1
|
Maphaisa TC, Akinmoladun OF, Adelusi OA, Mwanza M, Fon F, Tangni E, Njobeh PB. Advances in mycotoxin detection techniques and the crucial role of reference material in ensuring food safety. A review. Food Chem Toxicol 2025; 200:115387. [PMID: 40081789 DOI: 10.1016/j.fct.2025.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Mycotoxins, toxic secondary metabolites produced by fungi, pose a significant threat to food safety and human health. The occurrence of mycotoxins in food commodities necessitates accurate and reliable detection methods. Advanced detection techniques, such as chromatographic techniques and immunochemical assays, have improved sensitivity and specificity. However, the lack of standardized reference material, particularly in less privileged countries, hinders method validation and proficiency testing, ultimately affecting mycotoxin testing and regulation. Moreover, these techniques are complex as they require specialized equipment, and well-trained personnel, thus limiting their practical applications. This comprehensive review provides an up-to-date overview of the occurrence of mycotoxins and recent advancements in detection methods. It examines the crucial role of mycotoxin standards as reference materials for ensuring reliable results in mycotoxins analysis in agriculture commodities. The review addresses emerging challenges, knowledge gaps, and future research directions in mycotoxin detection and reference material development. By synthesizing existing literature, this review aims to provide valuable resources for researchers, policymakers, and other stakeholders in food safety, highlighting the importance of integrated approaches to mitigate mycotoxin contamination and ensuring food safety.
Collapse
Affiliation(s)
- Tiisetso Colleen Maphaisa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa.
| | - Oluwakamisi Festus Akinmoladun
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Oluwasola Abayomi Adelusi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Mulanda Mwanza
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Fabian Fon
- Department of Agriculture University of Zululand, Private Bag X3886, KwaDlangezwa, South Africa
| | - Emmanuel Tangni
- Sciensano, Chemical and Physical Health Risks Organic Contaminants and Additives, Toxins Unit, Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| |
Collapse
|
2
|
He Y, Zhang D, Wu Q, Du G, Liu R, Zhou X, Zhang Y. Highly sensitive fluorescent aptasensor based on magnetic metal-organic framework for aflatoxin B1 detection. Talanta 2025; 287:127620. [PMID: 39874794 DOI: 10.1016/j.talanta.2025.127620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Aflatoxin B1 (AFB1) has strong carcinogenicity, mutagenicity, and teratogenicity even at low concentrations, presenting a major risk to food safety and human health, hence, it is crucial to develop a sensitive detection technique for AFB1. Consequently, cadmium telluride (CdTe) quantum dots conjugated with AFB1 aptamers serve as fluorescent signal probes, whereas Fe3O4@UiO-66-NH2 nanocomplexes are employed as magnetic carriers and fluorescence quenchers. Fe3O4@UiO-66-NH2 reduces background signal interference, thereby enhancing detection sensitivity and Förster Resonance Energy Transfer (FRET) efficiency. We have developed a highly sensitive and selective magnetron fluorescence aptasensor based on FRET for the specific detection of AFB1. Under the ideal experimental conditions, the linear range of AFB1 is 0.001-200 ng/mL, with a linear equation of y = 0.16x+0.65 (R2 = 0.996), and the detection limit is 0.012 ng/mL. The aptasensor demonstrated superior selectivity, reproducibility, and stability for AFB1, the recoveries for real samples of corn and wheat ranged from 95 % to 103 %, demonstrating the feasibility and practicality of the sensor. Furthermore, the accuracy of the aptasensor was verified by comparison with the results of high performance liquid chromatography, indicating that the aptasensor holds significant potential for practical detection applications.
Collapse
Affiliation(s)
- Yanfei He
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Dongdong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Qiong Wu
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Gengan Du
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Ruoting Liu
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Xianqing Zhou
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Yurong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Liu B, Chen G, Abd El-Aty AM, Zhai R, Liu G, Xu X, Zhang Y, Li L, Zhang J, Xu D. Advances of functional nucleic acids based on specific recognition:A review. Int J Biol Macromol 2025; 304:140828. [PMID: 39929457 DOI: 10.1016/j.ijbiomac.2025.140828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Nucleic acids, which are fundamental to living organisms, play a crucial role in carrying and transmitting genetic information. Advances in molecular biology have led to the exploration of functional nucleic acids (FNAs), including aptamers, DNAzymes, and G-quadruplexes, known for specific recognition or catalysis. FNAs with high specificity, sequence programmability, modification ease and biocompatibility, have extensive applications in biosensing, environmental monitoring, drug delivery and cancer diagnosis. This review focuses on the structure and specific recognition principles of FNAs, followed by an exploration for biosensing and biomedical applications, offering insights into current challenges and future trends in FNAs as recognition elements.
Collapse
Affiliation(s)
- Beibei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Vegetable Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Ministry of Agriculture Vegetable Product Quality Safety Risk Assessment Laboratory, Beijing 100081, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Vegetable Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Ministry of Agriculture Vegetable Product Quality Safety Risk Assessment Laboratory, Beijing 100081, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Rongqi Zhai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Vegetable Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Ministry of Agriculture Vegetable Product Quality Safety Risk Assessment Laboratory, Beijing 100081, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Vegetable Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Ministry of Agriculture Vegetable Product Quality Safety Risk Assessment Laboratory, Beijing 100081, China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Vegetable Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Ministry of Agriculture Vegetable Product Quality Safety Risk Assessment Laboratory, Beijing 100081, China
| | - Yanguo Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Vegetable Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Ministry of Agriculture Vegetable Product Quality Safety Risk Assessment Laboratory, Beijing 100081, China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Vegetable Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Ministry of Agriculture Vegetable Product Quality Safety Risk Assessment Laboratory, Beijing 100081, China
| | - Jie Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Vegetable Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Ministry of Agriculture Vegetable Product Quality Safety Risk Assessment Laboratory, Beijing 100081, China.
| |
Collapse
|
4
|
Jiao S, Wu L, Jiang H, Zhang S, Han Y, Huang H. A review on SERS-based techniques for mycotoxin detection: From construction to application. Trends Analyt Chem 2025; 184:118120. [DOI: 10.1016/j.trac.2024.118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Tang Y, Li Y, Chen P, Zhong S, Yang Y. Nucleic Acid Aptamer-Based Sensors for Bacteria Detection: A Review. Bioessays 2025; 47:e202400111. [PMID: 39821800 DOI: 10.1002/bies.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025]
Abstract
Bacteria have a significant impact on human production and life, endangering human life and health, so rapid detection of infectious agents is essential to improve human health. Aptamers, which are pieces of oligonucleotides (DNA or RNA) have been applied to biosensors for bacteria detection due to their high affinity, selectivity, robust chemical stability, and their compatibility with various signal amplification and signal transduction mechanisms. In this review, we summarize the different bacterial aptamers selected in recent years using SELEX technology and discuss the differences in optical and electrochemical bacterial aptamer sensors. In addition the technological developments and innovations in bacterial aptamer sensor technology are introduced. Combining new materials and methods, the efficiency and stability of the sensors have also been improved. This review summarizes the progress of current bacterial aptamer sensors based on their practical application status and provides an outlook on their future development.
Collapse
Affiliation(s)
- Yalan Tang
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Yun Li
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Ping Chen
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Shian Zhong
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China
| | - Yanjing Yang
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
6
|
Wang Y, Zhao Y, Jin Y, Wang Y, Xiao G, Baeyens J, Su H. Double detection of mycotoxins based on aptamer induced Fe 3O 4@TiO 2@Ag Core - Shell nanoparticles "turn on" fluorescence resonance energy transfer. Food Chem 2025; 464:141601. [PMID: 39413601 DOI: 10.1016/j.foodchem.2024.141601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Multiple and sensitive mycotoxin detection is an essential early-warning mechanism for safeguarding human health, and preserving the environment. We synthesized a turn-on Fluorescence Resonance Energy Transfer (FRET) aptamer sensor based on the unique fluorescence quenching and substrate recognition characteristics of Ag NTs (energy receptors) and aptamer modified Fe3O4@TiO2 NP (energy donor) to detect multiple toxins using a single diagnostic approach. The addition of aflatoxin B1 (AFB1) and ochratoxin A (OTA) resulted in a change in fluorescence intensity at 510 and 650 nm, which can be employed for simultaneous recognition with detection limits of 0.94 ng·mL-1 (R2 = 0.997) and 0.54 ng·mL-1 (R2 = 0.995). The aptasensors have been successfully applied for the determination of AFB1 and OTA in grain and oil samples with high recovery rates. The approach provides novel possibilities for the development of sensitive and selective aptasensors with potential applications in aptamer-recognized multifunctional biosensing.
Collapse
Affiliation(s)
- Yuxiang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yilin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yu Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yaoqiang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Gang Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jan Baeyens
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China; Department of Chemical Engineering, KU Leuven, 2860 Sint-Katelijne-Waver, Belgium
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
7
|
Li L, Wang M, Dong Y, Yu D, Chen Y. Micropore Resistance Counting Platform for Multiplexed and Ultrasensitive Detection of Mycotoxins and Biomarkers. ACS NANO 2025; 19:920-932. [PMID: 39750018 DOI: 10.1021/acsnano.4c12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Development of a multiplexed and sensitive biosensing platform is a priority for public health security. We report a micropore resistance counting platform based on polystyrene microsphere size-based encoding and Clostridium butyricum Argonaute (CbAgo) decoding for multiplexed and ultrasensitive detection. Initially, we constructed a target DNA-modified polystyrene microsphere coding system based on micropore resistance counting. Subsequently, the precise recognition and cleavage capabilities of the guide DNA-activated CbAgo protein enable the decoding of the encoded microsphere system. Changes in the concentration of polystyrene microspheres are presented as a signal readout. The platform demonstrated excellent performance in multiplexed detection of three mycotoxins (with a sensitivity range over 4 orders of magnitude reaching the pg/mL level) and two inflammatory markers at pg/mL. Combining precise enzyme cleavage by CbAgo with micropore resistance counting, the developed platform is a multiplexed and highly sensitive detection tool with wide-ranging potential in applications such as clinical diagnosis, food safety inspection, and environmental monitoring.
Collapse
Affiliation(s)
- Letian Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034 Liaoning, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Mengjiao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034 Liaoning, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070 Hubei, China
| | - Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| | - Deyang Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| |
Collapse
|
8
|
Ouyang M, Liu T, Yuan X, Xie C, Luo K, Zhou L. Nanomaterials-based aptasensors for rapid detection and early warning of key food contaminants: A review. Food Chem 2025; 462:140990. [PMID: 39208725 DOI: 10.1016/j.foodchem.2024.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The frequent occurrence of food safety incidents has aroused public concern about food safety and key contaminants. Foodborne pathogen contamination, pesticide residues, heavy metal residues, and other food safety problems will significantly impact human health. Therefore, developing efficient and sensitive detection method to ensure food safety early warning is paramount. The aptamer-based sensor (aptasensor) is a novel analytical tool with strong targeting, high sensitivity, low cost, etc. It has been extensively utilized in the pharmaceutical industry, biomedicine, environmental engineering, food safety detection, and in other diverse fields. This work reviewed the latest research progress of aptasensors for food analysis and detection, mainly introducing their application in detecting various key food contaminants. Subsequently, the sensing mechanism and performance of aptasensors are discussed. Finally, the review will examine the challenges and opportunities related to aptasensors for detecting major contaminants in food, and advance implementation of aptasensors in food safety and detection.
Collapse
Affiliation(s)
- Min Ouyang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
9
|
Zhang Q, Liu T, Yuan X, Zhao X, Zhou L. Aptasensors application for cow's milk allergens detection and early warning: Progress, challenge, and perspective. Talanta 2025; 281:126808. [PMID: 39260252 DOI: 10.1016/j.talanta.2024.126808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Cow's milk allergy (CMA) is considered one of the most prevalent food allergies and a public health concern. Modern medical research shows that the effective way to prevent allergic reactions is to prevent allergic patients from consuming allergenic substances. Therefore, the development of rapid and accurate detection technology for milk allergens detection and early warning is critical to safeguarding those with a cow milk allergy. As the oligonucleotide sequences with high specificity and selectivity, aptamers frequently assemble with transduction elements forming multifarious aptasensors for quantitative detection owing to their high-affinity binding to the target. Current aptasensors in the field of cow's milk allergen detection in recent years are explored in this review. This review takes a look back at a few common assays, including ELISA and PCR, before presenting a clear overview of the aptamer and threshold doses. It delves into a detailed discussion of the current aptamer-based detection techniques and related theories for milk allergen identification. Last but not least, we conclude with a discussion and outlook of the advancements made in allergen detection with aptamers. We sincerely hope that there will be more extensive applications for aptasensors in the future contributing to reducing the possibility of patients suffering from adverse reactions.
Collapse
Affiliation(s)
- Qingya Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xiongjie Zhao
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan, 425199, China.
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
10
|
Lin Y, Lu N, Ma J, Cheng JH, Sun DW. High sensitive Ratiometric fluorescent Aptasensor with AIE properties for Deoxynivalenol (DON) detection. Food Chem 2024; 460:140550. [PMID: 39142026 DOI: 10.1016/j.foodchem.2024.140550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
An emerging fluorescent ratiometric aptasensor based on gold nanoclusters (AuNCs) with aggregation-induced emission (AIE) properties was prepared and studied for deoxynivalenol (DON) detection. The ratiometric aptasensor used red fluorescent AuNCs620 labelled with DON aptamer (Apt-AuNCs620) as an indicator and green fluorescent AuNCs519 modified by complementary DNA (cDNA) and magnetic beads (MBs) as internal reference, namely MBs-cDNA-AuNCs519. Under the optimal conditions, the aptasensor exhibited two good linear ranges of 0.1-50 and 50-5000 pg/mL for DON detection with coefficient of determination (R2) of 0.9937 and 0.9928, respectively, and the low detection limit (LOD) of 4.09 pg/mL was achieved. Furthermore, this aptasensor was feasible to detect DON in positive wheat samples, and the results were in line with those from HPLC and ELISA, thus providing a promising route to detect DON with high sensitivity in cereals, even for other mycotoxins by replacing the suitable aptamer and cDNA.
Collapse
Affiliation(s)
- Yuandong Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Nian Lu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
Tang C, He Y, Yuan B, Li L, Luo L, You T. Simultaneous detection of multiple mycotoxins in agricultural products: Recent advances in optical and electrochemical sensing methods. Compr Rev Food Sci Food Saf 2024; 23:e70062. [PMID: 39530609 DOI: 10.1111/1541-4337.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Mycotoxin contamination poses serious threats to human and animal health. Food and environmental systems are often simultaneously contaminated with multiple mycotoxins, a problem that is further exacerbated by the synergistic toxicological effects of these co-occurring mycotoxins. Consequently, the development of rapid detection methods capable of simultaneously identifying multiple mycotoxins in agricultural products is essential to prevent their entry into the food chain. Compared to standard detection methods, optical and electrochemical (EC) sensing methods have distinct advantages for the rapid detection of mycotoxins. This review comprehensively summarizes the latest advancements in the field of simultaneous detection of multiple mycotoxins using optical and EC sensing methods over the last 6 years (2018-2024). First, the review introduces the classification and relevant principles of optical and EC sensing methods. Thereafter, it emphasizes innovative simultaneous detection strategies within these approaches. Finally, it discusses current challenges and offers a reference for further research. Currently, the main challenge lies in the mutual interference among targets, making the development of an interference-free detection platform essential. Furthermore, the ongoing development of integrated technology is expected to aid regulatory authorities in improving the quality of agricultural products for field applications.
Collapse
Affiliation(s)
- Chunyuan Tang
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Yi He
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Bingzheng Yuan
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Libo Li
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Lijun Luo
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Tianyan You
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
12
|
Zhang W, Luo M, Chen J, Li Z, Wei X, Wu M, Yang S, He Y, Wang X, Xiao Z. A simple and label-free fluorescent DNA sensor for visual detection of aptamer-based berberine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7130-7138. [PMID: 39292521 DOI: 10.1039/d4ay01411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The intrinsic fluorescence of berberine is very weak, which can be enhanced by its interaction with specific aptamers. A simple and sensitive DNA sensor for visual detection of berberine has here been established. When using this sensor, there was a good linear relationship between the change in fluorescence intensity of berberine and the concentration of berberine in the range of 16-2000 nM, with a detection limit of 5.1 nM. The change in fluorescence intensity was caused by the addition of aptamers. A detection limit of 170.1 nM was acquired by reading the RGB values of fluorescent images with a smartphone for the quantification of berberine. Common antibiotics did not interfere with the measurement of the berberine concentration. The molecular ion peaks of the complexes formed by the aptamer and berberine could be clearly observed by electrospray ionization mass spectrometry. The UV-vis absorption spectra, circular dichroism spectra, and fluorescence spectra indicated a strong interaction between berberine and the aptamer. The dissociation constant (Kd) between berberine and the aptamer was 1.91 μM. This sensor was both simple and sensitive, requiring only a 21-base oligonucleotide. It realized a visual quantitative analysis with a smartphone. This method could also be used for similar fluorescence visualization determination of aptamer-based drug molecules.
Collapse
Affiliation(s)
- Wenjuan Zhang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Mingwan Luo
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Juan Chen
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Zhengxing Li
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Xian Wei
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Miqi Wu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Shengli Yang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Yuanju He
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Xiaoping Wang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Zhiyou Xiao
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| |
Collapse
|
13
|
Wei K, Ye Z, Dong W, Zhang L, Wang W, Li J, Eltzov E, Wang S, Mao X. Generating robust aptamers for food analysis by sequence-based configuration optimization. Talanta 2024; 275:126044. [PMID: 38626500 DOI: 10.1016/j.talanta.2024.126044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Advanced analytical techniques are emerging in the food industry. Aptamer-based biosensors achieve rapid and highly selective analysis, thus drawing particular attention. Aptamers are oligonucleotide probes screened via in vitro Systematic Evolution of Ligands by EXponential Enrichment (SELEX), which can bind with their specific targets by folding into three-dimensional configurations and accept various modifications to be incorporated into biosensors, showing great potential in food analysis. Unfortunately, aptamers obtained by SELEX may not possess satisfactory affinity. Post-SELEX strategies were proposed to optimize aptamers' configuration and enhance the binding affinity, with specificity confirmed. Sequence-based optimization strategies exhibit great advantages in simple operation, good generalization, low cost, etc. This review summarizes the latest study (2015-2023) on generating robust aptamers for food targets by sequence-based configuration optimization, as well as the generated aptamers and aptasensors, with an expectation to provide inspirations for developing aptamer and aptasensors with high performance for food analysis and to safeguard food quality and safety.
Collapse
Affiliation(s)
- Kaiyue Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Ziyang Ye
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Wenhui Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Ling Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Wenjing Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| |
Collapse
|
14
|
Sun Q, Zhou Y, Ma M, Zhang F, Li S, Chen Z, Fang Y, Le T, Xing F. Development of a "Signal-On" Fluorescent Aptasensor for Highly Selective and Sensitive Detection of ZEN in Cereal Products Using Nitrogen-Doped Carbon Dots Based on the Inner Filter Effect. BIOSENSORS 2024; 14:347. [PMID: 39056623 PMCID: PMC11274622 DOI: 10.3390/bios14070347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
This study aimed to develop a novel fluorescent aptasensor for the quantitative detection of zearalenone (ZEN), addressing the limitations of conventional detection techniques in terms of speed, sensitivity, and ease of use. Nitrogen-doped carbon dots (N-CDs) were synthesized via the hydrothermal method, resulting in spherical particles with a diameter of 3.25 nm. These N-CDs demonstrated high water solubility and emitted a bright blue light at 440 nm when excited at 355 nm. The fluorescence of N-CDs was quenched by dispersed gold nanoparticles (AuNPs) through the inner filter effect, while aggregated AuNPs induced by NaCl did not affect the fluorescence of N-CDs. The aptamer could protect AuNPs from NaCl-induced aggregation, but the presence of ZEN weakened this protective effect. Based on this principle, optimal conditions for ZEN detection included 57 mM NaCl, 12.5 nM aptamer concentration, incubation of AuNPs with NaCl for 15 min in Tris-EDTA(TE) buffer, and incubation of aptamer with ZEN and NaCl for 30 min. Under these optimized conditions, the "signal-on" fluorescent aptasensor for ZEN detection showed a linear range of 0.25 to 200 ng/mL with a low detection limit of 0.0875 ng/mL. Furthermore, the developed aptasensor exhibited excellent specificity and could rapidly detect ZEN in corn flour samples or corn oil, achieving satisfactory recovery rates ranging from 84.7% to 108.6%. Therefore, this study presents an economical, convenient, sensitive, and rapid method for accurately quantifying ZEN in cereal products.
Collapse
Affiliation(s)
- Qi Sun
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, No. 37 Chengzhong Road, Shapingba District, Chongqing 401331, China; (Y.Z.); (M.M.); (F.Z.); (S.L.); (Z.C.); (Y.F.); (T.L.)
| | - Yuting Zhou
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, No. 37 Chengzhong Road, Shapingba District, Chongqing 401331, China; (Y.Z.); (M.M.); (F.Z.); (S.L.); (Z.C.); (Y.F.); (T.L.)
| | - Miaomiao Ma
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, No. 37 Chengzhong Road, Shapingba District, Chongqing 401331, China; (Y.Z.); (M.M.); (F.Z.); (S.L.); (Z.C.); (Y.F.); (T.L.)
| | - Fuyan Zhang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, No. 37 Chengzhong Road, Shapingba District, Chongqing 401331, China; (Y.Z.); (M.M.); (F.Z.); (S.L.); (Z.C.); (Y.F.); (T.L.)
| | - Shuang Li
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, No. 37 Chengzhong Road, Shapingba District, Chongqing 401331, China; (Y.Z.); (M.M.); (F.Z.); (S.L.); (Z.C.); (Y.F.); (T.L.)
| | - Zhuoer Chen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, No. 37 Chengzhong Road, Shapingba District, Chongqing 401331, China; (Y.Z.); (M.M.); (F.Z.); (S.L.); (Z.C.); (Y.F.); (T.L.)
| | - Yu Fang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, No. 37 Chengzhong Road, Shapingba District, Chongqing 401331, China; (Y.Z.); (M.M.); (F.Z.); (S.L.); (Z.C.); (Y.F.); (T.L.)
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, No. 37 Chengzhong Road, Shapingba District, Chongqing 401331, China; (Y.Z.); (M.M.); (F.Z.); (S.L.); (Z.C.); (Y.F.); (T.L.)
| | - Fuguo Xing
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
15
|
Liu H, Gao X, Qin H, Yan M, Zhu C, Li L, Qu F. Self-Responsive Fluorescence Aptasensor for Lactoferrin Determination in Dairy Products. Molecules 2024; 29:3013. [PMID: 38998965 PMCID: PMC11243337 DOI: 10.3390/molecules29133013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, a self-responsive fluorescence aptasensor was established for the determination of lactoferrin (Lf) in dairy products. Herein, the aptamer itself functions as both a recognition element that specifically binds to Lf and a fluorescent signal reporter in conjunction with fluorescent moiety. In the presence of Lf, the aptamer preferentially binds to Lf due to its specific and high-affinity recognition by folding into a self-assembled and three-dimensional spatial structure. Meanwhile, its reduced spatial distance in the aptamer-Lf complex induces a FRET phenomenon based on the quenching of 6-FAM by amino acids in the Lf protein, resulting in a turn-off of the fluorescence of the system. As a result, the Lf concentration can be determined straightforwardly corresponding to the change in the self-responsive fluorescence signal. Under the optimized conditions, good linearities (R2 > 0.99) were achieved in an Lf concentration range of 2~10 μg/mL for both standard solutions and the spiked matrix, as well as with the desirable detection limits of 0.68 μg/mL and 0.46 μg/mL, respectively. Moreover, the fluorescence aptasensor exhibited reliable recoveries (89.5-104.3%) in terms of detecting Lf in three commercial samples, which is comparable to the accuracy of the HPCE method. The fluorescence aptasensor offers a user-friendly, cost-efficient, and promising sensor platform for point-of-need detection.
Collapse
Affiliation(s)
- Hao Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China;
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China;
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Q.); (M.Y.)
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Q.); (M.Y.)
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Q.); (M.Y.)
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China; (L.L.); (F.Q.)
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China; (L.L.); (F.Q.)
| |
Collapse
|
16
|
Miao M, Guo L, Xue J, Jia Y, Cui Z, Yang H. A controllable Y-shaped DNA structure assisted aptasensor for the simultaneous detection of AFB 1 and OTA based on ARGET ATRP. J Mater Chem B 2024; 12:5861-5868. [PMID: 38775046 DOI: 10.1039/d4tb00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The development of a simple, rapid, and sensitive technology for the simultaneous detection of mycotoxins is of great significance in ensuring the safety of foods and drugs. Herein, a fluorescence aptasensor with high sensitivity and reproducibility for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) was developed. In this sensing system, AFB1 and OTA aptamers were co-immobilized on the surface of magnetic beads (MBs) to form a Y-shaped structure through the principle of complementary base pairing, and were used as recognition probes to specifically capture the target. Activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) was used as a signal amplification strategy to improve the sensitivity. The initiator modified at the end of an antibody initiates the ARGET ATRP reaction. Different fluorescence signals were designed to achieve the simultaneous detection of OTA and AFB1 with limits of 426.18 and 79.55 fg mL-1 for AFB1 and OTA, respectively. In addition, experiments were conducted on three types of samples, and the recoveries of the two mycotoxins ranged from 87.30% to 109.50%, with relative standard deviations ranging from 0.50% to 4.92% under reproducible conditions. The results suggest that the developed aptasensor is sufficient to meet the different regulatory requirements of the two mycotoxins in food and drug safety and shows great potential.
Collapse
Affiliation(s)
- Mingsan Miao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, People's Republic of China
| | - Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Jinyan Xue
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Yuzhen Jia
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Zhenzhen Cui
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| |
Collapse
|
17
|
Yao H, Du S, Yang L, Ding Y, Shen H, Qiu Y, Dai G, Mo F. A magnetic graphene oxide and UiO-66 based homogeneous dual recognition electrochemical aptasensor for accurate and sensitive detection of aflatoxin B1. Talanta 2024; 273:125915. [PMID: 38522188 DOI: 10.1016/j.talanta.2024.125915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/27/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Aflatoxin (AFs) contamination is one of the serious food safety issues. Aflatoxin B1 (AFB1) is the most common and toxic aflatoxin, which has been classified as a class 1 carcinogen by the International Agency for Research on Cancer (IARC). It is extremely destructive to liver tissue. Developing a convenient and sensitive detection technique is essential. In this paper, we developed a homogeneous dual recognition strategy based electrochemical aptasensor for accurate and sensitive detection of aflatoxin B1 (AFB1) based on the magnetic graphene oxide (MGO) and UiO-66. The MGO was synthesized for the recognition and magnetic separation of AFB1 from complex samples. UiO-66/ferrocenecarboxylic acid (Fc)/aptamer composites were constructed as both recognition and signal probes. The probes would specifically capture AFB1 enriched by MGO, which enables dual recognition in homogeneous solution, thus further improving the accuracy of AFB1 detection. The electrochemical aptasensor for AFB1 had a linear range from 0.005 to 500 ng mL-1. Additionally, the limit of detection was 1 pg mL-1. It shows a favorable potential for both sensitive and accurate detection of AFB1 in real samples.
Collapse
Affiliation(s)
- Handong Yao
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; School of Engineering, Huzhou University, Huzhou, 313000, China
| | - Shuxin Du
- School of Engineering, Huzhou University, Huzhou, 313000, China
| | - Liuhong Yang
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, 800 Xiangyin Road, Shanghai, 200433, China
| | - Yifeng Ding
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, 800 Xiangyin Road, Shanghai, 200433, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, 800 Xiangyin Road, Shanghai, 200433, China
| | - Yi Qiu
- School of Engineering, Huzhou University, Huzhou, 313000, China
| | - Ge Dai
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, 800 Xiangyin Road, Shanghai, 200433, China.
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, 800 Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
18
|
Lin SH, Su TC, Huang SJ, Jen CP. Enhancing the efficiency of lung cancer cell capture using microfluidic dielectrophoresis and aptamer-based surface modification. Electrophoresis 2024; 45:1088-1098. [PMID: 38175846 DOI: 10.1002/elps.202300206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Metastasis remains a significant cause to cancer-related mortality, underscoring the critical need for early detection and analysis of circulating tumor cells (CTCs). This study presents a novel microfluidic chip designed to efficiently capture A549 lung cancer cells by combining dielectrophoresis (DEP) and aptamer-based binding, thereby enhancing capture efficiency and specificity. The microchip features interdigitated electrodes made of indium-tin-oxide that generate a nonuniform electric field to manipulate CTCs. Following three chip design, scenarios were investigated: (A) bare glass surface, (B) glass modified with gold nanoparticles (AuNPs) only, and (C) glass modified with both AuNPs and aptamers. Experimental results demonstrate that AuNPs significantly enhance capture efficiency under DEP, with scenarios (B) and (C) exhibiting similar performance. Notably, scenario (C) stands out as aptamer-functionalized surfaces resisting fluid shear forces, achieving CTCs retention even after electric field deactivation. Additionally, an innovative reverse pumping method mitigates inlet clogging, enhancing experimental efficiency. This research offers valuable insights into optimizing surface modifications and understanding key factors influencing cell capture, contributing to the development of efficient cell manipulation techniques with potential applications in cancer research and personalized treatment options.
Collapse
Affiliation(s)
- Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, ROC
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Tzu-Cheng Su
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, ROC
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Shuo Jie Huang
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan, ROC
| | - Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan, ROC
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
19
|
Zhang D, Luo T, Cai X, Zhao NN, Zhang CY. Recent advances in nucleic acid signal amplification-based aptasensors for sensing mycotoxins. Chem Commun (Camb) 2024; 60:4745-4764. [PMID: 38647208 DOI: 10.1039/d4cc00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Mycotoxin contamination in food products may cause serious health hazards and economic losses. The effective control and accurate detection of mycotoxins have become a global concern. Even though a variety of methods have been developed for mycotoxin detection, most conventional methods suffer from complicated operation procedures, low sensitivity, high cost, and long assay time. Therefore, the development of simple and sensitive methods for mycotoxin assay is highly needed. The introduction of nucleic acid signal amplification technology (NASAT) into aptasensors significantly improves the sensitivity and facilitates the detection of mycotoxins. Herein, we give a comprehensive review of the recent advances in NASAT-based aptasensors for assaying mycotoxins and summarize the principles, features, and applications of NASAT-based aptasensors. Moreover, we highlight the challenges and prospects in the field, including the simultaneous detection of multiple mycotoxins and the development of portable devices for field detection.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ting Luo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiangyue Cai
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
20
|
Peng K, Sha J, Fang X, Li M, Yu J, Hao L, Xu F. Detection of Cadmium(II) in Aquatic Products Using a Rolling-Circle Amplification-Coupled Ratio Fluorescent Probe Based on an Aptamer-Peptide Conjugate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8167-8179. [PMID: 38509823 DOI: 10.1021/acs.jafc.3c08636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The existing aptamers for cadmium (Cd2+), the common toxic heavy metal contaminant in food, cannot meet the requirements for detecting Cd2+ in rapid detection methods. In previous work, we found that coupling aptamer-peptide conjugates (APCs) with peptides and aptamers can provide a less disruptive method with a significantly improved affinity. Moreover, we found that the spatial conformation of aptamers and peptides is crucial for obtaining proper affinity in APC. Therefore, we describe a simple design strategy to obtain a series of APCs with different affinities by designing peptide orientations (N-terminal, C-terminal). The best affinity was found for APC(C1-N) with a binding constant (Ka) of 2.23 × 106 M-1, indicating that the APC(C1-N) affinity was significantly increased by 829.17% over aptamer. Finally, a rolling-circle amplification (RCA)-coupled ratio fluorescence-based biosensor for Cd2+ detection was established with a detection limit of 0.0036 nM, which has great potential for practical aquatic product detection.
Collapse
Affiliation(s)
- Kaimin Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Jiahao Sha
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Xinyu Fang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Mengqiu Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Jingsong Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Liling Hao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Fei Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| |
Collapse
|
21
|
Xu Y, Liu Y, Luo Y, Xu X, Li Y, Zhao L, Li T, Zhang Y, He P, Mou X. Targeted-activation superparamagnetic spherical nucleic acid nanomachine for ultrasensitive SERS detection of lysozyme based on a bienzymatic-mediated in situ amplification strategy. ANAL SCI 2024; 40:429-438. [PMID: 38112960 DOI: 10.1007/s44211-023-00471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
Lysozyme (LYS) is a widely used bacteriostatic enzyme. In this paper, we built a sensitive and accurate Raman biosensing platform to detect trace amounts of LYS. The method is based on magnetic spherical nucleic acid formed by a combination of LYS aptamer (Apt) and magnetic beads (MBs). Meanwhile, this method utilizes a dual enzyme-assisted nucleic acid amplification circuit and surface-enhanced Raman scattering (SERS). In this sensing strategy, which is based on the specific recognition of Apt, magnetic spherical nucleic acids were associated with SERS through a nucleic acid amplification circuit, and the low abundance of LYS was converted into a high-specificity Raman signal. Satellite-like MB@AuNPs were formed in the presence of the target, which separated specifically in a magnetic field, effectively avoided the interference of complex sample environment. Under the optimal sensing conditions, the concentration of LYS exhibited a good linear relationship between 1.0 × 10-14 and 5.0 × 10-12 M and the limit of detection was as low as 8.3 × 10-15 M. In addition, the sensor strategy shows excellent accuracy and sensitivity in complex samples, providing a new strategy for the specific detection of LYS.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yue Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yu Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xinlin Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yingying Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Lin Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Tiantian Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Peng He
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoming Mou
- Analytical and Testing Center, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
22
|
Li Y, Sun Q, Chen X, Peng S, Kong D, Liu C, Zhang Q, Shi Q, Chen Y. Simultaneous detection of AFB1 and aflD gene by "Y" shaped aptamer fluorescent biosensor based on double quantum dots. Anal Bioanal Chem 2024; 416:883-893. [PMID: 38052994 DOI: 10.1007/s00216-023-05074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
The developed method for simultaneous detection of aflatoxin B1 (AFB1) and aflD genes can effectively monitor from the source and reduce the safety problems and economic losses caused by the production of aflatoxin, which can be of great significance for food safety regulations. In this paper, we constructed a sensitive and convenient fluorescent biosensor to detect AFB1 and aflD genes simultaneously based on fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and a black hole quenching agent. A stable "Y" shaped aptasensor was employed as the detection platform and a double quantum dot labeled DNA fragment was utilized to be the sensing element in this work. When the targets of AFB1 and aflD genes were presented in the solution, the aptamer in the "Y" shaped probe is specifically recognized by the target. At this time, both Si-carbon quantum dots (Si-CDs) and CdTe QDs are far away from the BHQ1 and BHQ3 to recover the fluorescence. The linear range of the prepared fluorescence simultaneous detection method was as wide as 0.5-500 ng·mL-1 with detection lines of 0.64 ng·mL-1 for AFB1 and 0.5-500 nM with detection lines of 0.75 nM for aflD genes (3σ/k). This fabricated fluorescent biosensor was further validated in real rice flour and corn flour samples, which also achieved good results. The recoveries were calculated by comparing the known and found amounts of AFB1 which ranged from 88.4 to approximately 115.32% in the rice flour samples and 90.7 ~ 102.58% in the corn flour samples. The recoveries of aflD genes ranged from 84.32 to approximately 109.3% in the rice flour samples and 89.48 ~ 100.99% in the corn flour samples. Therefore, the proposed biosensor can significantly improve food safety and quality control through a simple, fast, and sensitive agricultural product monitoring and detection system.
Collapse
Affiliation(s)
- Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China.
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, People's Republic of China.
- Advanced Technology Institute of Suzhou, Suzhou, 215123, Jiangsu Province, People's Republic of China.
| | - Qingyue Sun
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Xin Chen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Shuangfeng Peng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, People's Republic of China.
| |
Collapse
|
23
|
Zhang X, Li Z, Yang L, Hu B, Zheng Q, Man J, Cao J. CRISPR/Cas12a-Derived Photoelectrochemical Aptasensor Based on Au Nanoparticle-Attached CdS/UiO-66-NH 2 Heterostructures for the Rapid and Sensitive Detection of Ochratoxin A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:874-882. [PMID: 38156660 DOI: 10.1021/acs.jafc.3c09106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The sensitive and accurate detection of ochratoxin A (OTA) is crucial for public health due to its high toxicity. Herein, using Au nanoparticle (NP)-attached CdS/UiO-66-NH2 heterostructures as photoactive materials, a photoelectrochemical (PEC) aptasensor was presented for the ultrasensitive assay of OTA based on a competitive displacement reaction triggering the trans-cleavage ability of CRISPR/Cas12a. In this sensing strategy, methylene blue-labeled single-stranded DNA (MB-ssDNA) was immobilized on the Au NPs/CdS/UiO-66-NH2 electrode to accelerate the separation of the photogenerated carrier, thus producing a significantly increased PEC response. In the presence of OTA, it specifically bound with the aptamer (Apt) and resulted in the release of the activation chain, triggering the trans-cleavage characteristics of CRISPR/Cas12a. MB-ssDNA was cut randomly on the electrode surface to convert the PEC signal from the "on" to the "off" state, thereby achieving a quantitative and accurate detection of OTA. The CRISPR/Cas12a-derived PEC aptasensor exhibited excellent sensitivity and specificity, with a linear range from 100 to 50 ng/mL and a detection limit of 38 fg/mL. Overall, the proposed aptasensor could provide a rapid, accurate, and sensitive method for the determination of OTA in actual samples.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Zhiru Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Lili Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jiang Man
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
24
|
Gao S, Zhou R, Zhang D, Zheng X, El-Seedi HR, Chen S, Niu L, Li X, Guo Z, Zou X. Magnetic nanoparticle-based immunosensors and aptasensors for mycotoxin detection in foodstuffs: An update. Compr Rev Food Sci Food Saf 2024; 23:e13266. [PMID: 38284585 DOI: 10.1111/1541-4337.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Mycotoxin contamination of food crops is a global challenge due to their unpredictable occurrence and severe adverse health effects on humans. Therefore, it is of great importance to develop effective tools to prevent the accumulation of mycotoxins through the food chain. The use of magnetic nanoparticle (MNP)-assisted biosensors for detecting mycotoxin in complex foodstuffs has garnered great interest due to the significantly enhanced sensitivity and accuracy. Within such a context, this review includes the fundamentals and recent advances (2020-2023) in the area of mycotoxin monitoring in food matrices using MNP-based aptasensors and immunosensors. In this review, we start by providing a comprehensive introduction to the design of immunosensors (natural antibody or nanobody, random or site-oriented immobilization) and aptasensors (techniques for aptamer selection, characterization, and truncation). Meanwhile, special attention is paid to the multifunctionalities of MNPs (recoverable adsorbent, versatile carrier, and signal indicator) in preparing mycotoxin-specific biosensors. Further, the contribution of MNPs to the multiplexing determination of various mycotoxins is summarized. Finally, challenges and future perspectives for the practical applications of MNP-assisted biosensors are also discussed. The progress and updates of MNP-based biosensors shown in this review are expected to offer readers valuable insights about the design of MNP-based tools for the effective detection of mycotoxins in practical applications.
Collapse
Affiliation(s)
- Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ruiyun Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Focusight Technology (Jiangsu) Co., LTD, Changzhou, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Shiqi Chen
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Lidan Niu
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Xin Li
- Jiangsu Hengshun vinegar Industry Co., Ltd., Zhenjiang, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Fan Y, Amin K, Jing W, Lyu B, Wang S, Fu H, Yu H, Yang H, Li J. A novel Recjf Exo signal amplification strategy based on bioinformatics-assisted truncated aptamer for efficient fluorescence detection of AFB1. Int J Biol Macromol 2024; 254:128061. [PMID: 37963499 DOI: 10.1016/j.ijbiomac.2023.128061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
Aflatoxin B1 (AFB1) is a typical mycotoxin that signifacntly endangers public health and economy. In this study, we systematically studied the interaction of aptamers with AFB1 using circular dichroism, molecular dynamics, molecular docking, and fluorescence analysis. The truncated sequence aptamers were screened using molecular docking. We successfully obtained the AFB1 aptamer with higher affinity and its truncated form was enhanced by 5.2-fold compared to the initial AFB1 aptamer. In addition, for rapid detection of AFB1, we designed a fluorescent nano-adaptor sensing platform using RecJf exonuclease signal amplification strategy based on the optimal aptamer. The aptasensor showed satisfactory sensitivity towards AFB1 with a linear detection range of 1-400 ng/mL and a detection limit of 0.57 ng/mL. The aptasensor was successfully applied to the determination of AFB1 in soybean oil and corn oil with recoveries of 91.02 %-106.59 % and 87.39 %-110.61 %, respectively. The successful application of the AFB1 aptasensor, developed through bioinformatics truncation of the aptamer, provides a novel approach to creating a cost-effective, eco-friendly, and rapid aptamer sensing platform.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Life Science Chang Chun Normal University, Changchun 130032, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| |
Collapse
|
26
|
Ciobanu D, Hosu-Stancioiu O, Melinte G, Ognean F, Simon I, Cristea C. Recent Progress of Electrochemical Aptasensors toward AFB1 Detection (2018-2023). BIOSENSORS 2023; 14:7. [PMID: 38248384 PMCID: PMC10813172 DOI: 10.3390/bios14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Food contaminants represent possible threats to humans and animals as severe food safety hazards. Prolonged exposure to contaminated food often leads to chronic diseases such as cancer, kidney or liver failure, immunosuppression, or genotoxicity. Aflatoxins are naturally produced by strains of the fungi species Aspergillus, which is one of the most critical and poisonous food contaminants worldwide. Given the high percentage of contaminated food products, traditional detection methods often prove inadequate. Thus, it becomes imperative to develop fast, accurate, and easy-to-use analytical methods to enable safe food products and good practices policies. Focusing on the recent progress (2018-2023) of electrochemical aptasensors for aflatoxin B1 (AFB1) detection in food and beverage samples, without pretending to be exhaustive, we present an overview of the most important label-free and labeled sensing strategies. Simultaneous and competitive aptamer-based strategies are also discussed. The aptasensors are summarized in tabular format according to the detection mode. Sample treatments performed prior analysis are discussed. Emphasis was placed on the nanomaterials used in the aptasensors' design for aptamer-tailored immobilization and/or signal amplification. The advantages and limitations of AFB1 electrochemical aptasensors for field detection are presented.
Collapse
Affiliation(s)
- Despina Ciobanu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Oana Hosu-Stancioiu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Gheorghe Melinte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Flavia Ognean
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Ioan Simon
- Department of Surgery, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| |
Collapse
|
27
|
Manfredini A, Malusà E, Canfora L. Aptamer-based technology for detecting Bacillus subtilis in soil. Appl Microbiol Biotechnol 2023; 107:6963-6972. [PMID: 37698608 DOI: 10.1007/s00253-023-12765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
The uncertainty associated with the impact of a bioinoculant on soil microbial community and, as a consequence, on soil quality, as well as the need to define its persistence, has prompted the demand for an accurate detection and tracking of the presence and the quantification of a target microbial inoculant in soil. Although DNA or RNA-based molecular detection are well established and commonly applied in this regard, alternative ligands such as DNA-aptamers have several advantages over them, such as low cost, ease of modification, ease of immobilisation on lab-on-chip or nanosensors, high stability and not thermolability. In this study, we used a toggle-cell SELEX method to isolate, select and characterise ssDNA (single-strand DNA) aptamers to detect a Bacillus subtilis strain which is being tested as a plant growth promoting rhizobacteria (PGPR) formulation. Two ssDNA aptamers (patenting application n.102022000022590) showed strong affinity and specificity for B. subtilis strains, with values of the kinetic parameters Kd (dissociation constant) in the nanomolar range and Bmax (maximum intensity of binding) around 1. Validation of the suitability of the aptamers was validated on three inoculated soils characterised by different chemical-physical features and in soil from a field trial with the formulated B. subtilis PCM/B 00105 strain. These are considered significant features to monitor B. subtilis strains in soil, practical to optimise bioinoculant application methods, support regulatory processes and foster the shift of agricultural production toward more sustainable cropping systems. KEY POINTS: • First DNA aptamers binding a B. subtilis strain included in a bioinoculum formulation. • First DNA aptamer binding B. subtilis in soil. • Aptamer may be a method for microbial inoculant detection in soil.
Collapse
Affiliation(s)
| | - Eligio Malusà
- CREA Centro di Ricerca Viticoltura ed Enologia, 31015, Conegliano, Italy
- National Institute of Horticultural Research, 96-100, Skierniewice, Poland
| | - Loredana Canfora
- CREA Centro di Ricerca Agricoltura e Ambiente, 00184, Rome, Italy
| |
Collapse
|
28
|
Hu X, Li H, Yang J, Wen X, Wang S, Pan M. Nanoscale Materials Applying for the Detection of Mycotoxins in Foods. Foods 2023; 12:3448. [PMID: 37761156 PMCID: PMC10528894 DOI: 10.3390/foods12183448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Trace amounts of mycotoxins in food matrices have caused a very serious problem of food safety and have attracted widespread attention. Developing accurate, sensitive, rapid mycotoxin detection and control strategies adapted to the complex matrices of food is crucial for in safeguarding public health. With the continuous development of nanotechnology and materials science, various nanoscale materials have been developed for the purification of complex food matrices or for providing response signals to achieve the accurate and rapid detection of various mycotoxins in food products. This article reviews and summarizes recent research (from 2018 to 2023) on new strategies and methods for the accurate or rapid detection of mold toxins in food samples using nanoscale materials. It places particular emphasis on outlining the characteristics of various nanoscale or nanostructural materials and their roles in the process of detecting mycotoxins. The aim of this paper is to promote the in-depth research and application of various nanoscale or structured materials and to provide guidance and reference for the development of strategies for the detection and control of mycotoxin contamination in complex matrices of food.
Collapse
Affiliation(s)
- Xiaochun Hu
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huilin Li
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xintao Wen
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|