1
|
Mardani S, Moradi M, Tajik H, Divsalar E. Chia seed mucilage film with Lactobacillus acidophilus LA-5 postbiotics: Preparation and antimicrobial performance in ultra-filter cheese against Escherichia coli O157:H7. Int J Biol Macromol 2025; 308:142411. [PMID: 40122429 DOI: 10.1016/j.ijbiomac.2025.142411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
A novel biopolymer-based film with antibacterial properties was developed using chia seed mucilage (CSM) and postbiotics. Postbiotics were prepared from Lactobacillus acidophilus LA-5 using Ultra-filter (UF) cheese whey as the culture medium, as a sustainable approach. CSM -LA-5 films containing LA-5 postbiotics (200 mg/mL) and CSM were prepared using a casting method. The CSM film exhibited a weak inhibitory effect against Escherichia coli O157:H7 (12.2 ± 0.2 mm). However, incorporating LA-5 into the CSM film significantly enhanced (P < 0.05) antimicrobial activity, resulting in a larger inhibition zone (15.3 ± 0.5 mm). The presence of active LA-5 postbiotic compounds in the CSM -LA-5 film was confirmed using FTIR spectroscopy. Field Emission Scanning electron microscopy images confirmed the even distribution of LA-5 on the CSM film. The embedding of postbiotics in the CSM film caused changes in CSM mechanical properties, which decreased tensile strength (from 0.98 MPa to 0.49 MPa) and increased strain-to-break (from 209 % to 276 %), mostly owing to the presence of high molecular weight compounds. The antimicrobial properties of the films were evaluated against E. coli in UF cheese. The initial bacterial count on the surface of UF white cheese (∼ 4.46 log10 CFU/g) was completely inactivated by CSM -LA5 (200 mg/mL) after 15 days of storage at 4 °C. In contrast, reductions in E. coli of about 2.46 and 1.81 log10 CFU/g were observed after 15 days in the CSM film and control group, respectively. Biopolymer-based films incorporating LA-5 postbiotics exhibit innovative antibacterial properties and are thus suitable for use in cheese packaging.
Collapse
Affiliation(s)
- Sepideh Mardani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elahe Divsalar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
2
|
Egea MB, Fernandes SS. Unlocking the Potential of Chia Intake in the Management of Metabolic Syndrome and its Risk Conditions: A Narrative Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:90. [PMID: 40100517 DOI: 10.1007/s11130-025-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Metabolic syndrome is the occurrence of at least three of the five conditions diabetes, overweight and obesity, triglyceridemia, hypercholesterolemia, and hypertension. Dietary interventions have been one of the first lines of treatment indicated for improving conditions related to metabolic syndrome. The growing interest in plant-based diets and foods with health-promoting qualities has increased significantly. Due to its excellent nutritional and bioactive value, chia seeds have a significant market share, characterized by their high content of proteins, essential fatty acids, fiber, vitamins, minerals, phenolic compounds, and antioxidants. These constituents promote potential positive effects on improving health, especially blood pressure, and reducing oxidative stress and the inflammatory state installed by metabolic syndrome and its risk conditions. However, the ten studies in humans that were reviewed generally showed no effect on anthropometric parameters and biochemical parameters related to glucose and lipid homeostasis. Thus, although chia seeds have a high potential to combat metabolic syndrome, this review found few studies, highlighting a gap in the area and a possible future topic for researchers.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Sibele Santos Fernandes
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande, 96203-900, Brazil.
| |
Collapse
|
3
|
Silva LA, Sato ACK, Perrechil F. Non-spherical microparticles from complex coacervation of rice or pea proteins and chia mucilage. Int J Biol Macromol 2025; 305:141025. [PMID: 39954889 DOI: 10.1016/j.ijbiomac.2025.141025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Complex coacervation is a microencapsulation technique recognized by its low cost, high efficiency, and reproducibility. It involves interactions between oppositely charged biopolymers, such as proteins and polysaccharides. The present study evaluated the formation of non-spherical microparticles through the interactions of rice protein (RP) or pea protein (PP) with chia mucilage (CM) to encapsulate hydrophobic compounds. Gum Arabic (GA) and type B gelatin (GE) were used as model materials. Optimal ratio and pH values for the mixtures were determined through macroscopic, turbidity and zeta potential analyses. The microparticles containing gum Arabic were smaller and more spherical, with mean diameters ranging from 22.03 to 35.20 μm, whereas those containing chia mucilage exhibited an irregular shape and diameters ranging from 33.49 to 53.10 μm. The yields (74.0 %-84.5 %) and encapsulation efficiency (around 99 %) for the microparticles containing chia mucilage were significantly higher than those of the formulations containing gum Arabic (yields of 18.4 %-40.1 %, and encapsulation efficiencies of 8.7 %-71.0 %). Based on the results, the most effective encapsulation system was identified PP:CM. All microparticles formed by chia mucilage and proteins have non-spherical characteristics and some roughness which can be interesting for applications in food or biological systems.
Collapse
Affiliation(s)
- L A Silva
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil; Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP). Campinas, SP, Brazil
| | - A C K Sato
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP). Campinas, SP, Brazil
| | - F Perrechil
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
| |
Collapse
|
4
|
Tópor A, Veras FF, Cacciatore FA, Hernandes KC, da Silva Malheiros P, Welke JE. Nanoencapsulation reduces the perception of carvacrol odor, enhances the control of Botrytis cinerea growth and preserves grape quality. Food Res Int 2025; 201:115589. [PMID: 39849722 DOI: 10.1016/j.foodres.2024.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/03/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Botrytis cinerea is the causal agent of gray mold, which is one of the most widespread and destructive fungal diseases that compromises the productivity and quality of grapes produced throughout the world. This work aimed to verify, for the first time, the impact of unencapsulated carvacrol and encapsulated in Eudragit® nanocapsules (Eud-Carv NCs) and chia mucilage (Chia-Carv NCs) on mycelial growth and spore germination of B. cinerea. The impact of these three forms of carvacrol on grape quality parameters, including texture, pH, color, volatile profile and odor perception were also evaluated. All three forms of carvacrol suppress spore germination and mycelial growth of B. cinerea. When used at sublethal levels, the encapsulated forms (Eud-Carv NCs and Chia-Carv NCs) were more effective by inhibiting up to 90 % of fungal growth, while unencapsulated carvacrol suppressed up to 67 %. Both nanocapsules showed no effect on the physicochemical characteristics and volatile profile of the grapes. Furthermore, the odor of carvacrol was not perceived in the grapes treated with both encapsulated forms, since the levels of this monoterpene (9.0 to 11.3 μg/L over 21 days of grape storage) were below the odor threshold (40 μg/L). Conversely, when grapes were treated with the unencapsulated form, carvacrol levels were about 10 times higher than the odor threshold, which negatively impacts the sensory perception of the grape. Therefore, the use of carvacrol encapsulated in Eudragit® and chia mucilage proved to be a promising alternative for preventing B. cinerea infections in grapes.
Collapse
Affiliation(s)
- Athos Tópor
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Flávio Fonseca Veras
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Fabiola Ayres Cacciatore
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Karolina Cardoso Hernandes
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Patrícia da Silva Malheiros
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Juliane Elisa Welke
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Waszkowiak K, Szymandera-Buszka K, Kidoń M, Kobus-Cisowska J, Brzozowska A, Kowiel A, Jarzębski M, Radziejewska-Kubzdela E. Application of Chia and Flaxseed Meal as an Ingredient of Fermented Vegetable-Based Spreads to Design Their Nutritional Composition and Sensory Quality. Foods 2025; 14:438. [PMID: 39942032 PMCID: PMC11816384 DOI: 10.3390/foods14030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Fermented vegetable spreads could offer an opportunity to diversify the range of plant-based foods. The challenge in developing the spreads is to achieve high quality, including stable consistency, consumer desirability and high nutritional value. The aim was to evaluate the application of chia and flaxseed meal for fermented zucchini-cucumber spread production. The effect on the chemical composition, phenolic compound content, antioxidant activity, and sensory quality of the vegetable spread was evaluated. Its color, viscosity, and microstructure were also analyzed using instrumental methods. The meal addition varied from 4.0 to 14.0%. The spread with meal addition had higher fat, protein, ash, and dietary fiber content than the control. Total free phenolic compound content and antioxidant activity also increased, and chia seed meal impacted the parameters more. On the contrary, flaxseed meal improved more the product's consumer desirability than chia. Both were effective gelling agents that increased viscosity and enhanced product spreadability, and only flaxseed meal showed a masking ability. Its addition reduced the perception and intensity of the bitter, tart, and sour taste. The spread formula consisting of fermented zucchini and cucumber with 9 to 11.5% flaxseed meal addition was the most recommended to achieve the product with high consumer desirability.
Collapse
Affiliation(s)
- Katarzyna Waszkowiak
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Marcin Kidoń
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (M.K.); (A.K.)
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Angelika Kowiel
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (M.K.); (A.K.)
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland;
| | - Elżbieta Radziejewska-Kubzdela
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (M.K.); (A.K.)
| |
Collapse
|
6
|
Tópor Nunes AA, Veras FF, Cacciatore FA, Silveira RD, Malheiros PDS, Welke JE. Nanoencapsulation with Eudragit® and chia mucilage increases the stability and antifungal efficacy of carvacrol against Aspergillus spp. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:75-91. [PMID: 39556117 DOI: 10.1080/19440049.2024.2427670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Carvacrol is a consolidated natural antimicrobial. However, its use in food is a challenge due to characteristic odour and high volatility. Nanoencapsulation has emerged to overcome these drawbacks. Aspergillus spp. represent a concern in grapes for causing rot and producing mycotoxins. This study aimed to evaluate the effect of carvacrol (unencapsulated and loaded into Eudragit® and chia nanocapsules) on the growth of Aspergillus species. Spore germination and mycelial growth of Aspergillus spp. were evaluated using the agar dilution culture method. The stability of nanocapsules during storage was monitored monthly by evaluating the particle size distribution, polydispersity index, and zeta potential. Antifungal and antitoxigenic effectiveness of nanocapsules were assessed by counting fungal colony-forming units and determining mycotoxin levels in grapes. A dose-dependent effect of carvacrol (unencapsulated and encapsulated forms) on spore germination and mycelial growth was observed. During 180 days of storage, carvacrol into Eudragit® nanocapsules preserved their nanometric dimensions, whereas chia nanocapsules maintained this characteristic for 30 days. The antifungal effectiveness of both encapsulated forms persisted for 210 days. No mycotoxin was found, even when fungal growth was not completely suppressed. Nanoencapsulated carvacrol proved to be a new promising antifungal product to ensure quality and safety in the grape production chain.
Collapse
Affiliation(s)
- Athos Aramis Tópor Nunes
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Flávio Fonseca Veras
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabiola Ayres Cacciatore
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafaela Diogo Silveira
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Patrícia da Silva Malheiros
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Juliane Elisa Welke
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
7
|
Fernandes SS, Egea MB, de Las Mercedes Salas-Mellado M, Segura-Campos MR. Chia Oil Nanoemulsion Using Chia Mucilage as a Wall Material: An Alternative for Cracker Fat Substitution. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 80:20. [PMID: 39714741 DOI: 10.1007/s11130-024-01268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 12/24/2024]
Abstract
Crackers are bakery products that have shown an increase in consumption. One way to make crackers more nutritious is to add bioactive compounds, such as chia oil which is rich in polyunsaturated fatty acids. As these compounds are highly unsaturated, encapsulation techniques, such as nanoemulsion, allow the addition of them in foods, guaranteeing the preservation of their properties. Thus, the objective was to add chia oil nanoemulsion prepared with chia mucilage, in total replacement of water and soybean oil in crackers, and to evaluate the physical-chemical, technological, and sensory properties. The cracker with chia oil nanoemulsion showed a 73.2% reduction in lipid content compared to the control cracker, and no difference in protein and fiber content. The developed cracker presented expansion, firmness, fracture, and luminosity factors as the control cracker. Regarding antioxidant activity, the cracker with nanoemulsion showed greater activity. Sensorially, the developed crackers did not show a significant difference in appearance, flavor, and texture from the control cracker, and the purchase intention was positive. Also, the developed crackers were healthier, with a lower total lipid content, and higher antioxidant activity.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande, 96203-900, Brazil.
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Myriam de Las Mercedes Salas-Mellado
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande, 96203-900, Brazil
| | - Maira Rubi Segura-Campos
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Carretera Sierra Papacal-Chuburná Puerto - Parque Científico y Tecnológico de Yucatán. Tablaje Catastral 31264. Km 5.5, Mérida, México
| |
Collapse
|
8
|
Li Y, Duan Q, Yue S, Alee M, Liu H. Enhancing mechanical and water barrier properties of starch film using chia mucilage. Int J Biol Macromol 2024; 274:133288. [PMID: 38908643 DOI: 10.1016/j.ijbiomac.2024.133288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Biodegradable packaging materials are increasingly being investigated due to rising concerns about food safety and environmental conservation. This study examines the incorporation of chia mucilage (CM) into starch-based films using the casting method, aiming to understand its effects on the structure and functionality of the films. CM, an anionic heteropolysaccharide, is hypothesized to enhance the mechanical and barrier properties of the films through polymer interactions and hydrogen bonding. Our findings confirm that CM incorporation results in films with uniformly smooth surfaces, indicating high compatibility and homogeneity within the starch matrix. Notably, CM improves film transparency and crystallinity. Mechanical assessments show a remarkable elevation in tensile strength, soaring from 5.21 MPa to 12.38 MPa, while elongation at break decreases from 61.73 % to 31.42 %, indicating a trade-off between strength and flexibility. Additionally, water solubility decreases from 57.97 % to 41.40 %, and water vapor permeability is reduced by 30 % with CM loading. These results highlight the role of CM in facilitating the formation of a dense, interconnected polymeric network within the starch matrix. Given the soluble dietary fiber nature of CM, the CS/CM (corn starch/chia mucilage) blended films are expected to be safe for food packaging and applicable as edible films with health benefits.
Collapse
Affiliation(s)
- Yuxia Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuke Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mahafooj Alee
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Knowledge City, Guangzhou 510663, China.
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Knowledge City, Guangzhou 510663, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou, China.
| |
Collapse
|
9
|
Tópor A, Veras FF, Cacciatore FA, Silveira RD, da Silva Malheiros P, Welke JE. Carvacrol nanocapsules as a new antifungal strategy: Characterization and evaluation against fungi important for grape quality and to control the synthesis of ochratoxins. Int J Food Microbiol 2024; 416:110659. [PMID: 38461732 DOI: 10.1016/j.ijfoodmicro.2024.110659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Fungi are a problem for viticulture as they can lead to deterioration of grapes and mycotoxins production. Despite the widespread use of synthetic fungicides to control fungi, their impact on the agricultural ecosystem and human health demand safer and eco-friendly alternatives. This study aimed to produce, characterize and assess the antifungal activity of carvacrol loaded in nanocapsules of Eudragit® and chia mucilage as strategy for controlling Botrytis cinerea, Aspergillus flavus, Aspergillus carbonarius, and Aspergillus niger. Eudragit® and chia mucilage were suitable wall materials, as both favored the encapsulation of carvacrol into nanometric diameter particles. Fourier Transform Infrared Spectroscopy (FTIR) analysis suggested a successful incorporation of carvacrol into both nanocapsules, which was confirmed by presenting a good encapsulation efficiency and loading capacity. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analyses revealed adequate thermal resistance. All fungi were sensible to carvacrol treatments and B. cinerea was the most sensitive compared to the Aspergillus species. Lower concentrations of encapsulated carvacrol than the unencapsulated form were required to inhibit fungi in the in vitro and grape assays. Additionally, lower levels of carvacrol (unencapsulated or encapsulated) were used to inhibit fungal growth and ochratoxin synthesis on undamaged grapes in comparison to those superficially damaged, highlighting the importance of management practices designed to preserve berry integrity during cultivation, storage or commercialization. When sublethal doses of carvacrol were used, the growth of A. niger and A. carbonarius was suppressed by at least 45 %, and ochratoxins were not found. The nanoencapsulation of carvacrol using Eudragit® and chia mucilage has proven to be an alternative to mitigate the problems with fungi and mycotoxins faced by the grape and wine sector.
Collapse
Affiliation(s)
- Athos Tópor
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Flávio Fonseca Veras
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Fabiola Ayres Cacciatore
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Rafaela Diogo Silveira
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Patrícia da Silva Malheiros
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Juliane Elisa Welke
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil.
| |
Collapse
|