peel by three-phase partitioning on physicochemical, textural and sensory properties of low-fat yoghurt, compared with citrus pectin (CP). The results indicate that addition of PFP-T and CP both improved the fermentation rate, water holding capacity, texture, and rheological properties of low-fat yoghurt. Especially, 0.025 % PFP-T significantly increased the amount of lactic acid bacteria, titratable acidity, particle size and absolute value of the Zeta-potential in low-fat yoghurt comparable to 0.05 % CP, and ameliorated its flavor profiles and volatile compound compositions. These improvements may be the fact that PFP-T formed complexes with casein through electrostatic interactions, producing a more stable protein gel structure, resulting in a more stable over 21-d storage period. Therefore, our results suggest that PFP-T has the potential to substitute fat to improve the overall quality of low-fat yoghurt to meet consumer demand for low-fat dairy.
Collapse
Affiliation(s)
- Ya-Hui Yu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Luo-Bang Wu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Long-Qing Li
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Ming-Yu Jin
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaozhen Liu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xiangying Yu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Fengyuan Liu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yuting Li
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Lin Li
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jing-Kun Yan
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
2
|
Zhao C, Xie L, Shen J, He H, Zhang T, Hao L, Sun C, Zhang X, Chen M, Liu F, Li Z, Wang N. Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway. Int J Biol Macromol 2025; 300:140287. [PMID: 39863204 DOI: 10.1016/j.ijbiomac.2025.140287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L. acidophilus YL01 was firstly isolated from Chinese traditional yogurt, demonstrating inhibitory activities on amylase and glucosidase that are comparable to those of L. rhamnosus LGG. Besides, the oral administration of L. acidophilus YL01 and its EPS significantly reduced body weight in high-fat mice (p < 0.05), as well as fat accumulation in liver and adipocytes. Moreover, they not only reduced fasting blood glucose and glucose/insulin resistance, but also improved dyslipidemia, liver function and inflammation. Further high-performance liquid chromatography analysis and Fourier transform infrared spectroscopy indicated that EPS is an acidic polysaccharide, characterized by a molecular weight of 952 kDa and predominantly composed of glucose. Additionally, the mechanism investigation revealed that the L. acidophilus YL01 and EPS demonstrated limited efficacy in restoring the composition of gut microbiota, but rather exerted an influence on the abundance of specific bacterial groups. The enrichment of the bacterial groups resulted in the increase of acetic acid and butyric acid, which further mediates the gut-liver crosstalk in regulating lipid metabolism by the activation of AMPK/ACC pathway.
Collapse
Affiliation(s)
- Chongjie Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Linlin Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Jing Shen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, The Academy of Animal and Veterinary Science, Qinghai University, Xining 810000, China
| | - Cai Sun
- Qinghai Pure Yak Biotechnology Co., LTD., Xining 810000, China
| | - Xiaoyuan Zhang
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China
| | - Mian Chen
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China.
| | - Zhongyuan Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China.
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China.
| |
Collapse
|
3
|
Jia J, Guo J, Yan C, Gu Y, Xia X. Oyster powder supplementation enhances immune function in mice partly through modulating the gut microbiota and arginine metabolism. Food Funct 2025; 16:1254-1266. [PMID: 39868593 DOI: 10.1039/d4fo06068g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Oysters are well-known for their health benefits such as immuno-modulatory functions. The intestinal microbiome serves as a key mediator between diet and immune regulation. This study aimed to investigate whether oyster consumption could alleviate cyclophosphamide (Cy)-induced immunosuppression by promoting intestinal homeostasis. In mice treated with Cy, a significant decrease in immune cells and cytokines was observed. In contrast, mice supplemented with oyster powder demonstrated elevated numbers of immune cells in the spleen and small intestine, as well as enhanced serum production of IL-1β, IL-2, TNF-α, and IFN-γ. Furthermore, oyster consumption improved the composition of the gut microbiota by promoting beneficial bacteria and inhibiting harmful ones. Metabolomics analysis revealed that oyster powder treatment significantly enhanced the arginine biosynthesis pathway, and further analysis found that the consumption of oysters led to increased arginine levels. Correlation analysis showed a significant positive correlation between L-arginine and immune-related markers. Collectively, these findings suggest that oyster consumption may enhance immunity by modulating the gut microbiota and boosting arginine biosynthesis pathways. Dietary oyster consumption could be an effective strategy to support immune health.
Collapse
Affiliation(s)
- Jinhui Jia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China
| | - Jian Guo
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China
| | - Chunhong Yan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China
| | - Yunqi Gu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China
| |
Collapse
|
4
|
Liu S, Xiang Y, Xu C, Sun J, Pi Y, Shao JH. Systematic preparation of animal-derived glycosaminoglycans: Research progress and industrial significance. Food Chem 2025; 464:141565. [PMID: 39406132 DOI: 10.1016/j.foodchem.2024.141565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 11/21/2024]
Abstract
Impurities and isomerized polysaccharides affect the analytical accuracy of glycosaminoglycans (GAGs) structure and bioactivity, hindering their application in food and medicine. Preparing homogeneous GAGs components is essential for exploring structure-potency relationships and facilitating industrial production. This review primarily summarizes research on animal-derived GAGs preparation over the past five years, standardizing the preparation process into four operational units: pre-extraction treatment, extraction of crude polysaccharides, refinement of crude polysaccharides, and separation of GAGs components. Analyzed for scientific research and industrial production, the principles and application conditions of traditional means and novel techniques to preparing GAGs are comprehensively emphasized, exploring the effects of different treatments on biological activity and structure. Current challenges and development trends are illuminated. This review aims to lay a foundation for the in-depth study of GAGs structure, bioactivity, and function, providing theoretical references for the comprehensive utilization of animal raw materials and the development of animal polysaccharide deep-processing industries.
Collapse
Affiliation(s)
- Sinong Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yanpeng Xiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chang Xu
- Foreign Languages Teaching Department, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yuzhen Pi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
5
|
Liu Z, Wang M, Li J, Liang Y, Jiang K, Hu Y, Gong W, Guo X, Guo Q, Zhu B. Hizikia fusiforme polysaccharides synergized with fecal microbiota transplantation to alleviate gut microbiota dysbiosis and intestinal inflammation. Int J Biol Macromol 2024; 283:137851. [PMID: 39566790 DOI: 10.1016/j.ijbiomac.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ulcerative colitis (UC) is closely associated with disruptions in gut microbiota. Restoring balance to gut microbiota and reducing intestinal inflammation has become a promising therapeutic approach for UC. However, challenges remain, including limited efficacy in some treatments. This study explores the synergistic effects and underlying mechanisms of Hizikia fusiforme polysaccharides (HFP) combined with fecal microbiota transplantation (FMT) to improve UC symptoms. Seven-week-old C57/BL6J mice were induced with UC using dextran sodium sulfate (DSS). Supplementation with either FMT alone or in combination with HFP effectively alleviated UC symptoms, reduced colonic inflammation, and corrected gut microbiota imbalance. Notably, HFP combined with FMT yielded showed better effects in ameliorating DSS-induced UC in mice than did FMT alone. Enrichment of probiotics, such as Bifidobacterium, and upregulation of beneficial metabolites, such as betaine, were identified as potential mechanisms for the enhanced effects of HFP combined with FMT against DSS-induced UC. These findings suggest that the combination of Hizikia fusiforme polysaccharides with FMT has potential applications in rectifying dysbiosis and ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuxuan Liang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Kaiyu Jiang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Qingbin Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
6
|
Zhang H, Yang X, Chen J, Jiang Q, Yao S, Chen L, Xiang X. Investigation of the mechanism by which Tegillarca granosa polysaccharide regulates non-alcoholic fatty liver disease in mice by modulating Lactobacillus Johnsonii. Int J Biol Macromol 2024; 282:137259. [PMID: 39522897 DOI: 10.1016/j.ijbiomac.2024.137259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a prevalent chronic liver disease, is marked by excessive lipid deposition in the liver without alcohol abuse. Scapharca subcrenatum, a major Chinese farmed bivalve, yields S. subcrenatum polysaccharide (TGP), an active substance with known biological activity. Previous studies revealed TGP's significant regulatory effect on a high-fat diet (HFD)-induced NAFLD in mice. However, the precise mechanisms, particularly involving gut microbiota, remain unclear. In the current study, an antibiotic-treated mouse model was established to determine the mechanistic role of the gut microbiota in the observed anti-obesity effects of TGP. In addition, 16S rRNA genomic and metagenome-derived taxonomic analyses were performed to assess the gut microbial populations. The results showed that TGP selectively enhanced the number of the eosinophilic bacterium Lactobacillus johnsonii, which was reduced in HFD mice. Of note, the oral administration of L. johnsonii formulations to HFD mice alleviated NAFLD, and this was related to regulating lipid metabolism and the accumulation of lipids in the liver. Therefore, the current study uncovered a potential pathway for developing NAFLD treatment strategies based on the interaction between TGP and the gut microbiota.
Collapse
Affiliation(s)
- Hanwen Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xingwen Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jinyu Chen
- Eco-Industrial Innovation Institute ZJUT, Quzhou 324400, Zhejiang, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Shiwei Yao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Zhang Z, Cui Y, Zhang X, Hu X, Li S, Li T. Gut microbiota combined with serum metabolites to reveal the effect of Morchella esculenta polysaccharides on lipid metabolism disordered in high-fat diet mice. Int J Biol Macromol 2024; 281:136380. [PMID: 39389515 DOI: 10.1016/j.ijbiomac.2024.136380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The ameliorating effects and mechanisms of Morchella esculenta polysaccharides (MEP-1) on lipid metabolism were investigated in high-fat diet (HFD) mice. The results showed that MEP-1 intervention significantly reduced serum TC, TG, LDL-C, and inflammatory factors (TNF-α, IL-1β and IL-6) in HFD mice in a dose-dependent manner, and high-dose (400 mg/kg/d) exhibited the most significant reductive effects. In addition, MEP-1 significantly recovered the gut microbiota disorders caused by HFD, especially decreasing the ratio of Firmicutes and Bacteroidetes (F/B) and increasing the dominant bacterial of Muribaculaceae_genus, Bacteroides, Alistipes and Enterococcus. Moreover, MEP-1 promoted the production of SCFAs and increased the expression levels of Occludin, Claudin and Muc2, also regulated lipid metabolism disorder and inflammation by inhibiting TLR4/MyD88/NF-κB via the gut-liver axis. In addition, serum metabolomic analysis revealed that l-phenylalanine, l-arginine and acetylcholine were significantly upregulated with MEP-1 intervention, and were negatively correlated with blood lipid level, in which l-arginine could activate NO/PPARα/CPT1A pathway to ameliorate lipid metabolism disorders. Such results demonstrated that gut microbiota, amino acid metabolic and insulin secretion pathways might be the important factors that mediated the regulation of MEP-1 in lipid metabolism. The results also provided new evidence and strategies for the application of MEP-1 as functional foods.
Collapse
Affiliation(s)
- Zuoyi Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Yanmin Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiushan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiaopei Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| |
Collapse
|
8
|
Chen W, Ma X, Jin W, Cheng H, Xu G, Wen H, Xu P. Shellfish polysaccharides: A comprehensive review of extraction, purification, structural characterization, and beneficial health effects. Int J Biol Macromol 2024; 279:135190. [PMID: 39216565 DOI: 10.1016/j.ijbiomac.2024.135190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global food systems are currently facing great challenges, such as food sources, food safety, and environmental crises. Alternative nutritional resources have been proposed as part of the solution to meeting future global food demand. In the natural resources, shellfish are the major component of global aquatic animals. Although most studies focus on the allergy, toxin, and contamination of shellfish, it is also a delicious food to the human diet rich in proteins, polysaccharides, minerals, and omega-3. Among the functional ingredients, shellfish polysaccharides possess nutritional and medicinal values that arouse the great interest of researchers. The selection of the extraction approach and the experimental condition are the key factors that influence the extraction efficiency of shellfish polysaccharides. Importantly, the purification of crude polysaccharides comprises the enrichment of shellfish polysaccharides and isolation of fractions, also resulting in various structural characteristics and physicochemical properties. Chemical modification is also an efficient method to further improve the biological activities of shellfish polysaccharides. This review summarizes the extraction, purification, structural characterization, and chemical modification methods for shellfish polysaccharides. Additionally, the beneficial health effects of shellfish polysaccharides are highlighted, with an emphasis on their potential mechanism. Finally, current challenges and perspectives on shellfish polysaccharides are also spotlighted.
Collapse
Affiliation(s)
- Wanwen Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
9
|
Sun Y, Men Q, Ren X, Yan C, Song S, Ai C. Low molecular fucoidan alleviated alcohol-induced liver injury in BALB/c mice by regulating the gut microbiota-bile acid-liver axis. Int J Biol Macromol 2024; 282:136930. [PMID: 39490864 DOI: 10.1016/j.ijbiomac.2024.136930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Fucoidan has attracted significant attention owing to its remarkable bioactivities, but the effect of molecular weight (Mw) on its activities in the context of alcoholic liver diseases (ALD) is poorly understood. In this study, low Mw fucoidan (OSLF) was prepared, and its protective effect against alcohol-induced liver injury was assessed in a mouse model. OSLF increased weight gain and colon length, improved lipid disorders, and reduced oxidative stress in mice exposed to alcohol, alleviating liver injury. OSLF alleviated inflammation in the liver by inhibiting alcohol-activated NF-κB and MAPK pathways. The underlying mechanism can be attributed to the improvement of alcohol-induced dysbiosis of the gut microbiota, including a decrease in Proteobacteria and Bacteroidetes and an increase in microbiota diversity, as well as the abundances of Parabacteroides, Bacteroides, and Faecalibaculum. Metabolomics results showed that OSLF improved alcohol-induced abnormalities of microbiota metabolites, primarily involving amino acid metabolism and short chain fatty acids production. In addition, OSLF ameliorated bile acid metabolism in the gut and regulated the expression of bile acid-associated genes in the liver, affecting bile acid synthesis, regulation, and transport. It suggested that OSLF had the potential for the management of ALD by regulating the gut microbiota-bile acid-liver axis.
Collapse
Affiliation(s)
- Yiyun Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Qiuyue Men
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiaomeng Ren
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunhong Yan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
10
|
Yan T, Sun J, Zhang Y, Wen C, Yang J. Enteromorpha prolifera Polysaccharide Alleviates Acute Alcoholic Liver Injury in C57 BL/6 Mice through the Gut-Liver Axis and NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23258-23270. [PMID: 39404145 DOI: 10.1021/acs.jafc.4c05262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Enteromorpha prolifera polysaccharide (EP2) protection against acute alcoholic liver injury (AALI) in mice was investigated. By integration of physiological indicators, gut microbiota, and short-chain fatty acids (SCFAs), the mechanism of EP2 in alleviating AALI was disclosed. The results showed that EP2 significantly ameliorated alcohol-induced abnormal transaminase activities, liver and intestinal systemic inflammation, and intestinal environmental disorders. EP2 significantly reduces liver and serum LPS contents by 1.69-fold and 1.54-fold. Furthermore, inhibition of the NF-κB signaling pathway by EP2 reduced the production of proinflammatory cytokines such as TNF-α (1.83-fold), IL-6 (11.09-fold), and IL-1β (1.99-fold). EP2 restored SCFAs to normal levels by upregulating the abundance of beneficial bacteria (Colidextribacter, Ruminococcus, unclassified_Lachnospiraceae, and Akkermansia). The alleviation of AALI by EP2 occurs through protection of the intestinal mucosal barrier and reduction of LPS permeating in serum. The decrease in LPS inactivates the NF-κB signaling pathway and prevents inflammation. In short, EP2 regulates the gut-liver axis and inflammation, alleviating effects in AALI mice.
Collapse
Affiliation(s)
- Tingting Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghe Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuying Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jingfeng Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
Sang X, Guan X, Tong Y, Wang F, Zhou B, Li Y, Zhao Q. Sulfated Polysaccharides from Sea Cucumber Cooking Liquid Prevents Obesity by Modulating Gut Microbiome, Transcriptome, and Metabolite Profiles in Mice Fed a High-Fat Diet. Foods 2024; 13:2017. [PMID: 38998524 PMCID: PMC11241695 DOI: 10.3390/foods13132017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
We aimed to explore the anti-obesity mechanism from the microbiome, metabolome, and transcriptome viewpoints, focusing on the sulfated polysaccharides found in the cooking liquid of Apostichopus japonicus (CLSPAJ) to explore the potential mediators of the anti-obesity effects in mice fed a high-fat diet (HFD). The mice treated with CLSPAJ showed a decrease in obesity and blood lipid levels. Gut microbiome dysbiosis caused by the HFD was reversed after CLSPAJ supplementation, along with increased levels of indole-3-ethanol, N-2-succinyl-L-glutamic acid 5-semialdehyde, and urocanic acid. These increases were positively related to the increased Akkermansia, Lactobacillus, Roseburia, and Phascolarctobacterium. Transcriptome analysis showed that B cell receptor signaling and cytochrome P450 xenobiotic metabolism were the main contributors to the improvement in obesity. Metabolome-transcriptome analysis revealed that CLSPAJ reversal of obesity was mainly due to amino acid metabolism. These findings suggest that CLSPAJ could be a valuable prebiotic preparation for preventing obesity-related diseases.
Collapse
Affiliation(s)
- Xue Sang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High-Value Utilization, Dalian 116023, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116000, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Guan
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
| | - Yao Tong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
| | - Fuyi Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
| | - Boqian Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
| | - Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High-Value Utilization, Dalian 116023, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High-Value Utilization, Dalian 116023, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116000, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
12
|
Ma Y, Xie H, Xu N, Li M, Wang L, Ge H, Xie Z, Li D, Wang H. Large Yellow Tea Polysaccharide Alleviates HFD-Induced Intestinal Homeostasis Dysbiosis via Modulating Gut Barrier Integrity, Immune Responses, and the Gut Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7230-7243. [PMID: 38494694 DOI: 10.1021/acs.jafc.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Long-term high-fat diet (HFD) will induce dysbiosis and a disturbance of intestinal homeostasis. Large yellow tea polysaccharide (LYP) has been shown to improve obesity-associated metabolic disease via modulation of the M2 polarization. However, the contribution of LYP to intestinal barrier impairment and improvement mechanisms in obesity caused by an HFD are still not clear. In this study, we evaluated the impacts of LYP on the mucosal barrier function and microbiota composition in HFD-feeding mice. Results exhibited that dietary LYP supplement could ameliorate the physical barrier function via maintaining intestinal mucosal integrity and elevating tight-junction protein production, strengthen the chemical barrier function via up-regulating the levels of glucagon-like peptide-1 and increasing mucin-producing goblet cell numbers, and enhance the intestinal immune barrier function though suppressing immune cell subsets and cytokines toward pro-inflammatory phenotypes. Moreover, LYP reshaped the constitution and metabolism of intestinal flora by enriching probiotics that produce short-chain fatty acids. Overall, LYP might be used as a critical regulator of intestinal homeostasis to improve host health by promoting gut barrier integrity, modulating intestinal immune response, and inhibiting bowel inflammation.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Hai Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Minni Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Lan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, China
| |
Collapse
|
13
|
Zhang Q, Zeng R, Tang J, Jiang X, Zhu C. The "crosstalk" between microbiota and metabolomic profile in high-fat-diet-induced obese mice supplemented with Bletilla striata polysaccharides and composite polysaccharides. Int J Biol Macromol 2024; 262:130018. [PMID: 38331057 DOI: 10.1016/j.ijbiomac.2024.130018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The potential prebiotic feature of Bletilla striata polysaccharides (BSP) has been widely accepted, while the beneficial effect of BSP on high-fat-diet-induced obesity is unclear. Moreover, the "crosstalk" between microbiota and metabolomic profile in high-fat-diet-induced obese mice supplemented with BSP still need to be further explored. The present study attempted to illustrate the effect of BSP and/or composite polysaccharides on high-fat-diet-induced obese mice by combining multi-matrix (feces, urine, liver) metabolomics and gut microbiome. The results showed that BSP and/or composite polysaccharides were able to reduce the abnormal weight gain induced by high-fat diet. A total of 175 molecules were characterized by proton nuclear magnetic resonance (1H NMR) in feces, urine and liver, suggesting that multi-matrix metabolomics could provide a comprehensive view of metabolic regulatory mechanism of BSP in high-fat-diet-induced obese mice. Several pathways were altered in response to BSP supplementation, mainly pertaining to amino acid, purine, pyrimidine, ascorbate and aldarate metabolisms. In addition, BSP ameliorated high-fat-diet-induced imbalanced gut microbiome, by lowering the ratio of Firmicutes/Bacteroidetes. Significant correlations were illustrated between particular microbiota's features and specific metabolites. Overall, the anti-obesity effect of BSP could be attributed to the amelioration of the disorders of gut microbiota and to the regulation of the "gut-liver axis" metabolism.
Collapse
Affiliation(s)
- Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiaole Jiang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
14
|
Yan T, Zhang Y, Lu H, Zhao J, Wen C, Song S, Ai C, Yang J. The protective effect of Enteromorpha prolifera polysaccharide on alcoholic liver injury in C57BL/6 mice. Int J Biol Macromol 2024; 261:129908. [PMID: 38320642 DOI: 10.1016/j.ijbiomac.2024.129908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
An alcohol-induced liver injury model was induced in C57BL/6 mice to assess the protective efficacy of Enteromorpha prolifera polysaccharides (EP) against liver damage. Histological alterations in the liver were examined following hematoxylin-eosin (H&E) staining. Biochemical assay kits and ELISA kits were employed to analyze serum and liver biochemical parameters, as well as the activity of antioxidant enzymes and alcohol metabolism-related enzymes. The presence of oxidative stress-related proteins in the liver was detected using western blotting. Liquid chromatography and mass spectrometry were used to profile serum metabolites in mice. The findings demonstrated that EP-H (100 mg/Kg) reduced serum ALT and AST activity by 2.31-fold and 2.32-fold, respectively, when compared to the alcohol-induced liver injury group. H&E staining revealed a significant attenuation of microvesicular steatosis and ballooning pathology in the EP-H group compared to the model group. EP administration was found to enhance alcohol metabolism by regulating metabolite-related enzymes (ADH and ALDH) and decreasing CYP2E1 expression. EP also modulated the Nrf2/HO-1 signaling pathway to bolster hepatic antioxidant capacity. Furthermore, EP restored the levels of lipid metabolites (Glycine, Butanoyl-CoA, and Acetyl-CoA) to normalcy. In summary, EP confers protection to the liver through the regulation of antioxidant activity and lipid metabolites in the murine liver.
Collapse
Affiliation(s)
- Tingting Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuying Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hengyu Lu
- West China School of Pharmacy, Sichuan University, Chengdu 610207, China
| | - Jun Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunqing Ai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jingfeng Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Huang K, Chu G, Yang P, Liu Y, Zhang Y, Guan X, Li S, Song H, Zhang Y. Benefits of Monascus anka solid-state fermentation for quinoa polyphenol bioaccessibility and the anti-obesity effect linked with gut microbiota. Food Funct 2024; 15:2208-2220. [PMID: 38317482 DOI: 10.1039/d3fo04555b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In our previous study, a polyphenol-utilization targeted quinoa product was developed via solid-state fermentation with Monascus anka. In this study, we investigated the polyphenol-related novel functions of the fermented product further. Compared with unfermented quinoa, M. anka fermented quinoa alleviated the trapping effect of the macromolecules, especially in the colonic fermentation stage, resulting in enhanced polyphenol bioaccessibility. Lachnoclostridium, Megasphaera, Megamonas, Dialister, and Phascolarctobacterium might contribute to polyphenol liberation and metabolism in fermented quinoa. Additionally, fermented quinoa polyphenols presented an efficient anti-obesity effect by enhancing hepatic antioxidant enzyme activities, suppressing fatty acid synthesis, accelerating fatty acid oxidation, and improving bile acid synthesis. Moreover, fermented quinoa polyphenol supplementation alleviated gut microbiota disorder induced by a high-fat diet, resulting in a decreased ratio of Firmicutes/Bacteroidota, and increased relative abundances of Lactobacillus and Lachnoclostridium. The obtained results suggested that the principal anti-obesity effect of fermented quinoa polyphenols might act through the AMPK/PPARα/CPT-1 pathway. In conclusion, M. anka solid-state fermentation effectively enhanced the bioaccessibility of quinoa, and the fermented quinoa polyphenols showed considerable anti-obesity effect. Our findings provide new perspectives for the development of dietary polyphenol-based satiety-enhancing functional foods.
Collapse
Affiliation(s)
- Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Guoqiang Chu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Pei Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Yongyong Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| |
Collapse
|
16
|
Qin Y, Xu Y, Yi H, Shi L, Wang X, Wang W, Li F. Unique structural characteristics and biological activities of heparan sulfate isolated from the mantle of the scallop Chlamys farreri. Carbohydr Polym 2024; 324:121431. [PMID: 37985034 DOI: 10.1016/j.carbpol.2023.121431] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 11/22/2023]
Abstract
Marine animals are a huge resource of various glycosaminoglycans (GAGs) with specific structures and functions. A large number of byproducts, such as low-edible mantle, are produced during the processing of Chlamys farreri, which is one of the most cultured scallops in China. In this study, a major GAG component was isolated from the mantle of C. farreri, and its structural characteristics and biological activities were determined in detail. Preliminary analysis by agarose electrophoresis combined with specific enzymatic degradation evaluations showed that this component was heparan sulfate and was named CMHS. Further analysis by HPLC and NMR revealed that CMHS has an average molecular weight of 35.9 kDa and contains a high proportion (80%) of 6-O-sulfated N-acetyl-D-glucosamine/N-sulfated-D-glucosamine (6-O-sulfated GlcNAc/GlcNS) residues and rare 3-O-sulfated β-D-glucuronic acid residues. Bioactivity analysis showed that CMHS has much lower anticoagulant activity than heparin and it can interact with various growth factors with high affinity. Moreover, CMHS binds strongly to the morphogen Wnt 3a to inhibit glypican-3-stimulated Wnt 3a signaling. Thus, the identification of CMHS with unique structural and bioactive features will provide a promising candidate for the development of GAG-type pharmaceutical products and promote the high-value utilization of C. farreri mantle.
Collapse
Affiliation(s)
- Yong Qin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Yingying Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Haixin Yi
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Liran Shi
- CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang 050000, People's Republic of China
| | - Xu Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Wenshuang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China.
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China.
| |
Collapse
|
17
|
Wang L, Wang L, Cao C, Zhao J, Song C, Bao Z, Yan C, Song S. Chitosan and its oligosaccharide accelerate colonic motility and reverse serum metabolites in rats after excessive protein consumption. Int J Biol Macromol 2023; 253:127072. [PMID: 37774814 DOI: 10.1016/j.ijbiomac.2023.127072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
Excessive protein consumption (EPC) could increase the gastrointestinal burden and impair gut motility. The present study was designed to explore the improvement of chitosan (CTS) and chitosan oligosaccharide (COS) on colonic motility and serum metabolites in rats after EPC. The results of in vivo experiments fully proved that CTS and COS could improve gut motility and reverse the serum metabolites in rats as indicated by LC-MS/MS analysis, and the COS group even showed a better effect than the CTS group. Furthermore, short-chain fatty acids (SCFAs), which could promote gut motility, were also increased to alleviate EPC-induced constipation after supplementation with CTS or COS. In addition, CTS and COS could decrease the concentration of ammonia in serum and down-regulate the levels of H2S and indole. In summary, the present study revealed that CTS and COS could produce SCFAs, improve the colonic motility in rats, reverse the levels of valine, adenosine, cysteine, 1-methyladenosine, indole, and uracil, and enhance aminoacyl-tRNA biosynthesis and valine, leucine and isoleucine degradation. The present study provides novel insights into the potential roles of CTS and COS in alleviating the adverse effects of EPC.
Collapse
Affiliation(s)
- Linlin Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Lilong Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Cui Cao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Jun Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chen Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunhong Yan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
18
|
Jia J, Zheng W, Tang S, Song S, Ai C. Scytosiphon lomentaria fucoidan ameliorates DSS-induced colitis in dietary fiber-deficient mice via modulating the gut microbiota and inhibiting the TLR4/NF-κB/MLCK pathway. Int J Biol Macromol 2023; 253:127337. [PMID: 37820918 DOI: 10.1016/j.ijbiomac.2023.127337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The prevalence of ulcerative colitis (UC) poses a serious threat to human health. This study showed that fiber-deficient diet (FD) increased the susceptibility of mice to low dosage of DSS-induced UC, and a UC model was established by feeding mice with DSS and FD to evaluate the effect of Scytosiphon lomentaria fucoidan (SLF) on UC. SLF ameliorated the symptoms of UC, as evidenced by increases in colon length, goblet cells and glycoprotein and reduction in inflammatory cell infiltration and intestinal epithelial injury. SLF alleviated oxidative stress and inhibited colonic inflammation by reducing the levels of lipopolysaccharides and pro-inflammatory cytokines and suppressing the activation of nuclear factor kappa B pathway. SLF protected tight junction integrity by reducing the level of myosin light chain kinase and increasing the levels of claudin, zonula occludens-1 and occludin. SLF improved serum metabolites profile and affected multiple metabolic pathways that are crucial to human health, e.g. butanoate metabolism. The underlying mechanism can be associated with modulation of the gut microbiota and metabolites, including increases in short chain fatty acids and reduction in Proteobacteria, Bacteroides and Romboutsia. It suggests that SLF could be developed as a prebiotic polysaccharide to benefit human health by improving intestinal microecology.
Collapse
Affiliation(s)
- Jinhui Jia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Weiyun Zheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuangru Tang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
19
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
20
|
Tan K, Lu SY, Tan K, Ransangan J, Cai X, Cheong KL. Bioactivity of polysaccharides derived from bivalves. Int J Biol Macromol 2023; 250:126096. [PMID: 37541476 DOI: 10.1016/j.ijbiomac.2023.126096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/09/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Bivalves have high diversity, widely distributed in various aquatic environments, including saltwater, brackish water and freshwater. Bivalves are known to rich in polysaccharides and have wide applications in functional foods, pharmaceuticals, and industrial research. Despite many relevant reports are available, the information is poorly organized. Therefore, in this study, we conducted a comprehensive scientific review on the potential bioactivity of polysaccharides derived from bivalves. In general, the polysaccharides derived from bivalves possess various bioactive properties, including anticancer, antioxidant, anticoagulant and immunomodulatory activities. The bioactivity of these biomolecules highly depends on the bivalve species, extraction methods, purification methods, dosages, etc. The information in this study can provide an overview of the bioactivities of bivalve polysaccharides. This is very useful to be used as a guide for identifying the health benefits of polysaccharides derived from different bivalve species.
Collapse
Affiliation(s)
- Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - Si-Yuan Lu
- Guangdong Province Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Kianann Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Julian Ransangan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Xiaohui Cai
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
21
|
Yan JK, Chen TT, Li LQ, Liu F, Liu X, Li L. The anti-hyperlipidemic effect and underlying mechanisms of barley ( Hordeum vulgare L.) grass polysaccharides in mice induced by a high-fat diet. Food Funct 2023. [PMID: 37449927 DOI: 10.1039/d3fo01451g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hyperlipidemia is a pathological disorder of lipid metabolism that can cause fatty liver, atherosclerosis, acute myocardial infarction, and other diseases, seriously endangering people's health. Polysaccharides have been shown to have lipid-lowering potential. In the current study, the anti-hyperlipidemia effect and potential mechanisms of a polysaccharide (BGP-Z31) obtained from barley grass harvested at the stem elongation stage in high-fat diet (HFD)-treated mice were investigated. Results showed that supplementation with BGP-Z31 (200 and 400 mg kg-1) not only suppressed obesity, organ enlargement, and fat accumulation caused by HFD, but also regulated dyslipidemia, relieved liver function injury, and ameliorated the oxidative stress level. Meanwhile, BGP-Z31 increased the concentrations of acetic acid, propionic acid, butyric acid, and isovaleric acid in HFD-induced mice. Gut microbiota analysis demonstrated that BGP-Z31 had no obvious effect on the gut microbiota diversity in mice treated with HFD, but it positively remodeled the intestinal flora structure by elevating the relative abundances of Bacteroides, Muribaculaceae, and Lachnospiraceae and lowering the Firmicutes/Bacteroides value and the relative abundance of Desulfovibrionaceae. Therefore, our data suggested that BGP-Z31 can be used as a promising nutritional supplement for dietary intervention in hyperlipidemia.
Collapse
Affiliation(s)
- Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China
| | - Ting-Ting Chen
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Long-Qing Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
22
|
You Y, Song H, Wang L, Liu Z, Guo X, Ai C, Song S, Zhu B. Supplement of Caulerpa lentillifera polysaccharide by pre-prandial gavage and free feeding demonstrates differences to prevent obesity and gut microbiota disturbance in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3840-3849. [PMID: 36305093 DOI: 10.1002/jsfa.12298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Caulerpa lentillifera has received extensive attention regarding expansion of its farming and increasing consumption. In our previous study, the structure of C. lentillifera polysaccharide (CLP) was elucidated. However, little information is available about its health effects. In this study, the anti-obesity effect of CLP was investigated by using a high-fat diet-induced obese mice model with two different supplementation methods. RESULTS In vitro simulated digestion results showed that CLP significantly decreased the lipid digestibility and induced the lipid droplets aggregation in the intestinal stage to inhibit the absorption of lipids. As revealed by 16S ribosomal RNA sequencing and non-targeted metabolomics, supplement of CLP by both pre-prandial gavage and free feeding patterns effectively prevented mice obesity via ameliorating intestinal flora disturbance and regulating bile acids circulation metabolism. Of note was that CLP administration had no effect on short-chain fatty acids production, suggesting the anti-obesity effect was uncorrelated with their production. Moreover, pre-prandial administration of CLP had a better anti-obesity effect in lowering body weight and serum lipid levels, but the free feeding resulted in a higher α-diversity of gut microbiota. CONCLUSION The findings of this study indicate that CLP could be a potential anti-obesity nutraceutical and that pre-prandial supplement of CLP may be a better intake method to exhibit its hypolipidemic effect. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying You
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Food science and Engineering, Jilin Agricultural University, Changchun, China
| | - Haoran Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Linlin Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
23
|
Wang M, Sun P, Li Z, Li J, Lv X, Chen S, Zhu X, Chai X, Zhao S. Eucommiae cortex polysaccharides attenuate gut microbiota dysbiosis and neuroinflammation in mice exposed to chronic unpredictable mild stress: Beneficial in ameliorating depressive-like behaviors. J Affect Disord 2023; 334:278-292. [PMID: 37156274 DOI: 10.1016/j.jad.2023.04.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/13/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Chronic stress alters gut microbiota composition, as well as induces inflammatory responses and behavioral deficits. Eucommiae cortex polysaccharides (EPs) have been reported to remodel gut microbiota and ameliorate obesogenic diet-induced systemic low-grade inflammation, but their role in stress-induced behavioral and physiological changes is poorly understood. METHODS Male Institute of Cancer Research (ICR) mice were exposed to chronic unpredictable stress (CUMS) for 4 weeks and then supplemented with EPs at a dose of 400 mg/kg once per day for 2 weeks. Behavioral test-specific antidepressant and anxiolytic effects of EPs were assessed in FST, TST, EPM, and OFT. Microbiota composition and inflammation were detected using 16S ribosomal RNA (rRNA) gene sequencing, quantitative RT-PCR, western blot, and immunofluorescence. RESULTS We found that EPs ameliorated gut dysbiosis caused by CUMS, as evidenced by increasing the abundance of Lactobacillaceae and suppressing the expansion of the Proteobacteria, thereby mitigating intestinal inflammation and barrier derangement. Importantly, EPs reduced the release of bacterial-derived lipopolysaccharides (LPS, endotoxin) and inhibited the microglia-mediated TLR4/NFκB/MAPK signaling pathway, thereby attenuating the pro-inflammatory response in the hippocampus. These contributed to restoring the rhythm of hippocampal neurogenesis and alleviating behavioral abnormalities in CUMS mice. Correlation analysis showed that the perturbed-gut microbiota was strongly correlated with behavioral abnormalities and neuroinflammation. LIMITATIONS This study did not clarify the causal relationship between EPs remodeling the gut microbiota and improved behavior in CUMS mice. CONCLUSIONS EPs exert ameliorative effects on CUMS-induced neuroinflammation and depression-like symptoms, which may be strongly related to their beneficial effects on gut microbial composition.
Collapse
Affiliation(s)
- Mengli Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Penghao Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhuoni Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jing Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
24
|
Tang C, Zhou R, Cao K, Liu J, Kan J, Qian C, Jin C. Current progress in the hypoglycemic mechanisms of natural polysaccharides. Food Funct 2023; 14:4490-4506. [PMID: 37083079 DOI: 10.1039/d3fo00991b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unhealthy dietary pattern-induced type 2 diabetes mellitus poses a great threat to human health all over the world. Accumulating evidence has revealed that the pathophysiology of type 2 diabetes mellitus is closely associated with the dysregulation of glucose metabolism and energy metabolism, serious oxidative stress, prolonged endoplasmic reticulum stress, metabolic inflammation and intestinal microbial dysbiosis. Most important of all, insulin resistance and insulin deficiency are two key factors inducing type 2 diabetes mellitus. Nowadays, natural polysaccharides have gained increasing attention owing to their numerous health-promoting functions, such as hypoglycemic, energy-regulating, antioxidant, anti-inflammatory and prebiotic activities. Therefore, natural polysaccharides have been used to alleviate diet-induced type 2 diabetes mellitus. Specifically, this review comprehensively summarizes the underlying hypoglycemic mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates hypoglycemic mechanisms of natural polysaccharides from the perspectives of their regulatory effects on glucose metabolism, insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Ruizheng Zhou
- Dongguan Institutes For Food and Drug Control, Dongguan 523808, Guangdong, China
| | - Kexin Cao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
25
|
Metagenomic Insights into the Anti-Obesity Effect of a Polysaccharide from Saccharina japonica. Foods 2023; 12:foods12030665. [PMID: 36766192 PMCID: PMC9914707 DOI: 10.3390/foods12030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Saccharina japonica polysaccharides exhibit great potential to be developed as anti-obesity and prebiotic health products, but the underlying mechanism has not been adequately addressed. In this study, we investigated the potential mechanism of a S. japonica polysaccharide fraction (SjC) in preventing high-fat-diet (HFD)-induced obesity in mice using 16S rRNA gene and shotgun metagenomic sequencing analysis. SjC was characterized as a 756 kDa sulfated polysaccharide and 16 weeks of SjC supplementation significantly alleviated HFD-induced obesity, insulin resistance, and glucose metabolism disorders. The 16S rRNA and metagenomic sequencing analysis demonstrated that SjC supplementation prevented gut microbiota dysbiosis mainly by regulating the relative abundance of Desulfovibrio and Akkermansia. Metagenomic functional profiling demonstrated that SjC treatment predominantly suppressed the amino acid metabolism of gut microbiota. Linking of 16S rRNA genes with metagenome-assembled genomes indicated that SjC enriched at least 22 gut bacterial species with fucoidan-degrading potential including Desulfovibrio and Akkermansia, which showed significant correlations with bodyweight. In conclusion, our results suggest that SjC exhibits a promising potential as an anti-obesity health product and the interaction between SjC and fucoidan-degrading bacteria may be associated with its anti-obesity effect.
Collapse
|
26
|
Liu Z, Hu Y, Tao X, Li J, Guo X, Liu G, Song S, Zhu B. Metabolites of sea cucumber sulfated polysaccharides fermented by Parabacteroides distasonis and their effects on cross-feeding. Food Res Int 2023; 167:112633. [PMID: 37087229 DOI: 10.1016/j.foodres.2023.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Sea cucumber sulfated polysaccharide (SCSPsj) is one of the dietary components which effectively modulates gut microbiota; however, the underlying mechanism remains unclear. In the present study, the interaction between SCSPsj and its utilizer (Parabacteroides distasonis) was investigated. Further study was carried out to explore the cross-feeding between intestinal Bacteroidales mediated by SCSPsj. The results revealed that SCSPsj can be fermented by P. distasonis to produce various microbial metabolites, including organic acids and derivatives, lipids and lipid-like molecules, organoheterocyclic compounds. SCSPsj can regulate the succinate pathway and acetyl-CoA pathway to influence the production of propanoic acid and acetic acid, respectively. Moreover, the SCSPsj-fermented supernatants of P. distasonis can only promote the growth of B. stercoris, B. vulgatus and P. johnsonii among 8 intestinal Bacteroidales strains through cross-feeding. The effect of cross-feeding was related to spatial distances and bacterial species. Moreover, the cross-feeding was correlated with compounds belonging to organic acids and derivatives, lipids and lipid-like molecules. These findings could provide new insights into the interaction between SCSPsj and gut microbiota.
Collapse
|
27
|
Wang L, Yan C, Wang L, Ai C, Wang S, Shen C, Tong Y, Song S. Ascophyllum nodosum polysaccharide regulates gut microbiota metabolites to protect against colonic inflammation in mice. Food Funct 2023; 14:810-821. [PMID: 36617886 DOI: 10.1039/d2fo02964b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ascophyllum nodosum polysaccharide (ANP) can protect against colonic inflammation but the underlying mechanism is still unclear. This study has determined the metabolites of gut microbiota regulated by ANP to reveal the mechanism of the anti-inflammation effect of ANP. Using an in vitro colonic fermentation model, the results indicate that gut microbiota could utilize a proportion of ANP to increase the concentrations of short-chain fatty acids (SCFAs) and decrease ammonia content. Metabolomics revealed that 46 differential metabolites, such as betaine, L-carnitine, and aminoimidazole carboxamide ribonucleotide (AICAR), could be altered by ANP. Metabolic pathway analysis showed that ANP mainly up-regulated the phenylalanine, tyrosine, and tryptophan biosynthesis and aminoacyl-tRNA biosynthesis, which were negatively correlated with inflammation progression. Interestingly, these metabolites associated with inflammation were also up-regulated by ANP in colitis mice, including betaine, L-carnitine, AICAR, N-acetyl-glutamine, tryptophan, and valine, which were mainly associated with amino acid metabolism and aminoacyl-tRNA biosynthesis. Furthermore, the metabolites modulated by ANP were associated with the relative abundances of Akkermansia, Bacteroides, Blautia, Coprobacillus, Enterobacter, and Klebsiella. Additionally, based on VIP values, betaine is a key metabolite after the ANP supplement in vitro and in vivo. As indicated by these findings, ANP can up-regulate the production of SCFAs, betaine, L-carnitine, and AICAR and aminoacyl-tRNA biosynthesis to protect against colonic inflammation and maintain intestinal health.
Collapse
Affiliation(s)
- Lilong Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Chunhong Yan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Linlin Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Yuqin Tong
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| |
Collapse
|
28
|
Structural Characterization and Anti-Nonalcoholic Fatty Liver Effect of High-Sulfated Ulva pertusa Polysaccharide. Pharmaceuticals (Basel) 2022; 16:ph16010062. [PMID: 36678559 PMCID: PMC9865482 DOI: 10.3390/ph16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The high-sulfated derivative of Ulva pertusa polysaccharide (HU), with unclear structure, has better anti-hyperlipidmia activity than U pertusa polysaccharide ulvan (U). In this study, we explore the main structure of HU and its therapeutic effect against nonalcoholic fatty liver disease (NAFLD). The main structure of HU was elucidated using FT-IR and NMR (13C, 1H, COSY, HSQC, HMBC). The anti-NAFLD activity of HU was explored using the high-fat diet mouse model to detect indicators of blood lipid and liver function and observe the pathologic changes in epididymal fat and the liver. Results showed that HU had these main structural fragments: →4)-β-D-Glcp(1→4)-α-L-Rhap2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp(1→; →4)-α-L-IdopA3S(1→4)-α-L-Rhap3S(1→; →4)-β-D-GlcpA(1→3)-α-L-Rhap(1→; →4)-α-L-IdopA3S(1→4)-β-D-Glcp3Me(1→; →4)-β-D-Xylp2,3S(1→4)-α-L-IdopA3S(1→; and →4)-β-D-Xylp(1→4)-α-L-IdopA3S(1→. Treatment results indicated that HU markedly decreased levels of TC, LDL-C, TG, and AST. Furthermore, lipid droplets in the liver were reduced, and the abnormal enlargement of epididymal fat cells was suppressed. Thus, HU appears to have a protective effect on the development of NAFLD.
Collapse
|
29
|
Zhang C, Jia J, Zhang P, Zheng W, Guo X, Ai C, Song S. Fucoidan from Laminaria japonica Ameliorates Type 2 Diabetes Mellitus in Association with Modulation of Gut Microbiota and Metabolites in Streptozocin-Treated Mice. Foods 2022; 12:33. [PMID: 36613249 PMCID: PMC9818518 DOI: 10.3390/foods12010033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic diseases have been a leading cause of death worldwide, and polysaccharide supplementation is an effective therapeutic strategy for chronic diseases without adverse effects. In this study, the beneficial effect of Laminaria japonica fucoidan (LJF) on type 2 diabetes mellitus (T2DM) was evaluated in streptozocin-treated mice. LJF ameliorated the symptoms of T2DM in a dose-dependent manner, involving reduction in weight loss, water intake, triglyceride, blood glucose, cholesterol and free fatty acids, and increases in high-density lipoprotein cholesterol, catalase, glucagon-like peptide-1, and superoxide dismutase. In addition, LJF regulated the balance between insulin resistance and insulin sensitivity, reduced islet necrosis and β-cell damage, and inhibited fat accumulation in T2DM mice. The protective effect of LJF on T2DM can be associated with modulation of the gut microbiota and metabolites, e.g., increases in Lactobacillus and Allobaculum. Untargeted and targeted metabolomics analysis showed that the microbiota metabolite profile was changed with LJF-induced microbiota alterations, mainly involving amino acids, glutathione, and glyoxylate and dicarboxylate metabolism pathways. This study indicates that LJF can be used as a prebiotic agent for the prevention and treatment of diabetes and microbiota-related diseases.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Jinhui Jia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Panpan Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Weiyun Zheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
30
|
Effects of Steaming on the Concentration, Distribution and Bioaccessibility of Cadmium in Chlamys farreri Tissues. Food Res Int 2022; 162:112126. [DOI: 10.1016/j.foodres.2022.112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|
31
|
Hu Z, Wang J, Jin L, Zong T, Duan Y, Sun J, Zhou W, Li G. Preparation, Characterization and Anti-Complementary Activity of Three Novel Polysaccharides from Cordyceps militaris. Polymers (Basel) 2022; 14:4636. [PMID: 36365633 PMCID: PMC9658675 DOI: 10.3390/polym14214636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 10/15/2023] Open
Abstract
This investigation focuses on the three novel polysaccharides from Cordyceps militaris and then discusses their characterization and anti-complementary activity. The three polysaccharides from C. militaris (CMP-1, CMP-2 and CMP-3) were prepared using a DEAE-52 cellulose column. The HPLC, HPGPC, FT-IR and Congo red analyses were used to characterize their monosaccharides, molecular weight and stereo conformation, which demonstrated that the three polysaccharides were homogenous polysaccharides with different molecular weights and were composed of at least ten monosaccharides with different molar ratios, and all had a triple-helix conformation. The evaluation of anti-complementary activity demonstrated that the three polysaccharides significantly inhibited complement activation through the classical pathway and alternative pathway. Preliminary mechanism studies indicated that CMP-1, CMP-2 and CMP-3 acted with C2, C5, C9, factor B, factor B, and P components in the overactivation cascade of the complement system. The analysis of the Pearson correlation and network confirmed that the ribose, glucuronic acid and galacturonic acid composition were negatively correlated with the anti-complementary activity of polysaccharides. These results suggested that the three novel polysaccharides are potential candidates for anti-complementary drugs.
Collapse
Affiliation(s)
- Zhengyu Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Jiaming Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Long Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Tieqiang Zong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yuanqi Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Wei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| |
Collapse
|
32
|
Fucoidan from Scytosiphon lomentaria protects against destruction of intestinal barrier, inflammation and lipid abnormality by modulating the gut microbiota in dietary fibers-deficient mice. Int J Biol Macromol 2022; 224:556-567. [DOI: 10.1016/j.ijbiomac.2022.10.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
33
|
Xiang X, Jiang Q, Yang H, Zhou X, Chen Y, Chen H, Liu S, Chen L. A review on shellfish polysaccharides: Extraction, characterization and amelioration of metabolic syndrome. Front Nutr 2022; 9:974860. [PMID: 36176638 PMCID: PMC9513460 DOI: 10.3389/fnut.2022.974860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Shellfish are diverse, widely distributed organisms that are a rich source of biological resources. Polysaccharides are an important components in shellfish, hence a great deal of attention has been directed at isolation and characterization of shellfish polysaccharides because of their numerous health benefits. Differences in shellfish species, habits, and environment result in the diversity of the structure and composition of polysaccharides. Thus, shellfish polysaccharides possess special biological activities. Studies have shown that shellfish polysaccharides exert biological activities, including antioxidant, antitumor, immune-regulation, hypolipidemic, antihypertensive, and antihyperglycemic effects, and are widely used in cosmetics, health products, and medicine. This review spotlights the extraction and purification methods of shellfish polysaccharides and analyses their structures, biological activities and conformational relationships; discusses the regulatory mechanism of shellfish polysaccharides on hyperlipidemia, hypertension, and hyperglycemia caused by lipid metabolism disorders; and summarizes its alleviation of lipid metabolism-related diseases. This review provides a reference for the in-depth development and utilization of shellfish polysaccharides as a functional food to regulate lipid metabolism-related diseases. To achieve high value utilization of marine shellfish resources while actively promoting the development of marine biological industry and health industry.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- *Correspondence: Shulai Liu,
| | - Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lin Chen,
| |
Collapse
|
34
|
Fang F, Xiao C, Wan C, Li Y, Lu X, Lin Y, Gao J. Two Laminaria japonica polysaccharides with distinct structure characterization affect gut microbiota and metabolites in hyperlipidemic mice differently. Food Res Int 2022; 159:111615. [PMID: 35940764 DOI: 10.1016/j.foodres.2022.111615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Our previous study found dietary mannogluconic acid (MA) and fucogalactan sulfate (FS) from Laminaria japonica have distinct structure characterization and potential hypolipidemic effects in vitro. Herein, we compared the benefits of MA and FS on hyperlipidemia. The result showed only FS treatment decreased body weight and serum cholesterol levels. Compared with MA, FS was more effective in mitigating hepatic fat accumulation, promoting GSH-Px activity, reducing the MDA formation, and lowering the level of TNF-α in liver. Gut microbiota and metabolism analysis revealed that FS increased the relative abundance of beneficial bacteria and boosted the level of short chain fatty acids. Particularly, taurine and 3α,7α,12α-trihydroxy-24-oxo-5-β-cholestanoyl CoA were upregulated by FS, which might attribute to the increased Oscillibacter and thus affect the enterohepatic circulation of bile acids and serum TC level. Therefore, FS with more branches and sulfate ester groups could be a good lipid-lowering dietary supplement.
Collapse
Affiliation(s)
- Fang Fang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chuqiao Xiao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521031, China
| | - Chu Wan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yaqian Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xingyu Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ying Lin
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
35
|
Health benefits of functional plant polysaccharides in metabolic syndrome: An overview. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Lin Y, Xu Q, Li X, Shao P. Tremella fuciformis polysaccharides as a fat substitute on the rheological, texture and sensory attributes of low-fat yogurt. Curr Res Food Sci 2022; 5:1061-1070. [PMID: 35783666 PMCID: PMC9241049 DOI: 10.1016/j.crfs.2022.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The potential of Tremella fuciformis polysaccharides (TFPS) as a fat substitute in low-fat yogurt was evaluated in this study. The effects of adding different concentrations of TFPS solution on the physical and chemical properties, texture, rheology, microstructure and sensory properties of low-fat yogurt were evaluated. Compared with control, the addition of TFPS not only increased the solid content and water holding capacity of yogurt, but also reduced syneresis losses in low-fat yogurt. In fact, the addition of TFPS did not affect the color of yogurt but had a positive effect on the texture and sensory of yogurt. In terms of rheology, all low-yogurt samples exhibited rheological to the weak gel-like structures (G' > G″), and the storage modulus and loss modulus of the yogurt added with TFPS were higher than those of the low-fat yogurt control group. Compared with the low-fat yogurt control group, yogurt added TFPS makes the cross-linking of polysaccharides and casein more compact. In conclusion, TFPS has potential as a fat substitute in dairy products. TFPS with Medicine Food Homology can be used as a fat substitute for low-fat yogurt. TFPS significantly improved the physical and chemical properties of low-fat yogurt. 0.025% TFPS in low-fat yoghurt was most acceptable in the sensory score. Polysaccharide-protein interactions enhanced protein network structure. TFPS improved overall organoleptic quality of low-fat yogurt.
Collapse
Affiliation(s)
- Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Qiaolian Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Xiangmin Li
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangdong, 510070, PR China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
- Corresponding author.
| |
Collapse
|
37
|
Wang MT, Guo WL, Yang ZY, Chen F, Lin TT, Li WL, Lv XC, Rao PF, Ai LZ, Ni L. Intestinal microbiomics and liver metabolomics insights into the preventive effects of chromium (III)-enriched yeast on hyperlipidemia and hyperglycemia induced by high-fat and high-fructose diet. Curr Res Food Sci 2022; 5:1365-1378. [PMID: 36092021 PMCID: PMC9449561 DOI: 10.1016/j.crfs.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, organic chromium (III) supplements have received increasing attentions for their low toxicity, high bioavailability and wide range of health-promoting benefits. This study aimed to investigate the preventive effects of chromium (III)-enriched yeast (YCr) on high-fat and high-fructose diet (HFHFD)-induced hyperlipidemia and hyperglycemia in mice, and further clarify its mechanism of action from the perspective of intestinal microbiomics and liver metabolomics. The results indicated that oral administration of YCr remarkably inhibited the aberrant elevations of body weight, blood glucose and lipid levels, hepatic cholesterol (TC) and triglyceride (TG) levels caused by HFHFD. Liver histological examination showed that oral YCr intervention inhibited HFHFD induced liver lipid accumulation. Besides, 16S rDNA amplicon sequencing showed that YCr intervention was beneficial to ameliorating intestinal microbiota dysbiosis by altering the proportion of some intestinal microbial phylotypes. Correlation-based network analysis indicated that the key intestinal microbial phylotypes intervened by YCr were closely related to some biochemical parameters associated with glucose and lipid metabolism. Liver metabolomics analysis revealed that dietary YCr intervention significantly regulated the levels of some biomarkers involved in purine metabolism, glycerophospholipid metabolism, citrate cycle, pyrimidine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and so on. Moreover, dietary YCr intervention regulated the mRNA levels of key genes associated with glucose, cholesterol, fatty acids and bile acids metabolism in liver. These findings suggest that dietary YCr intervention has beneficial effects on glucose and lipid metabolism by regulating intestinal microbiota and liver metabolic pathway, and thus can be served as a functional component to prevent hyperlipidemia and hyperglycemia. Chromium-enriched yeast enhances glucose tolerance and liver glycogen synthesis. Chromium-enriched yeast ameliorates the disturbance of intestinal microbiota. Explore the hepatoprotective effect of chromium-enriched yeast based on metabolomics. Chromium-enriched yeast alleviates lipid metabolism through “gut-liver” axis. Chromium-enriched yeast intervention affects hepatic gene transcription levels.
Collapse
|