1
|
Makieieva N, Kupka T, Rahmonov O. The Search for the Optimal Methodology for Predicting Fluorinated Cathinone Drugs NMR Chemical Shifts. Molecules 2024; 30:54. [PMID: 39795111 PMCID: PMC11721958 DOI: 10.3390/molecules30010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Cathinone and its synthetic derivatives belong to organic compounds with narcotic properties. Their structural diversity and massive illegal use create the need to develop new analytical methods for their identification in different matrices. NMR spectroscopy is one of the most versatile methods for identifying the structure of organic substances. However, its use could sometimes be very difficult and time-consuming due to the complexity of NMR spectra, as well as the technical limitations of measurements. In such cases, molecular modeling serves as a good supporting technique for interpreting ambiguous spectral data. Theoretical prediction of NMR spectra includes calculation of nuclear magnetic shieldings and sometimes also indirect spin-spin coupling constants (SSCC). The quality of theoretical prediction is strongly dependent on the choice of the theory level. In the current study, cathinone and its 12 fluorinated derivatives were selected for gauge-including atomic orbital (GIAO) NMR calculations using Hartree-Fock (HF) and 28 density functionals combined with 6-311++G** basis set to find the optimal level of theory for 1H, 13C, and 19F chemical shifts modeling. All calculations were performed in the gas phase, and solutions were modeled with a polarized-continuum model (PCM) and solvation model based on density (SMD). The results were critically compared with available experimental data.
Collapse
Affiliation(s)
- Natalina Makieieva
- Faculty of Chemistry and Pharmacy, University of Opole, 48, Oleska Str., 45-052 Opole, Poland
| | - Teobald Kupka
- Faculty of Chemistry and Pharmacy, University of Opole, 48, Oleska Str., 45-052 Opole, Poland
| | - Oimahmad Rahmonov
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, 60, Będzińska, 41-200 Sosnowiec, Poland;
| |
Collapse
|
2
|
Júlio S, Ferro RA, Santos S, Alexandre A, Caldeira MJ, Franco J, Barroso M, Gaspar H. Synthesis of emerging cathinones and validation of a SPE GC-MS method for their simultaneous quantification in blood. Anal Bioanal Chem 2023; 415:571-589. [PMID: 36494605 DOI: 10.1007/s00216-022-04440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
Over the past 15 years, synthetic cathinones have emerged as an important class of new psychoactive substances (NPS) worldwide. The proliferation of these psychostimulants and their sought-after effects among recreational drug users pose a serious threat to public health and enormous challenges to forensic laboratories. For forensic institutions, it is essential to be one step ahead of covert laboratories, foreseeing the structural changes possible to introduce in the core skeleton of cathinones while maintaining their stimulating activity. In this manner, it is feasible to equip themselves with standards of possible new cathinones and validated analytical methods for their qualitative and quantitative detection. Therefore, the aim of the work herein described was to synthesize emerging cathinones based on the evolving patterns in the illicit drug market, and to develop an analytical method for their accurate determination in forensic situations. Five so far unreported cathinones [4'-methyl-N-dimethylbuphedrone (4-MDMB), 4'-methyl-N-ethylbuphedrone (4-MNEB), 4'-methyl-N-dimethylpentedrone (4-MDMP), 4'-methyl-N-dimethylhexedrone (4-MDMH), and 4'-methyl-N-diethylbuphedrone (4-MDEB)] and a sixth one, 4'-methyl-N-ethylpentedrone, already reported to EMCDDA and also known as 4-MEAP, were synthesized and fully characterized by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). An analytical method for the simultaneous quantification of these cathinones in blood, using solid phase extraction (SPE) combined with gas chromatography-mass spectrometry (GC-MS) was developed and validated. The results prove that this methodology is selective, linear, precise, and accurate. For all target cathinones, the extraction efficiency was higher than 73%, linearity was observed in the range of 10 (lower limit of quantification, LLOQ) to 800 ng/mL, with coefficients of determination higher than 0.99, and the limits of detection (LODs) were 5 ng/mL for all target cathinones. The stability of these cathinones in blood matrices is dependent on the storage conditions; 4-MNEB is the most stable compound and 4-MDMH is the least stable compound. The low limits obtained allow the detection of the compounds in situations where they are involved, even if present at low concentrations.
Collapse
Affiliation(s)
- Sara Júlio
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Raquel A Ferro
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Susana Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Andrea Alexandre
- Laboratório de Polícia Científica da Polícia Judiciária - Setor de Drogas e Toxicologia, Rua Gomes Freire, 1169-007, Lisbon, Portugal
| | - Maria João Caldeira
- Laboratório de Polícia Científica da Polícia Judiciária - Setor de Drogas e Toxicologia, Rua Gomes Freire, 1169-007, Lisbon, Portugal
| | - João Franco
- Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. - Delegação do Sul, Serviço de Química e Toxicologia Forenses, Rua Manuel Bento de Sousa, 3, 1169-201, Lisbon, Portugal
| | - Mário Barroso
- Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. - Delegação do Sul, Serviço de Química e Toxicologia Forenses, Rua Manuel Bento de Sousa, 3, 1169-201, Lisbon, Portugal.
| | - Helena Gaspar
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal. .,MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630, Peniche, Portugal.
| |
Collapse
|
3
|
Almeida AS, Silva B, de Pinho PG, Remião F, Fernandes C. Synthetic Cathinones: Recent Developments, Enantioselectivity Studies and Enantioseparation Methods. Molecules 2022; 27:2057. [PMID: 35408456 PMCID: PMC9000803 DOI: 10.3390/molecules27072057] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
New psychoactive substances represent a public health threat since they are not controlled by international conventions, are easily accessible online and are sold as a legal alternative to illicit drugs. Among them, synthetic cathinones are widely abused due to their stimulant and hallucinogenic effects. To circumvent the law, new derivatives are clandestinely synthesized and, therefore, synthetic cathinones keep emerging on the drug market, with their chemical and toxicological properties still unknown. In this review, a literature assessment about synthetic cathinones is presented focusing on the recent developments, which include more than 50 derivatives since 2014. A summary of their toxicokinetic and toxicodynamic properties are also presented. Furthermore, synthetic cathinones are chiral compounds, meaning that they can exist as two enantiomeric forms which may present different biological and toxicological activities. To analyze the enantiomers, the development of enantiomeric resolution methods for synthetic cathinones is crucial. Many methods have been reported over the years that include mostly chromatographic and electromigration techniques, with liquid chromatography using chiral stationary phases being the technique of choice. This review intended to present an overview of enantioselectivity studies and enantioseparation analysis regarding synthetic cathinones, highlighting the relevance of chirality and current trends.
Collapse
Affiliation(s)
- Ana Sofia Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (A.S.A.); (B.S.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (P.G.d.P.); (F.R.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Bárbara Silva
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (A.S.A.); (B.S.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (P.G.d.P.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (P.G.d.P.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (P.G.d.P.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (A.S.A.); (B.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
4
|
Simple Analytical Strategy for Screening Three Synthetic Cathinones (α-PVT, α-PVP, and MDPV) in Oral Fluids. ANALYTICA 2022. [DOI: 10.3390/analytica3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Synthetic cathinones are analogue compounds of the plant based stimulant cathinone. Its use, abuse, and related consumption complications have steadily increased in the last years. For this reason, there is a need for innovative analytical approaches that enable its rapid screening in biological matrices (e.g., oral fluids). The present work proposes a new analytical methodology by combining bar adsorptive microextraction followed by microliquid desorption and gas chromatography coupled to mass spectrometry (BAµE-µLD/GC-MS) for screening three synthetic cathinones (α-PVP, α-PVT, and MDPV) in oral fluids. The optimization of the BAµE-µLD/GC-MS methodology was successfully applied for the analysis of the target compounds in oral fluids. The results show average recoveries between 43.1 and 52.3% for the three synthetic cathinones. Good selectivity was also noticed. The developed methodology presents itself as an alternative tool to screen these compounds in oral fluids. To the best of our knowledge, this is the first work that combines a microextraction sorption-based technique followed by GC-MS analysis for the screening of synthetic cathinones in oral fluids.
Collapse
|
5
|
Zhao Y, Wu B, Hua Z, Xu P, Xu H, Shen W, DI B, Wang Y, Su M. Quantification of Cathinone Analogues without Reference Standard Using 1H Quantitative NMR. ANAL SCI 2021; 37:1577-1582. [PMID: 33994416 DOI: 10.2116/analsci.21p048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Synthetic cathinones are a type of new psychoactive substances (NPS) that have been seriously abused. Owing to the rapid variation in their structures, the absence of reference standards poses a challenge in quantitative investigations. In this study, a 1H quantitative nuclear magnetic resonance (1H qNMR) method was established using maleic acid as the internal standard and the shared signal (i.e., the methylidyne hydrogen) on the parent synthetic cathinones structure as the quantitative peak. Taking 3-methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one (mexedrone) as an example, this study optimized the acquisition parameters and conducted method validation, including an evaluation of the specificity, linearity, accuracy, precision, and robustness. Using this 1H qNMR method, the contents of mexedrone and its analogues, including 1-(3-chlorophenyl)-2-(ethylamino)-propan-1-one (3-CEC), 4-chloro-α-pyrroli-dinopropiophenone (4-Cl-α-PVP), 1-(3,4-methylenedioxy-phenyl)-2-propylamino-propan-1-one (propylone), and methcathinone, were obtained. The obtained results showed that the method was accurate, rapid, versatile, and can be used to address the qualitative and quantitative issues related to similar substances.
Collapse
Affiliation(s)
- Yuxin Zhao
- School of Pharmacy, China Pharmaceutical University.,China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission
| | - Bo Wu
- School of Pharmacy, China Pharmaceutical University.,The Narcotic Control Division, Nanjing Municipal Public Security Bureau
| | - Zhendong Hua
- China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission.,Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security
| | - Peng Xu
- China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission.,Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security
| | - Hui Xu
- School of Pharmacy, China Pharmaceutical University.,China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission
| | - Wenbin Shen
- Center for Instrumental Analysis, China Pharmaceutical University
| | - Bin DI
- School of Pharmacy, China Pharmaceutical University.,China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission
| | - Youmei Wang
- China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission.,Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security
| | - Mengxiang Su
- School of Pharmacy, China Pharmaceutical University.,China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China National Narcotics Control Commission
| |
Collapse
|
6
|
Kolaczynska KE, Thomann J, Hoener MC, Liechti ME. The Pharmacological Profile of Second Generation Pyrovalerone Cathinones and Related Cathinone Derivative. Int J Mol Sci 2021; 22:ijms22158277. [PMID: 34361040 PMCID: PMC8348686 DOI: 10.3390/ijms22158277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/11/2023] Open
Abstract
Pyrovalerone cathinones are potent psychoactive substances that possess a pyrrolidine moiety. Pyrovalerone-type novel psychoactive substances (NPS) are continuously detected but their pharmacology and toxicology are largely unknown. We assessed several pyrovalerone and related cathinone derivatives at the human norepinephrine (NET), dopamine (DAT), and serotonin (SERT) uptake transporters using HEK293 cells overexpressing each respective transporter. We examined the transporter-mediated monoamine efflux in preloaded cells. The receptor binding and activation potency was also assessed at the 5-HT1A, 5-HT2A, 5-HT2B, and 5-HT2C receptors. All pyrovalerone cathinones were potent DAT (IC50 = 0.02-8.7 μM) and NET inhibitors (IC50 = 0.03-4.6 μM), and exhibited no SERT activity at concentrations < 10 μM. None of the compounds induced monoamine efflux. NEH was a potent DAT/NET inhibitor (IC50 = 0.17-0.18 μM). 4F-PBP and NEH exhibited a high selectivity for the DAT (DAT/SERT ratio = 264-356). Extension of the alkyl chain enhanced NET and DAT inhibition potency, while presence of a 3,4-methylenedioxy moiety increased SERT inhibition potency. Most compounds did not exhibit any relevant activity at other monoamine receptors. In conclusion, 4F-PBP and NEH were selective DAT/NET inhibitors indicating that these substances likely produce strong psychostimulant effects and have a high abuse liability.
Collapse
Affiliation(s)
- Karolina E. Kolaczynska
- Division of Psychopharmacology Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (K.E.K.); (J.T.)
| | - Jan Thomann
- Division of Psychopharmacology Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (K.E.K.); (J.T.)
| | - Marius C. Hoener
- Neuroscience Research, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Matthias E. Liechti
- Division of Psychopharmacology Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (K.E.K.); (J.T.)
- Correspondence: ; Tel.: + 41-61-328-68-68
| |
Collapse
|
7
|
Castaing-Cordier T, Ladroue V, Besacier F, Bulete A, Jacquemin D, Giraudeau P, Farjon J. High-field and benchtop NMR spectroscopy for the characterization of new psychoactive substances. Forensic Sci Int 2021; 321:110718. [PMID: 33601154 DOI: 10.1016/j.forsciint.2021.110718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
New psychoactive substances (NPS) have become a serious threat to public health in Europe due to their ability to be sold in the street or on the darknet. Regulating NPS is an urgent priority but comes with a number of analytical challenges since they are structurally similar to legal products. A number of analytical techniques can be used for identifying NPS, among which NMR spectroscopy is a gold standard. High field NMR is typically used for structural elucidation in combination with others techniques like GC-MS, Infrared spectroscopy, together with databases. In addition to their strong ability to elucidate molecular structures, high field NMR techniques are the gold standard for quantification without any physical isolation procedure and with a single internal standard. However, high field NMR remains expensive and emerging "benchtop" NMR apparatus which are cheaper and transportable can be considered as valuable alternatives to high field NMR. Indeed, benchtop NMR, which emerged about ten years ago, makes it possible to carry out structural elucidation and quantification of NPS despite the gap in resolution and sensitivity as compared to high field NMR. This review describes recent advances in the field of NMR applied to the characterization of NPS. High-field NMR methods are first described in view of their complementarity with other analytical methods, focusing on both structural and quantitative aspects. The second part of the review highlights how emerging benchtop NMR approaches could act as a game changer in the field of forensics.
Collapse
Affiliation(s)
| | - Virginie Ladroue
- Institut National de Police Scientifique (INPS), Laboratoire de Lyon (LPS69), Ecully 69134, France
| | - Fabrice Besacier
- Institut National de Police Scientifique (INPS), Laboratoire de Lyon (LPS69), Ecully 69134, France
| | - Audrey Bulete
- Institut National de Police Scientifique (INPS), Laboratoire de Lyon (LPS69), Ecully 69134, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| | | | - Jonathan Farjon
- Université de Nantes, CNRS, CEISAM UMR 6230, Nantes F-44000, France.
| |
Collapse
|
8
|
Soares J, Costa VM, Gaspar H, Santos S, de Lourdes Bastos M, Carvalho F, Capela JP. Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology 2019; 75:158-173. [DOI: 10.1016/j.neuro.2019.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
9
|
Gonçalves JL, Alves VL, Aguiar J, Teixeira HM, Câmara JS. Synthetic cathinones: an evolving class of new psychoactive substances. Crit Rev Toxicol 2019; 49:549-566. [PMID: 31747318 DOI: 10.1080/10408444.2019.1679087] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synthetic cathinones (SCat) are amphetamine-like psychostimulants that emerged onto drug markets as "legal" alternatives to illicit drugs such as ecstasy, cocaine, and amphetamines. Usually they are sold as "bath salts," "plant food," or "research chemicals," and rapidly gained popularity amongst drugs users due to their potency, low cost, and availability. In addition, internet drug sales have been replacing the old way of supplying drugs of abuse, contributing to their rapid spread. Despite the legislative efforts to control SCat, new derivatives continue to emerge on the recreational drugs market and their abuse still represents a serious public health issue. To date, about 150 SCat have been identified on the clandestine drugs market, which are one of the largest groups of new psychoactive substances (NPS) monitored by the United Nations Office on Drugs and Crime and the European Monitoring Center for Drugs and Drug Addiction. Similar to the classical stimulants, SCat affect the levels of catecholamines in the central nervous system, which results in their psychological, behavioral and toxic effects. Generally, the effects of SCat greatly differ from drug to drug and relatively little information is available about their pharmacology. The present work provides a review on the development of SCat as substances of abuse, current patterns of abuse and their legal status, chemical classification, known mechanisms of action, and their toxicological effects.
Collapse
Affiliation(s)
- João L Gonçalves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Vera L Alves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Joselin Aguiar
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Helena M Teixeira
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal.,Instituto Nacional de Medicina Legal e Ciências Forenses, IP, Delegação Centro, Coimbra, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal.,Faculdade de Ciências Exactas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
10
|
Fabregat-Safont D, Carbón X, Ventura M, Fornís I, Hernández F, Ibáñez M. Characterization of a recently detected halogenated aminorex derivative: para-fluoro-4-methylaminorex (4'F-4-MAR). Sci Rep 2019; 9:8314. [PMID: 31165778 PMCID: PMC6549166 DOI: 10.1038/s41598-019-44830-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Despite the fact that 33% of the new psychoactive substances seized in 2015 were synthetic cathinones, the number of these derivatives has been decreasing in the last years, probably as a consequence of the unfavourable effects reported by users. Thus, the list of possible cathinone analogues is expected to get shorter, and it is likely that the same moiety changes applied for the preparation of synthetic cathinones will be applied in the near future to other stimulants in the search for favourable alternatives to controlled substances. This is evidenced by the increase in newly reported substances belonging to stimulant classes other than cathinones. One of the possible candidates for a new backbone from which to base new stimulants is aminorex, which is classified as a Schedule I substance by the Drug Enforcement Administration. Three derivatives have been reported until now: 4-methylaminorex or 4-MAR (also categorized as a Schedule I substance), para-methyl-4-methylaminorex (4,4′-DMAR) and 3′,4′-methylenedioxy-4-methylaminorex (MDMAR). Recently, the new halogenated 4-MAR derivative, para-fluoro-4-methylaminorex, characterised in this work (and abbreviated as pF-4-methylaminorex or 4′F-4-MAR) was detected by the Slovenian police. In the present work, 4′F-4-MAR has been characterized by high resolution mass spectrometry and nuclear magnetic resonance in a sample obtained from an anonymous consumer. This research shows that the same modifications applied for the preparation of synthetic cathinones are being used to prepare new stimulants based on the aminorex backbone.
Collapse
Affiliation(s)
- D Fabregat-Safont
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071, Castelló de la Plana, Spain
| | - X Carbón
- Energy Control (Asociación Bienestar y Desarrollo), c/Independencia 384, 08041, Barcelona, Spain
| | - M Ventura
- Energy Control (Asociación Bienestar y Desarrollo), c/Independencia 384, 08041, Barcelona, Spain
| | - I Fornís
- Energy Control (Asociación Bienestar y Desarrollo), c/Independencia 384, 08041, Barcelona, Spain
| | - F Hernández
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071, Castelló de la Plana, Spain
| | - M Ibáñez
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071, Castelló de la Plana, Spain.
| |
Collapse
|
11
|
Santos A, Dutra L, Menezes L, Santos M, Barison A. Forensic NMR spectroscopy: Just a beginning of a promising partnership. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Proactive response to tackle the threat of emerging drugs: Synthesis and toxicity evaluation of new cathinones. Forensic Sci Int 2018; 290:146-156. [DOI: 10.1016/j.forsciint.2018.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
|
13
|
Guillou C, Reniero F, Vicente JL, Holland M, Kolar K, Chassaigne H, Tirendi S, Schepers H. Collaboration of the Joint Research Centre and European Customs Laboratories for the Identification of New Psychoactive Substances. Curr Pharm Biotechnol 2018; 19:91-98. [PMID: 29792142 PMCID: PMC6110040 DOI: 10.2174/1389201019666180523122717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/14/2018] [Accepted: 04/20/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND The emergence of psychoactive designer drugs has significantly increased over the last few years. Customs officials are responsible for the control of products entering the European Union (EU) market. This control applies to chemicals in general, pharmaceutical products and medicines. Numerous products imported from non-EU countries, often declared as 'bath salts' or 'fertilizers', contain new psychoactive substance (NPS). REVIEW These are not necessarily controlled under international law, but may be subject to monitoring in agreement with EU legislation. This situation imposes substantial challenges, for example, for the maintenance of spectral libraries used for their detection by designated laboratories. The chemical identification of new substances, with the use of powerful instrumentation, and the time needed for detailed analysis and interpretation of the results, demands considerable commitment. The EU Joint Research Centre endeavors to provide scientific support to EU Customs laboratories to facilitate rapid identification and characterisation of seized samples. In addition to analysing known NPS, several new chemical entities have also been identified. Frequently, these belong to NPS classes already notified to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) by the European Early- Warning System (EWS). CONCLUSION The aim of this paper is to discuss the implementation of workflow mechanisms that are in place in order to facilitate the monitoring, communication and management of analytical data. The rapid dissemination of this information between control authorities strives to help protect EU citizens against the health risks posed by harmful substances.
Collapse
Affiliation(s)
- Claude Guillou
- Address correspondence to this author at the European Commission, Directorate General Joint Research Centre, Directorate F - Health, Consumers and Reference Materials via E. Fermi, 2749, I-21020 Ispra (VA) - Italy; Tel: +39 0332 785678; E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Identification and structural characterization of four novel synthetic cathinones: α-methylaminohexanophenone (hexedrone, HEX), 4-bromoethcathinone (4-BEC), 4-chloro-α-pyrrolidinopropiophenone (4-Cl-PPP), and 4-bromo-α-pyrrolidinopentiophenone (4-Br-PVP) after their seizures. Forensic Toxicol 2017. [DOI: 10.1007/s11419-017-0360-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Dunne SJ, Rosengren-Holmberg JP. Quantification of synthetic cannabinoids in herbal smoking blends using NMR. Drug Test Anal 2016; 9:734-743. [PMID: 27400773 DOI: 10.1002/dta.2032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/19/2016] [Accepted: 06/19/2016] [Indexed: 12/17/2022]
Abstract
Herbal smoking blends containing synthetic cannabinoids have become popular alternatives to marijuana. These products were previously sold in pre-packaged foil bags, but nowadays seizures usually contain synthetic cannabinoid powders together with unprepared plant materials. A question often raised by the Swedish police is how much smoking blend can be prepared from certain amounts of banned substance, in order to establish the severity of the crime. To address this question, information about the synthetic cannabinoid content in both the powder and the prepared herbal blends is necessary. In this work, an extraction procedure compatible with direct NMR quantification of synthetic cannabinoids in herbal smoking blends was developed. Extraction media, time and efficiency were tested for different carrier materials containing representative synthetic cannabinoids. The developed protocol utilizes a 30 min extraction step in d4 -methanol in presence of internal standard allowing direct quantitation of the extract using NMR. The accuracy of the developed method was tested using in-house prepared herbal smoking blends. The results showed deviations less than 0.2% from the actual content, proving that the method is sufficiently accurate for these quantifications. Using this method, ten synthetic cannabinoids present in sixty-three different herbal blends seized by the Swedish police between October 2012 and April 2015 were quantified. Obtained results showed a variation in cannabinoid contents from 1.5% (w/w) for mixtures containing MDMB-CHMICA to over 5% (w/w) for mixtures containing 5F-AKB-48. This is important information for forensic experts when making theoretical calculations of production quantities in legal cases regarding "home-made" herbal smoking blends. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Simon J Dunne
- Drug Unit, Swedish National Forensic Centre, Linköping, Sweden
| | | |
Collapse
|
16
|
Lobo Vicente J, Chassaigne H, Holland MV, Reniero F, Kolář K, Tirendi S, Vandecasteele I, Vinckier I, Guillou C. Systematic analytical characterization of new psychoactive substances: A case study. Forensic Sci Int 2016; 265:107-15. [PMID: 26874735 DOI: 10.1016/j.forsciint.2016.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 01/27/2023]
Abstract
New psychoactive substances (NPS) are synthesized compounds that are not usually covered by European and/or international laws. With a slight alteration in the chemical structure of existing illegal substances registered in the European Union (EU), these NPS circumvent existing controls and are thus referred to as "legal highs". They are becoming increasingly available and can easily be purchased through both the internet and other means (smart shops). Thus, it is essential that the identification of NPS keeps up with this rapidly evolving market. In this case study, the Belgian Customs authorities apprehended a parcel, originating from China, containing two samples, declared as being "white pigments". For routine identification, the Belgian Customs Laboratory first analysed both samples by gas-chromatography mass-spectrometry and Fourier-Transform Infrared spectroscopy. The information obtained by these techniques is essential and can give an indication of the chemical structure of an unknown substance but not the complete identification of its structure. To bridge this gap, scientific and technical support is ensured by the Joint Research Centre (JRC) to the European Commission Directorate General for Taxation and Customs Unions (DG TAXUD) and the Customs Laboratory European Network (CLEN) through an Administrative Arrangement for fast recognition of NPS and identification of unknown chemicals. The samples were sent to the JRC for a complete characterization using advanced techniques and chemoinformatic tools. The aim of this study was also to encourage the development of a science-based policy driven approach on NPS. These samples were fully characterized and identified as 5F-AMB and PX-3 using (1)H and (13)C nuclear magnetic resonance (NMR), high-resolution tandem mass-spectrometry (HR-MS/MS) and Raman spectroscopy. A chemoinformatic platform was used to manage, unify analytical data from multiple techniques and instruments, and combine it with chemical and structural information.
Collapse
Affiliation(s)
- Joana Lobo Vicente
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Chemical Assessment and Testing Unit, via E. Fermi, 2749, TP 281, I-21020 Ispra (VA), Italy.
| | - Hubert Chassaigne
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Chemical Assessment and Testing Unit, via E. Fermi, 2749, TP 281, I-21020 Ispra (VA), Italy
| | - Margaret V Holland
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Chemical Assessment and Testing Unit, via E. Fermi, 2749, TP 281, I-21020 Ispra (VA), Italy
| | - Fabiano Reniero
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Chemical Assessment and Testing Unit, via E. Fermi, 2749, TP 281, I-21020 Ispra (VA), Italy
| | - Kamil Kolář
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Chemical Assessment and Testing Unit, via E. Fermi, 2749, TP 281, I-21020 Ispra (VA), Italy; Czech Agriculture and Food inspection Authority, Květná 15, 603 00 Brno, Czech Republic
| | - Salvatore Tirendi
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Chemical Assessment and Testing Unit, via E. Fermi, 2749, TP 281, I-21020 Ispra (VA), Italy
| | - Ine Vandecasteele
- European Commission, Joint Research Centre, Institute for Environment and Sustainability (IES), Sustainability Assessment Unit, via E. Fermi, 2749, TP 291, I-21020 Ispra (VA), Italy
| | - Inge Vinckier
- Laboratory of Customs & Excises, Blijde Inkomststraat 20, B-3000 Leuven, Belgium
| | - Claude Guillou
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Chemical Assessment and Testing Unit, via E. Fermi, 2749, TP 281, I-21020 Ispra (VA), Italy
| |
Collapse
|