1
|
Huang X, Li R, Xu J, Kang J, Chen X, Han B, Xue Y. Integrated multi-omics uncover viruses, active fermenting microbes and their metabolic profiles in the Daqu microbiome. Food Res Int 2025; 208:116061. [PMID: 40263874 DOI: 10.1016/j.foodres.2025.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/08/2025] [Accepted: 02/22/2025] [Indexed: 04/24/2025]
Abstract
The coexistence and coevolution of viruses and fermenting microbes have a significant impact on the structure and function of microbial communities. Although the presence of viruses in Daqu, the fermentation starter for Chinese Baijiu, has been documented, their specific effects on the community composition and metabolic functions of low, medium, and high-temperature Daqu remain unclear. In this study, we employed multi-omics technology to explore the distribution of viruses and active bacteria and fungi in various Daqu and their potential metabolic roles. Viral metagenomic sequencing showed a predominance of Parvoviridae in High-Temperature Daqu (HTQ), while Genomoviridae were dominant in Medium-Temperature Daqu (MTQ) and Low- Temperature Daqu (LTQ). Phages belonging to the Siphoviridae, Podoviridae, Herelleviridae, and Myoviridae families showed significantly different abundances across three Daqu groups. Metatranscriptomic analysis showed that fungal communities were most active in LTQ, whereas bacterial communities were dominant in MTQ and HTQ. By employing the CRISPR-Cas spacer, a higher predicted number of phage-host linkages was identified in LTQ, particularly with hosts including Lactobacillus, Staphylococcus, Acinetobacter, Enterobacter, and Bacillus. Correlation analysis showed that bacteria like Acinetobacter, Lactobacillus, and Streptococcus exhibited the strongest associations with metabolites, particularly amino acids and organic acids. The potential phage-induced metabolic differences in the three Daqu groups were mainly linked to pathways involved in the metabolism of amino acids, sugars, and organic acids. Overall, our study elucidates the impact of viruses on shaping microbial composition and influencing metabolic functions in Daqu. These results improve our comprehension of viruses and microbes in Daqu microbial communities and provide valuable insights for enhancing quality control in Daqu production.
Collapse
Affiliation(s)
- Xiaoning Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rengshu Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Jinguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jiamu Kang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaoxue Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Beizhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.
| |
Collapse
|
2
|
Cao L, Sun H, Xu Z, Xu X, Shi G, Zhang J, Liang C, Li T, Liu C, Wang M, Tian S, Li E. Metagenomic and physicochemical profiling reveal microbial functions in pit mud for Jiang-Nong Jianxiang Baijiu fermentation. BMC Microbiol 2025; 25:190. [PMID: 40175903 PMCID: PMC11963406 DOI: 10.1186/s12866-025-03884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND The unique flavour and quality of Baijiu, a treasure of traditional Chinese culture, has attracted increasing attention. The pit mud is a key component for forming the unique flavour styles of different Baijiu brands. Hence, conducting in-depth research on the microbial colonies present in pit mud is paramount for enhancing the intricate bouquets of Baijiu flavours. RESULTS This study conducts a comprehensive metagenomic examination of the microbial ecosystem within Chinese Jiang-Nong Jianxiang Baijiu fermentation pit mud. Within the pit mud walls, six prominent species, each accounting for more than 1% of the average relative abundance, emerged as key contributors: Lentilactobacillus buchneri, Secundilactobacillus silagincola, Clostridium tyrobutyricum, Lentilactobacillus parafarraginis, Ligilactobacillus acidipiscis, and Lactobacillus acetotolerans. Conversely, at the pit mud bases, four species surpassed this threshold: Petrimonas sp. IBARAKI, Methanosarcina barkeri, Methanofollis ethanolicus, and Proteiniphilum propionicum. Notably, the abundance of Clostridium in the pit mud walls impart superior saccharifying capabilities compared with those at the bases. The consistently high relative abundance of enzymes belonging to the glycoside hydrolases (GHs), glycosyltransferases (GTs), and carbohydrate-binding modules (CBMs) across both the pit mud walls and the bases highlight their importance in fermentation. CONCLUSIONS The microbial composition analysis results underscore the important role of pit mud microorganisms in facilitating starch saccharification, ethyl caproate and ethyl butyrate production, among other aromatic compounds. Microbes residing in the pit mud walls may be exhibited a heightened propensity for lactic acid generation, whereas those inhabiting the bases may be displayed a stronger inclination towards caproic acid production. This research serves as a valuable reference for future endeavours aimed at harnessing microbial resources to refine and optimize Baijiu fermentation methodologies.
Collapse
Affiliation(s)
- Lianbin Cao
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Hongmei Sun
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Ziyi Xu
- Zhumadian Vocational and Technical College, Zhumadian, 463000, China
| | - Xiaoxiao Xu
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Guangchuan Shi
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Jianqiang Zhang
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Changli Liang
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Tongbiao Li
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Chaoying Liu
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Mingcheng Wang
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Shilin Tian
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Enzhong Li
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China.
| |
Collapse
|
3
|
Zhou H, Zhao M, Xiong Q, Feng C, Pu Z, Chen G, Wang S, Dong Y, Wang X, Long H, Jiang Q, Wang J, Wei Y, Zheng Y, Li W. Effect of Wheat Varieties and Cultivation Environments on Grain Endophytes, Microbial Communities, and Quality of Medium-High Temperature Daqu in Chinese Baijiu. Foods 2025; 14:982. [PMID: 40232018 PMCID: PMC11940993 DOI: 10.3390/foods14060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 04/16/2025] Open
Abstract
Wheat grain serves as the primary raw material for producing medium-high temperature (MT)-Daqu, a fermentation starter crucial for Chinese Baijiu production, characterized by spontaneous fermentation without the inoculation of exogenous substances. However, the interactions among wheat varieties, cultivation environments, and the resulting Daqu quality remain poorly understood. This study evaluates three wheat varieties harvested from three distinct cultivation environments, examining wheat grain quality, grain-associated endophytes, and physicochemical properties and microbial communities of MT-Daqu at 0, 9, and 90 days of fermentation. The results revealed the cultivation environment had the most pronounced impact on wheat fungal endophytes. The physicochemical properties of Daqu were primarily impacted by variety, namely, the enzyme activity impacted by environmental factors. Pantoea, Aspergillus, and Stephylium are key microbial genera shared between wheat grains and MT-Daqu. Redundancy analysis highlighted the critical roles of moisture content, starch content, and amino acid nitrogen levels in driving microbial succession in Daqu. Mantel analysis demonstrated significant correlations between the abundance of dominant fungal endophytes in wheat grains and Daqu quality parameters, including starch content (r = 0.45; p < 0.01), saccharifying activity (r = 0.41), liquefying activity (r = 0.31), and esterifying activity (r = 0.30) (p < 0.05). Spearman correlation analysis indicated that Nesterenkonia, Aspergillus, Cryptococcus, Dioszegia, Golubevia, Udeniomyces and Stemphylium are the dominant wheat-derived bacterial genera associated with the abundance of microorganisms in MT-Daqu. This study elucidated the "cultivation environment-grain endophyte-Daqu microorganism" microbial transmission pathway, providing a theoretical foundation for breeding wheat varieties optimized for Daqu production and identifying suitable production regions.
Collapse
Affiliation(s)
- Huixian Zhou
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (M.Z.); (Q.X.)
| | - Mengmeng Zhao
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (M.Z.); (Q.X.)
| | - Qinqin Xiong
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (M.Z.); (Q.X.)
| | - Chengcheng Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (M.Z.); (Q.X.)
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (M.Z.); (Q.X.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Yi Dong
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Xiaojun Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (M.Z.); (Q.X.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Chen C, Ni D, Yang Y, Tian J, Yang F, Ye X. Characterizing the microbial community constructure and the metabolites among different colour Moutai Daqu. Food Chem X 2025; 26:102223. [PMID: 40027113 PMCID: PMC11872403 DOI: 10.1016/j.fochx.2025.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
There are three types of Daqu produced during the fermentation of Moutai Daqu, which are named as white, yellow and black Daqu. However, in-depth studies for them are lacking. Herein, the high-throughput sequencing and metabolomics techniques were used to analyze the differences in Moutai Daqu. The findings indicated that the predominant microorganisms in yellow and white Daqu were Kroppenstedtia and Bacillus, while Oceanbacillus and Scopulibacillus emerged as the primary microorganisms in black Daqu. Further exploration revealed that white and black Daqu played important roles in the liquefaction and saccharification processes. Besides, the results of metabolomics reveals that yellow and black Daqu exhibit a higher abundance of up-regulated amino acids and fatty acids, which exert a more significant effect on Moutai Baijiu flavor and bioactivity. This study reveals the differences among the three types of Moutai Daqu through comprehensive analysis, which provides technical support for improving the quality of Moutai Daqu.
Collapse
Affiliation(s)
- Chao Chen
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, Zunyi, China
| | - Derang Ni
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, Zunyi, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Yubo Yang
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, Zunyi, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Fan Yang
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, Zunyi, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Zhejiang University Zhongyuan Institute, Zhengzhou, China
| |
Collapse
|
5
|
Kang J, Hong B, Ma S, Wu J, Yang Z, Fan X, Shao L, Sun K, Zhao J, Fang H, Wu T. Ecological factors affecting toluene biosynthesis from bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178186. [PMID: 39708473 DOI: 10.1016/j.scitotenv.2024.178186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
As a highly emitted volatile organic compound, toluene significantly contributes to atmospheric pollution and poses high risks to human health. Its anthropogenic source is well understood, while its biosynthesis remains poorly understood, especially by bacterial communities. This research attempted to reveal the temporal changes of bacterial community structure during toluene biosynthesis and identify key bacterial factors using 16S rRNA sequencing gene and machine learning methods. The results showed that toluene biosynthesis by the bacterial consortium nonlinearly increased with phenylacetic acid concentration with the optimal temperature of 25-30 °C and pH of 7-7.5. Diversity and richness of the bacterial communities increased over time, as well as the abundance and composition of phyla (e.g. Bacteroidota and Synergistota), families (e.g. Acidaminococcaceae and Oscillospiraceae), species (e.g. Bacteroides and Parabacteroides), and functional genes (e.g. phenylalanine, tyrosine, and tryptophan biosynthesis and fatty acid metabolism). They were significantly related to toluene biosynthesis, of which the Shannon and Simpson indices and the abundances of Synergistaceae, Bacteroidaceae, and Spirochaetaceae species and functional genes related to metabolic pathways, biosynthesis of secondary metabolites, and alanine aspartate and glutamate metabolism were identified as key factors. Findings of this study contributed to new understandings of the underlying mechanisms of toluene biosynthesis by the bacterial community.
Collapse
Affiliation(s)
- Jian Kang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Bing Hong
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China.
| | - Shutan Ma
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Jiangping Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Zhi Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Xiaoyu Fan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Luyi Shao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Kun Sun
- Wuhu Institute of Technology, Wuhu 241006, China
| | - Juan Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Hua Fang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Ting Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China.
| |
Collapse
|
6
|
Nie X, Jia X, Zhu K, Ling Z, Chen H, Xie J, Ao Z, Song C, Shen C, Zhu C, Yan W, Wang J, Wang Y, Zhao Z. Dynamic Changes and Potential Correlations between Microbial Diversity and Volatile Flavor Compounds in Chinese Medium-Temperature Daqu during Manufacturing. Molecules 2024; 29:4851. [PMID: 39459219 PMCID: PMC11509951 DOI: 10.3390/molecules29204851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
To investigate the dynamic changes and potential correlations between microbial diversity and volatile organic compounds (VOCs) during Chinese medium-temperature Daqu (MTD) manufacturing at different key stages, in this study, high-throughput sequencing (HTS) and gas chromatography-ion mobility spectrometry (GC-IMS) were employed to analyze the microbial diversity and VOCs of MTD, respectively. The results showed that Weissella, Staphylococcus, Thermoactinomyces, Kroppenstedtia, and Lactobacillus were the dominant bacterial genera, while Aspergillus, Alternaria, Thermoascus, Thermomyces, Wickerhamomyces, and Saccharomyces were the dominant fungal genera. A total of 61 VOCs were detected by GC-IMS, among which, 13 differential VOCs (VIP > 1) were identified, that could be used as potential biomarkers to judge the fermentation stage of MTD. Kroppenstedtia and Saccharopolyspora were positively correlated with 3-methyl-2-butenal and 2,2,4,6,6-pentamethylheptane-D, respectively, and both of these were positively correlated with butanal-D. Acetobacter, Streptomyces, and lactic acid bacteria (LAB) including Leuconostoc, Pediococcus, Weissella, and Lactobacillus were negatively correlated with their associated VOCs, while fungi were generally positively correlated with VOCs. Wickerhamomyces, Saccharomyces, and Candida were positively correlated with butan-2-one-M. This study provides a theoretical basis for explaining the mechanisms of MTD flavor formation and screening functional microorganisms to improve the quality of MTD.
Collapse
Affiliation(s)
- Xin Nie
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Xiaohan Jia
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Kaixian Zhu
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Ziqing Ling
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Hongfan Chen
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Jing Xie
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Zonghua Ao
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | | | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Wei Yan
- Inner Mongolia Hetao Liquor Group Co., Ltd., Bayan Nur 015400, China
| | - Jiabin Wang
- Inner Mongolia Hetao Liquor Group Co., Ltd., Bayan Nur 015400, China
| | - Yijing Wang
- School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan 620860, China
| | - Zhiping Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
7
|
Wen Z, Han PJ, Han DY, Song L, Wei YH, Zhu HY, Chen J, Guo ZX, Bai FY. Microbial community assembly patterns at the species level in different parts of the medium temperature Daqu during fermentation. Curr Res Food Sci 2024; 9:100883. [PMID: 39493699 PMCID: PMC11530605 DOI: 10.1016/j.crfs.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Medium-temperature Daqu (MT-Daqu) serves as a crucial saccharifying and fermentation agent in the production of strong-flavor Baijiu. Due to the spatial heterogeneity of solid fermentation, significant differences occurred in the fermentation state and appearance features in different parts of Daqu during fermentation. Currently, the understanding of the underlying mechanism behind this phenomenon remains limited. Here, we analyzed the microbial succession and assembly models and driving factors in different parts of MT-Daqu at the species level based on the PacBio single-molecule real-time sequencing technology. The results showed significantly different bacterial and fungal community compositions, successions, and interaction patterns in different parts of MT-Daqu. The bacterial community composition and succession model in the middle layer were similar to those in the core layer, whereas the fungal community composition and succession model in the surface layer were similar to those in the middle layer. The co-occurrence network analysis showed that microbial interaction is stronger in the middle and core layers than in the surface layer. Analyses based on both niche theory and neutral theory models indicated that deterministic processes predominantly governed the microbial community assembly and these processes played an increasingly important role from the surface to the core layer. Random forest analysis revealed that temperature was the primary endogenous factor driving the bacterial and fungal community assembly. The results of this study contribute to a better understanding of the microbial community in MT-Daqu and are helpful for the quality control of MT-Daqu fermentation.
Collapse
Affiliation(s)
- Zhang Wen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Liang Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yu-Hua Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Chen
- Yibin Nanxi Liquor Co., Ltd., Yibin, 644000, PR China
| | | | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
8
|
Han PJ, Song L, Wen Z, Zhu HY, Wei YH, Wang JW, Bai M, Luo LJ, Wang JW, Chen SX, You XL, Han DY, Bai FY. Species-level understanding of the bacterial community in Daqu based on full-length 16S rRNA gene sequences. Food Microbiol 2024; 123:104566. [PMID: 39038883 DOI: 10.1016/j.fm.2024.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 07/24/2024]
Abstract
Daqu is used as the fermentation starter of Baijiu and contributes diversified functional microbes for saccharifying grains and converting sugars into ethanol and aroma components in Baijiu products. Daqu is mainly classified into three types, namely low (LTD), medium (MTD) and high (HTD) temperature Daqu, according to the highest temperatures reached in their fermentation processes. In this study, we used the PacBio small-molecule real-time (SMRT) sequencing technology to determine the full-length 16 S rRNA gene sequences from the metagenomes of 296 samples of different types of Daqu collected from ten provinces in China, and revealed the bacterial diversity at the species level in the Daqu samples. We totally identified 310 bacteria species, including 78 highly abundant species (with a relative abundance >0.1% each) which accounted for 91.90% of the reads from all the Daqu samples. We also recognized the differentially enriched bacterial species in different types of Daqu, and in the Daqu samples with the same type but from different provinces. Specifically, Lactobacillales, Enterobacterales and Bacillaceae were significantly enriched in the LTD, MTD and HTD groups, respectively. The potential co-existence and exclusion relationships among the bacteria species involved in all the Daqu samples and in the LTD, MTD and HTD samples from a specific region were also identified. These results provide a better understanding of the bacterial diversity in different types of Daqu at the species level.
Collapse
Affiliation(s)
- Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Liang Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Zhang Wen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu-Hua Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jian-Wei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Hebei, Baoding, 071002, PR China
| | - Mei Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Hebei, Baoding, 071002, PR China
| | - Lu-Jun Luo
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, 032205, PR China
| | - Ju-Wei Wang
- Jiangsu King's Luck Brewery Joint-Stock Co. Ltd., Lianshui, 223400, PR China
| | - Shen-Xi Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co. Ltd., Huangshi, 435100, PR China
| | | | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
9
|
Xu S, Zhou H, Xu B, Liu W, Hu W, Xu Q, Hong J, Liu Y, Li X. Deciphering layer formation in Red Heart Qu: A comprehensive study of metabolite profile and microbial community influenced by raw materials and environmental factors. Food Chem 2024; 451:139377. [PMID: 38703722 DOI: 10.1016/j.foodchem.2024.139377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 04/13/2024] [Indexed: 05/06/2024]
Abstract
Environmental-origin microbiota significantly influences Red Heart Qu (RH_Qu) stratification, but their microbial migration and metabolic mechanisms remain unclear. Using high-throughput sequencing and metabolomics, we divided the stratification of RH_Qu into three temperature-based stages. Phase I features rising temperatures, causing microbial proliferation and a two-layer division. Phase II, characterized by peak temperatures, sees the establishment of thermotolerant species like Bacillus, Thermoactinomyces, Rhodococcus, and Thermoascus, forming four distinct layers and markedly altering metabolite profiles. The Huo Quan (HQ), developing from the Pi Zhang (PZ), is driven by the tyrosine-melanin pathway and increased MRPs (Maillard reaction products). The Hong Xin evolves from the Rang, associated with the phenylalanine-coumarin pathway and QCs (Quinone Compounds) production. Phase III involves the stabilization of the microbial and metabolic profile as temperatures decline. These findings enhance our understanding of RH_Qu stratification and offer guidance for quality control in its fermentation process.
Collapse
Affiliation(s)
- Shanshan Xu
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China
| | - Hao Zhou
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China
| | - Boyang Xu
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China
| | - Wuyang Liu
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China
| | - Weiqi Hu
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China
| | - Qinxiang Xu
- Anhui Kouzi Brewery Co., Ltd., No.9 South Xiangshan Road, Huaibei City 235199, Anhui Province, People's Republic of China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, No.443 Huangshan Road, Hefei 230026, Anhui Province, People's Republic of China
| | - Yongxin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No.7 Pengfei Road, Shenzhen city 518120, Guangdong province, People's Republic of China.
| | - Xingjiang Li
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China.
| |
Collapse
|
10
|
Mu Y, Huang Y, Li D, Zhu Z, Yu S, Xie F. Revealing the comprehensive effect of mechanization on sauce-flavor Daqu through high-throughput sequencing and multi-dimensional metabolite profiling. Food Res Int 2024; 191:114645. [PMID: 39059901 DOI: 10.1016/j.foodres.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
Mechanization has emerged as a focal point in the modernization of traditional enterprises, offering standardized production and labor reduction benefits. However, little is known about how mechanization affects the microbiota and metabolite profiles of Daqu. To address this gap, we conducted a comprehensive comparison between traditional and mechanical sauce-flavor Daqu using a multi-omics approach. Results showed that mechanical Daqu exhibited higher acidity, amino acid nitrogen and enzyme activity, alongside lower fat and moisture levels. Following mechanization, lactic acid bacteria (LAB), Staphylococcus, Aspergillus and Saccharomycopsis were enriched and identified as biomarkers, whereas Oceanobacillus, Monascus and Scopulariopsis were notably decreased. Furthermore, significant disparities in metabolic profiles were observed between the two types of Daqu based on GC-MS, GC-IMS, and LC-MS/MS analyses. The content of volatile compounds was significantly higher in mechanical Daqu (332.82 ± 22.69 mg/kg), while that of non-volatile compounds was higher in traditional Daqu (753.44 ± 41.82 mg/kg). Moreover, OPLS-DA models identified 44 volatile and 31 non-volatile compounds as differential metabolites. Multivariate statistical analysis indicated that bacteria and fungi primarily contributed to protease and saccharification activities, respectively. Additionally, the co-occurrence network revealed that Oceanobacillus and Scopulariopsis were closely associated with non-volatile compound formation, while LAB and Rhizopus significantly influenced volatile compound production. These findings elucidate the multi-dimensional relationship between mechanization and Daqu quality, offering insights to advance the modernization of traditional industries.
Collapse
Affiliation(s)
- Yu Mu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; Guizhou Health Wine Brewing Technology Engineering Research Center, Moutai Institute, Renhuai 564507, China
| | - Ying Huang
- Department of Brewing Engineering, Moutai Institute, Renhuai 564507, China
| | - Dong Li
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; Guizhou Health Wine Brewing Technology Engineering Research Center, Moutai Institute, Renhuai 564507, China
| | - Zhiyu Zhu
- Kweichow Moutai Co. Ltd., Renhuai 564501, China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; Guizhou Health Wine Brewing Technology Engineering Research Center, Moutai Institute, Renhuai 564507, China.
| | - Feng Xie
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; Guizhou Health Wine Brewing Technology Engineering Research Center, Moutai Institute, Renhuai 564507, China.
| |
Collapse
|
11
|
Shi G, Fang C, Xing S, Guo Y, Li X, Han X, Lin L, Zhang C. Heterogenetic mechanism in high-temperature Daqu fermentation by traditional craft and mechanical craft: From microbial assembly patterns to metabolism phenotypes. Food Res Int 2024; 187:114327. [PMID: 38763631 DOI: 10.1016/j.foodres.2024.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
The mechanical process has a widely usage in large-scale high-temperature Daqu (HTD) enterprises, however, the quality of the mechanical HTD is gapped with the HTD by traditional process. Currently, the understanding of the mechanism behind this phenomenon is still over-constrained. To this end, the discrepancies in fermentation parameters, enzymatic characteristics, microbial assembly and succession patterns, metabolic phenotypes were compared between traditional HTD and mechanical HTD in this paper. The results showed that mechanical process altered the temperature ramping procedure, resulting in a delayed appearance of the peak temperature. This alteration shifted the assembly pattern of the initial bacterial community from determinism to stochasticity, while having no impact on the stochastic assembly pattern of the fungal community. Concurrently, mechanical pressing impeded the accumulation of arginase, tetramethylpyrazine, trimethylpyrazine, 2-methoxy-4-vinylphenol, and butyric acid, as the target dissimilarities in metabolism between traditional HTD and mechanical HTD. Pearson correlation analysis combined with the functional prediction further demonstrated that Bacillus, Virgibacillus, Oceanobacillus, Kroppenstedtia, Lactobacillus, and Monascus were mainly contributors to metabolic variances. The Redundancy analysis (RDA) of fermented environmental factors on functional ASVs indicated that high temperature, high acid and low moisture were key positive drivers on the microbial metabolism for the characteristic flavor in HTD. Based on these results, heterogeneous mechanisms between traditional HTD and mechanical HTD were explored, and controllable metabolism targets were as possible strategies to improve the quality of mechanical HTD.
Collapse
Affiliation(s)
- Gailing Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Chao Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Shuang Xing
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Ying Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Liangcai Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
12
|
Zhang P, Liu Y, Li H, Hui M, Pan C. Strategies and Challenges of Microbiota Regulation in Baijiu Brewing. Foods 2024; 13:1954. [PMID: 38928896 PMCID: PMC11202514 DOI: 10.3390/foods13121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The traditional Chinese Baijiu brewing process utilizes natural inoculation and open fermentation. The microbial composition and abundance in the microecology of Baijiu brewing often exhibit unstable characteristics, which directly results in fluctuations in Baijiu quality. The microbiota plays a crucial role in determining the quality of Baijiu. Analyzing the driving effect of technology and raw materials on microorganisms. Elucidating the source of core microorganisms and interactions between microorganisms, and finally utilizing single or multiple microorganisms to regulate and intensify the Baijiu fermentation process is an important way to achieve high efficiency and stability in the production of Baijiu. This paper provides a systematic review of the composition and sources of microbiota at different brewing stages. It also analyzes the relationship between raw materials, brewing processes, and brewing microbiota, as well as the steps involved in the implementation of brewing microbiota regulation strategies. In addition, this paper considers the feasibility of using Baijiu flavor as a guide for Baijiu brewing regulation by synthesizing the microbiota, and the challenges involved. This paper is a guide for flavor regulation and quality assurance of Baijiu and also suggests new research directions for regulatory strategies for other fermented foods.
Collapse
Affiliation(s)
- Pengpeng Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (P.Z.); (H.L.); (M.H.)
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Yanbo Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Haideng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (P.Z.); (H.L.); (M.H.)
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (P.Z.); (H.L.); (M.H.)
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| |
Collapse
|
13
|
Hou Q, Wang Y, Qu D, Zhao H, Tian L, Zhou J, Liu J, Guo Z. Microbial communities, functional, and flavor differences among three different-colored high-temperature Daqu: A comprehensive metagenomic, physicochemical, and electronic sensory analysis. Food Res Int 2024; 184:114257. [PMID: 38609235 DOI: 10.1016/j.foodres.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
High-temperature Daqu (HTD) is the starter for producing sauce-flavor Baijiu, with different-colored Daqu (white, yellow, and black) reflecting variations in fermentation chamber conditions, chemical reactions, and associated microbiota. Understanding the relationship between Daqu characteristics and flavor/taste is challenging yet vital for improving Baijiu fermentation. This study utilized metagenomic sequencing, physicochemical analysis, and electronic sensory evaluation to compare three different-colored HTD and their roles in fermentation. Fungi and bacteria dominated the HTD-associated microbiota, with fungi increasing as the fermentation temperature rose. The major fungal genera were Aspergillus (40.17%) and Kroppenstedtia (21.16%), with Aspergillus chevalieri (25.65%) and Kroppenstedtia eburnean (21.07%) as prevalent species. Microbial communities, functionality, and physicochemical properties, particularly taste and flavor, were color-specific in HTD. Interestingly, the microbial communities in different-colored HTDs demonstrated robust functional complementarity. White Daqu exhibited non-significantly higher α-diversity compared to the other two Daqu. It played a crucial role in breaking down substrates such as starch, proteins, hyaluronic acid, and glucan, contributing to flavor precursor synthesis. Yellow Daqu, which experienced intermediate temperature and humidity, demonstrated good esterification capacity and a milder taste profile. Black Daqu efficiently broke down raw materials, especially complex polysaccharides, but had inferior flavor and taste. Notably, large within-group variations in physicochemical quality and microbial composition were observed, highlighting limitations in color-based HTD quality assessment. Water content in HTD was associated with Daqu flavor, implicating its crucial role. This study revealed the complementary roles of the three HTD types in sauce-flavor Baijiu fermentation, providing valuable insights for product enhancement.
Collapse
Affiliation(s)
- Qiangchuan Hou
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China
| | - Yurong Wang
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China
| | - Dingwu Qu
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China
| | - Huijun Zhao
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China
| | - Longxin Tian
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China; Xiangyang Key Laboratory of Solid State Fermentation of Jiangxiang Baijiu, Xiangyang, Hubei Province, PR China
| | - Jiaping Zhou
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China; Xiangyang Key Laboratory of Solid State Fermentation of Jiangxiang Baijiu, Xiangyang, Hubei Province, PR China
| | - Juzhen Liu
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China; Xiangyang Key Laboratory of Solid State Fermentation of Jiangxiang Baijiu, Xiangyang, Hubei Province, PR China
| | - Zhuang Guo
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China.
| |
Collapse
|
14
|
Wu S, Lu J, Li C, Du H, Xu Y. Pediococcus spp. -mediated competition interaction within Daqu microbiota determines the temperature formation and metabolic profiles. Appl Environ Microbiol 2024; 90:e0179023. [PMID: 38506521 PMCID: PMC11022566 DOI: 10.1128/aem.01790-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024] Open
Abstract
Fermented microbiota is critical to the formation of microenvironment and metabolic profiles in spontaneous fermentation. Microorganisms generate a diverse array of metabolites concurrent with the release of heat energy. In the case of Daqu fermentation, the peak temperature exceeded 60°C, forming a typical high-temperature fermentation system known as high-temperature Daqu. However, microorganisms that cause the quality variation in Daqu and how they affect the functional microbiota and microenvironment in the fermentation process are not yet clear. This study adopted high-throughput sequencing and monitored the dynamic fluctuations of metabolites and environmental factors to identify the pivotal microorganism responsible for the alterations in interaction patterns of functional keystone taxa and quality decline in the fermentation system of different operational areas during the in situ fermentation process that had been mainly attributed to operational taxonomic unit (OTU)_22 (Pediococcus acidilactici). Additionally, we used isothermal microcalorimetry, plate inhibition experiments, and in vitro simulation fermentation experiments to explore the impact of Pediococcus spp. on heat generation, microorganisms, and metabolite profiles. Results showed the heat peak generated by Pediococcus spp. was significantly lower than that of Bacillus spp., filamentous fungi, and yeast. In addition, the preferential growth of P. acidilactici strain AA3 would obviously affect other strains to colonize through competition, and its metabolites made a significant impact on filamentous fungi. The addition of P. acidilactici strain AA3 in simulated fermentation would cause the loss of pyrazines and acids in metabolites. These evidences showed that the overgrowth of Pediococcus spp. greatly influenced the formation of high temperatures and compounds in solid-state fermentation systems. Our work illustrated the vital impact of interaction variability mediated by Pediococcus spp. for microbial assembly and metabolites, as well as in forming temperature. These results emphasized the functional role of Daqu microbiota in metabolites and heat production and the importance of cooperation in improving the fermentation quality.IMPORTANCEThe stable and high-quality saccharifying and fermenting starter in traditional solid-state fermentation was the prerequisite for liquor brewing. An imbalance of microbial homeostasis in fermentation can adversely impact production quality. Identification of such critical microorganisms and verifying their associations with other fermentation parameters pose a challenge in a traditional fermentation environment. To enhance the quality of spontaneous fermented products, strategies such as bioaugmentation or the control of harmful microorganisms would be employed. This work started with the differences in high-temperature Daqu metabolites to explore a series of functional microorganisms that could potentially contribute to product disparities, and found that the differences in interactions facilitated directly or indirectly by Pediococcus spp. seriously affected the development of microbial communities and metabolites, as well as the formation of the microenvironment. This study not only identified functional microbiota in Daqu that affected fermentation quality, but also demonstrated how microorganisms interact to affect the fermentation system, which would provide guidance for microbial supervision in the actual production process. Besides, the application of isothermal microcalorimetry in this study was helpful for us to understand the heat production capacity of microorganisms and their adaptability to the environment. This study presented a commendable framework for improving and controlling the quality of traditional fermentation and inspired further investigations in similar systems.
Collapse
Affiliation(s)
- Shenglu Wu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Jun Lu
- Guizhou Guotai Liquor Group Co. Ltd., Zunyi, Guizhou, China
| | - Changwen Li
- Guizhou Guotai Liquor Group Co. Ltd., Zunyi, Guizhou, China
| | - Hai Du
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Wu M, Luo Y, Yao Y, Ji W, Xia X. Multidimensional analysis of wheat original crucial endogenous enzymes driving microbial communities metabolism during high-temperature Daqu fermentation. Int J Food Microbiol 2024; 413:110589. [PMID: 38281434 DOI: 10.1016/j.ijfoodmicro.2024.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Knowledge of the metabolism of functional enzymes is the key to accelerate the transformation and utilization of raw materials during high temperature Daqu (HTD) manufacturing. However, the metabolic contribution of raw materials-wheat is always neglected. In this research, the relationship between the metabolism of wheat and microorganisms was investigated using physicochemical and sequencing analysis method. Results showed that the process of Daqu generation was divided into three stages based on temperature. In the early stage, a positive correlation was found between Monascus, Rhizopus and glucoamylase metabolism (r > 0.8, p < 0.05). Meanwhile, the glucoamylase metabolism in wheat occupied 63.8 % of the total matrix at the day 4. In the middle to later stages, the wheat metabolism of proteases, α-amylases and lipases in gradually reached their peak. Additionally, Lactobacillus and α-amylases presented a positive correlation (r > 0.7, p < 0.05), and the α-amylases metabolism in wheat occupied 22.18 % of the total matrix during the same time period. More importantly, the changes of enzyme activity metabolic pathway in wheat and microorganism were reflected by respiratory entropy (RQ). Overall, these results guide the choice of substrate during Daqu production.
Collapse
Affiliation(s)
- Mengyao Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yi Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yongqi Yao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Ji
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300000, PR China.
| |
Collapse
|
16
|
Zhou J, Li X, Li S, Ding H, Lang Y, Xu P, Wang C, Wu Y, Liu X, Qiu S. Airborne microorganisms and key environmental factors shaping their community patterns in the core production area of the Maotai-flavor Baijiu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169010. [PMID: 38040348 DOI: 10.1016/j.scitotenv.2023.169010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Airborne microorganisms are important parts of the Moutai-flavor Baijiu brewing microbial community, which directly affects the quality of Baijiu. However, environmental factors usually shape airborne microbiomes in different distilleries, even in the different production areas of the same distillery. Unfortunately, current understanding of environmental factors shaping airborne microbiomes in distilleries is very limited. To bridge this gap, we compared airborne microbiomes in the Moutai-flavor Baijiu core production areas of different distilleries in the Chishui River Basin and systematically investigated the key environmental factors that shape the airborne microbiomes. The top abundant bacterial communities are mainly affiliated to the phyla Actinobacteriota, Firmicutes, and Proteobacteri, whereas Ascomycota and Basidiomycota are the predominant fungal communities. The Random Forest analysis indicated that the biomarkers in three distilleries are Saccharomonospora and Bacillus, Thermoactinomyces, Oceanobacillus, and Methylobacterium, which are the core functional flora contributing to the production of Daqu. The correlation and network analyses showed that the distillery age and environmental temperature have a strong regulatory effect on airborne microbiomes, suggesting that the fermentation environment has a domesticating effect on air microbiomes. Our findings will greatly help us understand the relationship between airborne microbiomes and environmental factors in distilleries and support the production of the high-quality Moutai-flavor Baijiu.
Collapse
Affiliation(s)
- Jianli Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuanchen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuaijinyi Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Hexia Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Ying Lang
- Guizhou Wangmao Jiuqu Research Institute, Changling Road, Guiyang 550003, China
| | - Peng Xu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Chunxiao Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, China.
| | - Shuyi Qiu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
17
|
Xu L, Liang Y, Huang WE, Shang L, Chai L, Zhang X, Shi J, Li B, Wang Y, Xu Z, Lu Z. Rapid detection of six Oceanobacillus species in Daqu starter using single-cell Raman spectroscopy combined with machine learning. Microb Biotechnol 2024; 17:e14416. [PMID: 38381051 PMCID: PMC10880574 DOI: 10.1111/1751-7915.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Many traditional fermented foods and beverages industries around the world request the addition of multi-species starter cultures. However, the microbial community in starter cultures is subject to fluctuations due to their exposure to an open environment during fermentation. A rapid detection approach to identify the microbial composition of starter culture is essential to ensure the quality of the final products. Here, we applied single-cell Raman spectroscopy (SCRS) combined with machine learning to monitor Oceanobacillus species in Daqu starter, which plays crucial roles in the process of Chinese baijiu. First, a total of six Oceanobacillus species (O. caeni, O. kimchii, O. iheyensis, O. sojae, O. oncorhynchi subsp. Oncorhynchi and O. profundus) were detected in 44 Daqu samples by amplicon sequencing and isolated by pure culture. Then, we created a reference database of these Oceanobacillus strains which correlated their taxonomic data and single-cell Raman spectra (SCRS). Based on the SCRS dataset, five machine-learning algorithms were used to classify Oceanobacillus strains, among which support vector machine (SVM) showed the highest rate of accuracy. For validation of SVM-based model, we employed a synthetic microbial community composed of varying proportions of Oceanobacillus species and demonstrated a remarkable accuracy, with a mean error was less than 1% between the predicted result and the expected value. The relative abundance of six different Oceanobacillus species during Daqu fermentation was predicted within 60 min using this method, and the reliability of the method was proved by correlating the Raman spectrum with the amplicon sequencing profiles by partial least squares regression. Our study provides a rapid, non-destructive and label-free approach for rapid identification of Oceanobacillus species in Daqu starter culture, contributing to real-time monitoring of fermentation process and ensuring high-quality products.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxiChina
| | - Yuan Liang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
| | - Wei E Huang
- Oxford Suzhou Centre for Advanced ResearchSuzhouChina
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Lin‐Dong Shang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of SciencesChangchunChina
| | - Li‐Juan Chai
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxiChina
| | - Xiao‐Juan Zhang
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxiChina
| | - Jin‐Song Shi
- School of Life Sciences and Health EngineeringJiangnan UniversityWuxiChina
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of SciencesChangchunChina
| | - Yun Wang
- Oxford Suzhou Centre for Advanced ResearchSuzhouChina
| | - Zheng‐Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxiChina
- National Engineering Research Center of Solid‐State BrewingLuzhouChina
| | - Zhen‐Ming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxiChina
- National Engineering Research Center of Solid‐State BrewingLuzhouChina
| |
Collapse
|
18
|
Li S, Wang S, Wang L, Liu X, Wang X, Cai R, Yuan Y, Yue T, Wang Z. Unraveling symbiotic microbial communities, metabolomics and volatilomics profiles of kombucha from diverse regions in China. Food Res Int 2023; 174:113652. [PMID: 37981364 DOI: 10.1016/j.foodres.2023.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Kombucha is a natural fermented beverage (mixed system). This study aimed to unravel the signatures of kombucha in China to achieve tailor-made microbial consortium. Here, biochemical parameters, microbiome, metabolite production and volatile profile were comprehensively compared and characterized across four regions (AH, HN, SD, SX), both commonalities and distinctions were highlighted. The findings revealed that yeast species yeast Starmerella, Zygosaccharomyces, Dekkera, Pichia and bacterium Komagataeibacter, Gluconobacter were the most common microbes. Additionally, the composition, distribution and stability of microbial composition in liquid phase were superior to those in biofilm. The species diversity, differences, marker and association were analyzed across four areas. Metabolite profiles revealed a total of 163 bioactive compounds (23 flavonoids, 13 phenols), and 68 differential metabolites were screened and identified. Moreover, the metabolic pathways of phenylpropanoids biosynthesis were closely linked with the highest number of metabolites, followed by flavonoid biosynthesis. Sixty-five volatile compounds (23 esters) were identified. Finally, the correlation analysis among the microbial composition and volatile and functional metabolites showed that Komagataeibacter, Gluconolactone, Zygosacchaaromycess, Starmerella and Dekkera seemed closely related to bioactive compounds, especially Komagataeibacter displayed positive correlations with 1-hexadecanol, 5-keto-D-gluconate, L-malic acid, 6-aminohexanoate, Starmerella contributed greatly to gluconolactone, thymidine, anabasine, 2-isopropylmalic acid. Additionally, Candida was related to β-damascenone and α-terpineol, and Arachnomyces and Butyricicoccus showed the consistency of associations with specific esters and alcohols. These findings provided crucial information for creating a stable synthetic microbial community structure, shedding light on fostering stable kombucha and related functional beverages.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Saiqun Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Luo LJ, Song L, Han Y, Zhen P, Han DY, Zhao X, Zhou X, Wei YH, Yu HX, Han PJ, Bai FY. Microbial communities and their correlation with flavor compound formation during the mechanized production of light-flavor Baijiu. Food Res Int 2023; 172:113139. [PMID: 37689903 DOI: 10.1016/j.foodres.2023.113139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 09/11/2023]
Abstract
Light-flavor Baijiu fermentation is a typical spontaneous solid-state fermentation process fueled by a variety of microorganisms. Mechanized processes have been increasingly employed in Baijiu production to replace traditional manual operation processes, however, the microbiological and physicochemical dynamics in mechanized processes remain largely unknown. Here, we investigated the microbial community succession and flavor compound formation during a whole mechanized fermentation process of light-flavor Baijiu using the conventional dilution plating method, PacBio single-molecule real-time (SMRT) sequencing and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The results showed that largely different fungal and bacterial communities were involved in the soaking and fermentation processes. A clear succession from Pantoea agglomerans to Bacillus (B.) smithii and B. coagulans in dominant bacterial species and from Cladosporium exasperatum to Saccharomyces cerevisiae and Lichtheimia ramosa in dominant fungal species occurred in the soaking processes. In the fermentation process, the most dominant bacterial species was shifted from Pantoea agglomerans to Lactobacillus (La.) acetotolerans and the most dominant fungal species were shifted from Lichtheimia ramose and Rhizopus arrhizus to Saccharomyces cerevisiae. The bacterial and fungal species positively associated with acidity and the formation of ethanol and different flavor compounds were specified. The microbial species exhibited strong co-occurrence or co-exclusion relationships were also identified. The results are helpful for the improvement of mechanized fermentation process of light-flavor Baijiu production.
Collapse
Affiliation(s)
- Lu-Jun Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Liang Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ying Han
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Pan Zhen
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Hua Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hui-Xin Yu
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
20
|
Huang P, Jin Y, Liu M, Peng L, Yang G, Luo Z, Jiang D, Zhao J, Zhou R, Wu C. Exploring the Successions in Microbial Community and Flavor of Daqu during Fermentation Produced by Different Pressing Patterns. Foods 2023; 12:2603. [PMID: 37444341 DOI: 10.3390/foods12132603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Daqu can be divided into artificially pressed daqu (A-Daqu) and mechanically pressed daqu (M-Daqu) based on pressing patterns. Here, we compared the discrepancies in physicochemical properties, volatile metabolites, and microbiota features between A-Daqu and M-Daqu during fermentation and further investigated the factors causing those differences. A-Daqu microbiota was characterized by six genera (e.g., Bacillus and Thermoactinomyces), while five genera (e.g., Bacillus and Thermomyces) dominated in M-Daqu. The flavor compounds analysis revealed that no obvious difference was observed in the type of esters between the two types of daqu, and M-Daqu was enriched with more alcohols. The factors related to differences between the two types of daqu were five genera (e.g., Hyphopichia). The functional prediction of microbial communities revealed that the functional discrepancies between the two types of daqu were mainly related to ethanol metabolism and 2,3-butanediol metabolism. This study provided a theoretical basis for understanding the heterogeneity of daqu due to the different pressing patterns.
Collapse
Affiliation(s)
- Ping Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | | | - Liqun Peng
- Sichuan Yibin Xufu Liquor Co., Ltd., Yibin 644000, China
| | | | - Zhi Luo
- Sichuan Yibin Xufu Liquor Co., Ltd., Yibin 644000, China
| | - Dongcai Jiang
- Sichuan Yibin Xufu Liquor Co., Ltd., Yibin 644000, China
| | | | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Luo J, Liu S, Lu H, Chen Q, Shi Y. Microbial Community Variations and Bioconversion Improvements during Soybean-Based Fermentation by Kefir Grains. Foods 2023; 12:1588. [PMID: 37107383 PMCID: PMC10137332 DOI: 10.3390/foods12081588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Soybeans possess unexpected flavors and are difficult to be absorbed by the gastrointestinal tract. Kefir grain fermentation provides diverse strains and bioactive compounds, which may enhance flavor and bioaccessibility. Third-generation sequencing was applied to analyze the microbial diversity in milk and soybean kefir grains in this study. In both types of kefir grains, the most common bacterial genus was Lactobacillus, and their fungal communities were dominated by Kazachstania. Lactobacillus kefiranofaciens was the most abundant species in kefir grains, while Lactobacillus kefiri showed a higher proportion in soybean kefir grains. In addition, the quantification of free amino acids and volatile flavor compounds in soybean solution and soybean kefir have shown the increased content of glutamic acid and a decreased amount of unpleasant beany flavor compounds, demonstrating that the nutritive value and sensory properties of soybean can be improved by kefir grain fermentation. Finally, the bioconversion of isoflavones during fermentation and in vitro digestion was evaluated, suggesting that fermentation is beneficial for aglycone formation and absorption. To conclude, kefir fermentation is proposed to change the microbial structure of kefir grains, promote the nutritional value of soybean-based fermented products, and provide possible solutions for the development of soybean products.
Collapse
Affiliation(s)
- Jiaqi Luo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Li H, Liu S, Liu Y, Hui M, Pan C. Functional microorganisms in Baijiu Daqu: Research progress and fortification strategy for application. Front Microbiol 2023; 14:1119675. [PMID: 36778882 PMCID: PMC9911690 DOI: 10.3389/fmicb.2023.1119675] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Daqu is a saccharifying and fermenting starter in the production of Chinese Baijiu; its quality directly affects the quality of Baijiu. The production of Daqu is highly environment-dependent, and after long-term natural domestication, it is rich in a wide variety of microorganisms with a stable composition, which provide complex and diverse enzymes and flavor (precursor) substances and microbiota for Jiupei (Fermented grains) fermentation. However, inoculation with a relatively stable microbial community can lead to a certain upper limit or deficiencies of the physicochemical properties (e.g., saccharification capacity, esterification capacity) of the Daqu and affect the functional expression and aroma formation of the Daqu. Targeted improvement of this problem can be proposed by selecting functional microorganisms to fortify the production of Daqu. This review introduced the isolation, screening, identification and functional characteristics of culture-dependent functional microorganisms in Baijiu-brewing, the core functional microbiota community of Daqu, and the related research progress of functional microorganisms fortified Daqu, and summarized the fortifying strategies of functional microorganisms, aiming to further deepen the application of functional microorganisms fortification in Daqu fermentation and provide ideas for the flavor regulation and quality control of Baijiu.
Collapse
Affiliation(s)
- Haideng Li
- College of Biological Engineering, Henan University of Technology, Henan, Zhengzhou, China,College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Shengyuan Liu
- International Education College, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanbo Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Henan, Zhengzhou, China
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,*Correspondence: Chunmei Pan,
| |
Collapse
|
23
|
Zhang Y, Shen Y, Niu J, Ding F, Ren Y, Chen X, Han BZ. Bacteria-induced amino acid metabolism involved in appearance characteristics of high-temperature Daqu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:243-254. [PMID: 35857424 DOI: 10.1002/jsfa.12136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Significant changes occurd in Daqu bricks on the 15th day of incubation, and brick color (yellow, brown, or dark) is generally used as a standard for quality evaluation by experienced workers. This study aimed to explore the basis behind the phenomenon through multi-omics studies. The physicochemical properties of different high-temperature Daqu were compared. Furthermore, PacBio sequencing and the ultra-high-performance liquid chromatographic-Q-exactive-mass spectrometric approach were employed to analyze the differences in the microbiome and metabolome among different Daqu samples. RESULTS Bacillus was the biomarker of yellow Daqu, Thermoactinomyces and Thermoascus were the key genera in brown Daqu, and Burkholderiales, Sphingomonas, and Ralstonia were biomarkers in dark Daqu. The physicochemical characteristics (especially the color values) of different high-temperature Daqu showed strong correlations with the bacterial alpha diversity and the relative abundance of dominant bacterial genera. Amino acid metabolism pathways including tryptophan metabolism, β-alanine metabolism, and arginine biosynthesis were the key factors resulting in the characteristic differences where Bacillus, Burkholderia, Ralstonia, and Sphingomonas were pivotal bacterial genera. The relative abundance of Bacillus had a positive correlation with the content of 3-hydroxykynurenamine, l-glutamic acid, and pantothenic acid, while it showed a negative correlation with indoleacetic acid, l-tryptophan, N-acetylserotonin, l-histidine, l-aspartic acid, phosphatidylserine, 5-methoxyindoleacetate, and L-serine. Burkholderia, Ralstonia, and Sphingomonas had the opposite effects. CONCLUSION Microbes play different roles in amino acid metabolism pathways, producing different metabolites, contributing to the differences in Daqu appearance and quality. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuandi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yi Shen
- Sichuan Langjiu Co. Ltd, Luzhou, China
| | - Jiao Niu
- Sichuan Langjiu Co. Ltd, Luzhou, China
| | - Fang Ding
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Ren
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoxue Chen
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Zhang Y, Xu J, Jiang Y, Niu J, Chen X, Han BZ. Microbial characteristics and metabolite profiles of high-temperature Daqu in different maturation stages. World J Microbiol Biotechnol 2022; 38:234. [PMID: 36222911 DOI: 10.1007/s11274-022-03428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022]
Abstract
The maturation period of high-temperature Daqu (HTD) is usually 3-6 months, and the characteristics of HTD at different maturation stages were different. In this study, the microbial characteristics and metabolite profiles of HTD at different maturation stages were revealed with the combination of physicochemical detection, the third generation Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing technology, gas chromatography-mass spectrometry (GC-MS), and gas chromatography-ion mobility spectrometry (GC-IMS). Results showed that HTD matured for 6 months (Mix_m6) had higher saccharification power but less culturable thermotolerant bacteria and fungi than HTD matured for 3 months (Mix_m3). The average relative abundances of Thermoactinomyces, Paenibacillus, and Rasamsonia in Mix_m3 were higher than that in Mix_m6, while the average relative abundances of Bacillus, Pseudomonas, Thermoascus increased obviously with the prolongation of the maturation period. Streptomyces and Thermoactinomyces were biomarkers in Mix_m3, while Burkholderia and Pseudomonas were regarded as biomarkers in Mix_m6. Differences in microbiota structure led to different enrichment of metabolic pathways in HTD at different maturation stages, resulting in different flavor profiles, especially in ethyl acetate, 1-octen-3-one, (E)-3-Hexen-1, 2,3,5-trimethy-6-ethylpyrazine, pyrazine, tetramethyl content. The microbiota and metabolite characteristics of HTD comprehensively reflected the HTD quality in different maturation stages, which provided a reference for determining the optimal maturation time.
Collapse
Affiliation(s)
- Yuandi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Jingguo Xu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | | | - Jiao Niu
- Sichuan Langjiu Co., Ltd., Luzhou, China
| | - Xiaoxue Chen
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China.
| |
Collapse
|
25
|
Kang J, Chen X, Han BZ, Xue Y. Insights into the bacterial, fungal, and phage communities and volatile profiles in different types of Daqu. Food Res Int 2022; 158:111488. [DOI: 10.1016/j.foodres.2022.111488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
|