1
|
Li Y, Jiang K, Mao Q, Zhao Q. Effects of Peanut Shell Flavonoids on Composite Film Properties and Cherry Tomato Preservation. Food Sci Nutr 2024; 12:10848-10858. [PMID: 39723062 PMCID: PMC11666835 DOI: 10.1002/fsn3.4622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
This study investigated the effects of varying concentrations of peanut shell flavonoids (PSFs) on the properties of peanut meal extract-tilapia skin protein composite films and their impact on cherry tomatoes preservation. Peanut meal alcohol extract (Pe) and tilapia skin protein (Co) were used as base materials, combined with PSFs to prepare composite films with excellent antioxidant properties. The results demonstrated that the optimized composite films exhibited superior mechanical properties, with a tensile strength of 9.83 MPa and an elongation at break of 204.04%. Increased flavonoid content enhanced the films' antioxidant capacity, achieving superoxide anion and DPPH radical scavenging rates of 15.08% and 21.37%, respectively. The microstructure, IR spectra, and circular dichroism spectra of the composite films are also significantly different with the change of flavonoid content. In the cherry tomato preservation experiment, the PeCo-0.5 composite film treatment group maintained a low weight loss rate (11.18%) and malondialdehyde content (13.33 μmol/g) after 15 days, delayed the peak respiration rate, and significantly reduced the peak respiration intensity (3.43 mgCO2∙ mg-1∙gh-1). At the same time, the activity of polyphenol oxidase in the tissue of Cherry Tomatoes was significantly inhibited, and the decrease rate of Vc content was also significantly decreased, which effectively preserving the bright color, smooth appearance, and good aroma of the cherry tomatoes. This study not only provides new insights into the comprehensive utilization of tilapia skin and peanut by-products but also opens new avenues for the development and application of fruit and vegetable preservation films.
Collapse
Affiliation(s)
- Yuying Li
- Department of Food Science and Engineering, College of Light IndustryLiaoning UniversityShenyangChina
| | - Kexin Jiang
- Department of Food Science and Engineering, College of Light IndustryLiaoning UniversityShenyangChina
| | - Qian Mao
- Department of Food Science and Engineering, College of Light IndustryLiaoning UniversityShenyangChina
| | - Qi Zhao
- Department of Information, College of Medicine and Biological Information EngineeringNortheastern UniversityShenyangChina
| |
Collapse
|
2
|
Yong Y, Ahmad HN, Gu Y, Zhu X, Wen Y, Guo L, Zhu J. The synergistic effect of polyphenols and polypeptides for plant-based bioplastic film - Enhanced UV resistance, antioxidant and antibacterial performance. Food Chem 2024; 460:140746. [PMID: 39126951 DOI: 10.1016/j.foodchem.2024.140746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The exceptional biodegradability and active biological functions of bio-based packaging materials have attracted increasing interest. In this study, a bioplastic film was developed by introducing simultaneously polyphenols (tea polyphenols, TPs) and peptides (nisin) into a soy protein isolate/sodium alginate (SPI/SA) based film-forming matrix. The research results revealed that the dynamic coordinated interaction between TPs and nisin enhanced mechanical properties, UV-resistance, and thermal stability of bioplastic films. Furthermore, the bioplastic film exhibited antibacterial activity and antioxidant properties. Significantly, biofilm growth of Staphylococcus aureus treated with TPs-5/Nisin-5 bioplastic film was inhibited by 91.12% compared to the blank group. The shelf life of beef with TPs-5/Nisin-5 bioplastic film was prolonged by 2 days because of the synergistic effect of TPs and nisin. Additionally, the bioplastic film biodegraded in the natural environment about 21 days. This environmentally friendly regeneration strategy and the integration of advantageous functions provided ideas for the development of active food packaging.
Collapse
Affiliation(s)
- Yueyuan Yong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Gu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Master's Program in Biology and Medicine, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaotong Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Youhong Wen
- Experts Workstation for Functional Beef Research and Development, Shaanxi Nanxiangshenghe Food Technology Company, Zhenba, Shaanxi 723600, China
| | - Lianhong Guo
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Master's Program in Biology and Medicine, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Experts Workstation for Functional Beef Research and Development, Shaanxi Nanxiangshenghe Food Technology Company, Zhenba, Shaanxi 723600, China.
| |
Collapse
|
3
|
Zhang W, Li M, Chen J, Chen Y, Liu C, Wu X. A Review of Modified Gelatin: Physicochemical Properties, Modification Methods, and Applications in the Food Field. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20705-20721. [PMID: 39269923 DOI: 10.1021/acs.jafc.4c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Gelatin is a significant multifunctional biopolymer that is widely utilized as a component in food, pharmaceuticals, and cosmetics. Numerous functional qualities are displayed by gelatin, such as its exceptional film-forming ability, gelling qualities, foaming and emulsifying qualities, biocompatibility and biodegradable qualities. Due to its unique structural, physicochemical, and biochemical characteristics, which enhance nutritional content and health benefits as well as the stability, consistency, and elasticity of food products, gelatin is utilized extensively in the food business. Additionally, gelatin has demonstrated excellent performance in encapsulating, delivering, and releasing active ingredients. Gelatin's various modifications, such as chemical, enzymatic, and physical processes, were analyzed to assess their impact on gelatin structures and characteristics. Hopefully, gelatin will be more widely used in various applications after modification using suitable methods.
Collapse
Affiliation(s)
- Wanting Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China
| | - Meng Li
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China
| | - Jinjing Chen
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China
| | - Yiming Chen
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China
| | - Chang Liu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China
| | - Xiuli Wu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China
| |
Collapse
|
4
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
5
|
Zhao Y, Shi L, Ren Z, Liu Q, Zhang Y, Weng W. Physicochemical and antimicrobial properties of soy protein isolate films incorporating high internal phase emulsion loaded with thymol. Food Chem X 2024; 22:101251. [PMID: 38440059 PMCID: PMC10909606 DOI: 10.1016/j.fochx.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Oil-in-water (O/W) high internal phase (HIP) emulsion was prepared to investigate its effects on the physicochemical properties and antimicrobial properties of soy protein isolate (SPI)-based films. The particle size and migration degree of oil droplets in the SPI film-forming solution with HIP emulsion and the films were lower than those with conventional O/W emulsion or oil. The SPI-based emulsion films with HIP emulsion containing 30 % oil had the lowest water vapor permeability (1.15 × 10-10 g·m-1·s-1·Pa-1), glass transition temperature (40.93 °C) and tensile strength (4.47 MPa), and the highest transparency value (12.87) and elongation at break (160.83 %). The antimicrobial test of the SPI-based emulsion films loaded with thymol showed that the thymol encapsulation efficiency, sustained release effect, and growth inhibition effect on microbes were higher for the films with HIP emulsion than those for the films with O/W emulsion or oil.
Collapse
Affiliation(s)
- Yuan Zhao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| | - Qun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| |
Collapse
|
6
|
Wang C, Song Z, Cao Y, Han L, Yu Q, Han G, Zhu X. Characterization of sodium alginate-carrageenan films prepared by adding peanut shell flavonoids as an antioxidant: Application in chilled pork preservation. Int J Biol Macromol 2024; 266:131081. [PMID: 38552691 DOI: 10.1016/j.ijbiomac.2024.131081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
This study prepared and characterized sodium alginate and carrageenan (SAC) composite films incorporated with peanut shell flavonoids (PSFs). PSFs compound identification research was implemented. The physicochemical features of PSFs-SAC composite films and their ability to preserve chilled pork in a 4 °C refrigerator were determined. PSFs consist of luteolin, eriodictyol, 5,7-dihydroxychromone, and 8 other components. They significantly improved the mechanical properties, barrier properties, thermal stability, and antioxidant properties of SAC composite films (P < 0.05). PSFs were also responsible for increasing the density of the film structure between the sodium alginate and carrageenan molecules. During storage, compared with the control group, the prepared PSFs-SAC composite films did not allow the total viable count (TVC), pH and total volatile base nitrogen (TVB-N) of the chilled pork to increase rapidly. Further, they were able to inhibit lipid oxidation more effectively (P < 0.05). For these reasons, the use of the PSFs-SAC composite films prolonged shelf life of chilled pork from 6 days to the 12 days. Therefore, PSFs-SAC composite films are expected to be used as bioactive substances in food preservation.
Collapse
Affiliation(s)
- Cong Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhaoyang Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yinjuan Cao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Guangxing Han
- Shandong Lvrun Food Co., Ltd., Linyi 276017, PR China
| | - Xiaopeng Zhu
- Zhangye Wanhe Grass Livestock Industry Technology Development Co., Ltd., Zhangye 734000, PR China
| |
Collapse
|
7
|
Davari N, Nourmohammadi J, Mohammadi J. Nitric oxide-releasing thiolated starch nanoparticles embedded in gelatin sponges for wound dressing applications. Int J Biol Macromol 2024; 265:131062. [PMID: 38521307 DOI: 10.1016/j.ijbiomac.2024.131062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
This study introduces a novel wound dressing by combining nitric oxide-releasing thiolated starch nanoparticles (NO-TS NPs) with gelatin. First, starch was thiolated (TS), and then its nanoparticles were prepared (TS NPs). Subsequently, NPs were covalently bonded to sodium nitrite to obtain NO-releasing TS NPs (NO-TS-NPs) that were incorporated into gelatin sponges at various concentrations. The resulting spherical TS NPs had a mean size of 85.42 ± 5.23 nm, which rose to 100.73 ± 7.41 nm after bonding with sodium nitrite. FTIR spectroscopy confirmed S-nitrosation on the NO-TS NPs' surface, and morphology analysis showed well-interconnected pores in all sponges. With higher NO-TS NPs content, pore size, porosity, and water uptake increased, while compressive modulus and strength decreased. Composites exhibited antibacterial activity, particularly against E. coli, with enhanced efficacy at higher NPs' concentrations. In vitro release studies demonstrated Fickian diffusion, with faster NO release in sponges containing more NPs. The released NO amounts were non-toxic to fibroblasts, but samples with fewer NO-TS NPs exhibited superior cellular density, cell attachment, and collagen secretion. Considering the results, including favorable mechanical strength, release behavior, antibacterial and cellular properties, gelatin sponges loaded with 2 mg/mL of NO-TS NPs can be suitable for wound dressing applications.
Collapse
Affiliation(s)
- Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran.
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| |
Collapse
|
8
|
Yong H, Wang Z, Huang J, Liu J. Preparation, characterization and application of antioxidant packaging films based on chitosan-epicatechin gallate conjugates with different substitution degrees. Int J Biol Macromol 2024; 260:129568. [PMID: 38246436 DOI: 10.1016/j.ijbiomac.2024.129568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
In this study, chitosan (CS) was conjugated with epicatechin gallate (ECG) to prepare CS-ECG conjugates with different substitution degrees (5.18 %, 6.36 % and 7.74 %). Then, antioxidant packaging films were fabricated by blending CS and CS-ECG conjugates. The impact of CS-ECG conjugates' substitution degree on the functionality of CS/CS-ECG films was determined. CS-ECG conjugates showed UV absorption at 275 nm, proton signal at 6.85 ppm and infrared absorption at 1533 cm-1, assigning to the conjugated ECG. As compared with CS, CS-ECG conjugates exhibited less crystalline state but higher antioxidant activity. The structural characterization of CS/CS-ECG films showed CS and CS-ECG conjugates formed hydrogen bonds. CS/CS-ECG films displayed 26.35 %-29.23 % water solubility, 85.61°-86.96° water contact angle, 3.11-3.41 × 10-11 g m-1 s-1 Pa-1 water vapor permeability, 0.29-0.34 cm3 mm m-2 day-1 atm-1 oxygen permeability, 31.54-36.20 MPa tensile strength, 50.12 %-56.40 % elongation at break, as well as potent antioxidant activity and oil oxidation inhibitory ability. Notably, the film containing CS-ECG conjugate with 7.74 % substitution degree had the strongest barrier ability, mechanical property, antioxidant activity and oil oxidation inhibitory ability. Results suggested the substitution degree of CS-ECG conjugates was positively correlated with the barrier, mechanical and antioxidant properties of CS/CS-ECG films.
Collapse
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zeyu Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
9
|
Manzoor A, Ahmad S. Flaxseed gum based biocomposite film modified with betel leaf extract: A novel packaging material for oxidative stability of meat patties. Meat Sci 2024; 209:109401. [PMID: 38061305 DOI: 10.1016/j.meatsci.2023.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/21/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
The study investigated the antioxidant effect on lipid and protein oxidation, microbial count and other physicochemical attributes of meat patties packaged in flaxseed gum (FSG) based films added with betel leaf extract (BLE) during refrigerated storage (4 ± 1 °C) of 30 days. FSG films were developed after incorporating 0, 2.5, 5, 7.5 and 10% of BLE (BLE0, BLE1, BLE2, BLE3 and BLE4) respectively. The patties showed no change in pH due to composite films however, a remarkable effect in retarding the weight loss and color change along with an improvement in sensory score and microbial quality. TBARS of the patties packed in treated films ranged from 0.10 to 0.99 (mg MDA/kg), lower than that of the control 0.34-1.33 (mg MDA/kg). The BLE4 (packed in FSG film with 10% BLE) had the lowest metmyoglobin content of 31.71% compared to the control sample (69.02%) on 30th day of refrigerated storage. Further, a significant reduction in moisture and color change was observed in meat patties packed in FSG-BLE composite films compared to the control patties. Hence, this study concluded that the FSG-BLE composite films improves the storage stability by impeding the rate of lipid oxidation indicating the developed film's promising potential as a sustainable material in active packaging for the shelf life extension of high-fat meat products and other perishable food products.
Collapse
Affiliation(s)
- Arshied Manzoor
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U., Aligarh, UP, India; Department of Bioengineering, Integral University, Lucknow, UP, India.
| | - Saghir Ahmad
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U., Aligarh, UP, India
| |
Collapse
|
10
|
Wang S, Rao W, Hou C, Suleman R, Zhang Z, Chai X, Tian H. Development of Plastic/Gelatin Bilayer Active Packaging Film with Antibacterial and Water-Absorbing Functions for Lamb Preservation. Food Sci Anim Resour 2023; 43:1128-1149. [PMID: 37969331 PMCID: PMC10636216 DOI: 10.5851/kosfa.2023.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 11/17/2023] Open
Abstract
In order to extend the shelf life of refrigerating raw lamb by inhibiting the growth of microorganisms, preventing the oxidation of fat and protein, and absorbing the juice outflow of lamb during storage, an active packaging system based on plastic/gelatin bilayer film with essential oil was developed in this study. Three kinds of petroleum-derived plastic films, oriented polypropylene (OPP), polyethylene terephthalate, and polyethylene, were coated with gelatin to make bilayer films for lamb preservation. The results showed significant improvement in the mechanical properties, oxygen, moisture, and light barriers of the bilayer films compared to the gelatin film. The OPP/gelatin bilayer film was selected for further experiments because of its highest acceptance by panelists. If the amount of juice outflow was less than 350% of the mass of the gelatin layer, it was difficult for the gelatin film to separate from lamb. With the increase in essential oil concentration, the water absorption capacity decreased. The OPP/gelatin bilayer films with 20% mustard or 10% oregano essential oils inhibited the growth of bacteria in lamb and displayed better mechanical properties. Essential oil decreased the brightness and light transmittance of the bilayer films and made the film yellow. In conclusion, our results suggested that the active packaging system based on OPP/gelatin bilayer film was more suitable for raw lamb preservation than single-layer gelatin film or petroleum-derived plastic film, but need further study, including minimizing the amount of essential oil, enhancing the mechanical strength of the gelatin film after water absorption.
Collapse
Affiliation(s)
- Shijing Wang
- College of Food Science and Technology,
Hebei Agricultural University, Baoding 071000, China
| | - Weili Rao
- College of Food Science and Technology,
Hebei Agricultural University, Baoding 071000, China
| | - Chengli Hou
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, National Risk Assessment
Laboratory of Agro-Products Processing Quality and Safety, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Raheel Suleman
- Department of Food Science and Technology,
Faculty of Food Science and Nutrition, Bahauddin Zakariya
University, Multan 60000, Pakistan
| | - Zhisheng Zhang
- College of Food Science and Technology,
Hebei Agricultural University, Baoding 071000, China
| | - Xiaoyu Chai
- College of Food Science and Technology,
Hebei Agricultural University, Baoding 071000, China
| | - Hanxue Tian
- College of Food Science and Technology,
Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
11
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
12
|
Zhao Y, Li B, Zhang W, Zhang L, Zhao H, Wang S, Huang C. Recent Advances in Sustainable Antimicrobial Food Packaging: Insights into Release Mechanisms, Design Strategies, and Applications in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11806-11833. [PMID: 37467345 DOI: 10.1021/acs.jafc.3c02608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In response to the issues of foodborne microbial contamination and carbon neutrality goals, sustainable antimicrobial food packaging (SAFP) composed of renewable or biodegradable biopolymer matrices with ecofriendly antimicrobial agents has emerged. SAFP offers longer effectiveness, wider coverage, more controllability, and better environmental performance. Analyzing SAFP information, including the release profile of each antimicrobial agent for each food, the interaction of each biomass matrix with each food, the material size, form, and preparation methods, and its service quality in real foods, is crucial. While encouraging reports exist, a comprehensive review summarizing these developments is lacking. Therefore, this review critically examines recent release-antimicrobial mechanisms, kinetics models, preparation methods, and key regulatory parameters for SAFPs based on slow- or controlled-release theory. Furthermore, it discusses fundamental physicochemical characteristics, effective concentrations, advantages, release approaches, and antimicrobial and preservative effects of various materials in food simulants or actual food. Lastly, inadequacies and future trends are explored, providing practical references to regulate the movement of active substances in different media, reduce the reliance on petrochemical-based materials, and advance food packaging and preservation technologies.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenping Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Lanyu Zhang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| |
Collapse
|
13
|
Duan M, Sun J, Yu S, Zhi Z, Pang J, Wu C. Insights into electrospun pullulan-carboxymethyl chitosan/PEO core-shell nanofibers loaded with nanogels for food antibacterial packaging. Int J Biol Macromol 2023; 233:123433. [PMID: 36709819 DOI: 10.1016/j.ijbiomac.2023.123433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/19/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Nisin, a natural substance from Lactococcus lactis, displays a promising antibacterial ability against the gram-positive bacteria. However, it is susceptible to the external environment, i.e. temperature, pH, and food composition. In this study, a dual stabilization method, coaxial electrospinning, was applied to protect nisin in food packaging materials and the effect of nisin concentration on the properties of the nanofibers was investigated. The core-shell nanofibers with pullulan as a core layer and carboxymethyl chitosan (CMCS)/polyethylene oxide (PEO) as shell layer were prepared, and then the prepared CMCS-nisin nanogels (CNNGs) using a self-assembly method were loaded into the core layer of the nanofibers as antibacterial agents. The result revealed that the smooth surface can be observed on the nanofibers by microstructure characterization. The CNNGs-loaded nanofibers exhibited enhanced thermal stability and mechanical strength, as well as excellent antibacterial activity. Importantly, the as-formed nanofibers were applied to preserve bass fish and found that the shelf life of bass fish packed by CNNGSs with nisin at a concentration of 8 mg/mL was effectively extended from 9 days to 15 days. Taken together, the CNNGs can be well stabilized with the core-shell nanofibers, thus exerting significantly improved antimicrobial stability and bioactivity. This special structure exerts a great potential for application as food packaging materials to preserve aquatic products.
Collapse
Affiliation(s)
- Mengxia Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jishuai Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, East Flanders 9000, Belgium.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| |
Collapse
|
14
|
Hu Y, Xu W, Ren Z, Shi L, Zhang Y, Yang S, Weng W. Effect of drying rate on the physicochemical properties of soy protein isolate-soy oil emulsion films. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Comparative study of sodium nitrite loaded gelatin microspheres and gelatin gels: Physicochemical and antibacterial properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
A comprehensive review on gelatin: Understanding impact of the sources, extraction methods, and modifications on potential packaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview. Foods 2022; 11:foods11233820. [PMID: 36496629 PMCID: PMC9735823 DOI: 10.3390/foods11233820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The preservation of food represents one of the greatest challenges in the food industry. Active packaging materials are obtained through the incorporation of antimicrobial and/or antioxidant compounds in order to improve their functionality. Further, these materials are used for food packaging applications for shelf-life extension and fulfilling consumer demands for minimal processed foods with great quality and safety. The incorporation of antimicrobial peptides, such as nisin, has been studied lately, with a great interest applied to the food industry. Antimicrobials can be incorporated in various matrices such as nanofibers, nanoemulsions, nanoliposomes, or nanoparticles, which are further used for packaging. Despite the widespread application of nisin as an antimicrobial by directly incorporating it into various foods, the use of nisin by incorporating it into food packaging materials is researched at a much smaller scale. The researchers in this field are still in full development, being specific to the type of product studied. The purpose of this study was to present recent results obtained as a result of using nisin as an antimicrobial agent in food packaging materials, with a focus on applications on products of animal origin. The findings showed that nisin incorporated in packaging materials led to a significant reduction in the bacterial load (the total viable count or inoculated strains), maintained product attributes (physical, chemical, and sensorial), and prolonged their shelf-life.
Collapse
|
18
|
Shaik MI, Azhari MF, Sarbon NM. Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review. Foods 2022; 11:foods11233797. [PMID: 36496605 PMCID: PMC9739830 DOI: 10.3390/foods11233797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The color indicator can monitor the quality and safety of food products due to its sensitive nature toward various pH levels. A color indicator helps consumers monitor the freshness of food products since it is difficult for them to depend solely on their appearance. Thus, this review could provide alternative suggestions to solve the food-spoilage determination, especially for perishable food. Usually, food spoilage happens due to protein and lipid oxidation, enzymatic reaction, and microbial activity that will cause an alteration of the pH level. Due to their broad-spectrum properties, natural sources such as anthocyanin, curcumin, and betacyanin are commonly used in developing color indicators. They can also improve the gelatin-based film's morphology and significant drawbacks. Incorporating natural colorants into the gelatin-based film can improve the film's strength, gas-barrier properties, and water-vapor permeability and provide antioxidant and antimicrobial properties. Hence, the color indicator can be utilized as an effective tool to monitor and control the shelf life of packaged foods. Nevertheless, future studies should consider the determination of food-spoilage observation using natural colorants from betacyanin, chlorophyll, and carotenoids, as well as the determination of gas levels in food spoilage, especially carbon dioxide gas.
Collapse
|
19
|
Zam M, Niyumsut I, Osako K, Rawdkuen S. Fabrication and Characterization of Intelligent Multi-Layered Biopolymer Film Incorporated with pH-Sensitive Red Cabbage Extract to Indicate Fish Freshness. Polymers (Basel) 2022; 14:polym14224914. [PMID: 36433041 PMCID: PMC9697270 DOI: 10.3390/polym14224914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to fabricate an intelligent monolayer and multi-layered biodegradable films incorporated with red cabbage extract (RCE) to act as a safe and reliable freshness indicator. A film-forming solution (FFS) of gelatin, carboxymethyl cellulose (CMC) and chitosan was prepared and fortified with 0.5% (w/v) of RCE for developing intelligent monolayer films. The intelligent multi-layer film was prepared via layer by layer casting of gelatin, chitosan (added with 0.5% of RCE) and CMC biopolymers. The thickness of the multi-layered film was the highest (0.123 ± 0.001 mm) compared to gelatin-, CMC- and chitosan-based monolayer films (p < 0.05). Chitosan film has the highest tensile strength (p < 0.05), followed by multi-layer, CMC and gelatin films. Elongation at break was slightly higher in CMC (35.67 ± 7.62%) compared to the multi-layer film (33.12 ± 9.88%) and gelatin film (p > 0.05). Water vapor permeability was higher in the multi-layer film (1.244 ± 0.05 × 10−5 g mm h−1cm−2 P−1) than the other monolayer films. Moisture content was highest in chitosan film followed by the multi-layered film (p < 0.05) and then the CMC and gelatin films. CMC film showed the highest solubility compared to multi-layered and chitosan film (p < 0.05). Additionally, transmittance and transparency values in the multi-layered film were the lowest compared to the chitosan-, CMC- and gelatin-based films. L* and a* values were the lowest, while b* values increased in the multi-layered film compared to the other film samples (p < 0.05). pH sensitivity and ammonia gas tests revealed similar color changes in chitosan and multi-layer films. However, FTIR spectra confirmed that dye leaching was not detected for the multi-layered film soaked in ethanol. The biodegradability test showed rapid degradation of multi-layered and chitosan films within 1 month. Based on the optimum results of the multi-layered film, it was applied to monitor the fresh quality of tilapia fish fillets at 4 °C for 10 days. The results of freshness acceptability were noted on day 6 due to the change in color of the multi-layer film with an estimated total volatile basic nitrogen content of 21.23 mg/100 g. Thus, the multi-layered film can be used as an indicator to monitor the quality of the fish freshness without leaching dye onto the food surface.
Collapse
Affiliation(s)
- Mindu Zam
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Thasud, Chiang Rai 57100, Thailand
| | - Itthi Niyumsut
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Thasud, Chiang Rai 57100, Thailand
| | - Kazufumi Osako
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Thasud, Chiang Rai 57100, Thailand
- Unit of Innovative Food Packaging and Biomaterials, Mae Fah Luang University, 333 Moo 1 Thasud, Chiang Rai 57100, Thailand
- Correspondence: ; Fax: +66-53-916737
| |
Collapse
|
20
|
Jirukkakul N. Physical and antioxidant properties of gelatine film added with sesame, rice bran, and coconut oil. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gelatine is commonly used as packaging in the food industry because it has the proper physical properties. The present work observed that there were no differences in moisture content and solubility of the packaging film after adding 4% of gelatine film with 0.5% of rice bran, sesame, and coconut oil. Meanwhile, water vapour permeability, tensile strength, and elongation of the gelatine films increased when added with the oil. The colour value depended on the colour of the oil added to the gelatine films. The colour value of the gelatine films added with sesame and coconut oil did not differ from the gelatine film without the addition of any oil. The addition of coconut oil to the gelatine film resulted in increased antioxidant activity. Wrapping chicken, pork, and beef with the gelatine films added with all three types of oil showed no differences in pH values for all three types of meat products throughout refrigeration storage for 12 days. Meat wrapped in gelatine film added with coconut oil showed an increase in TBARS, while TBARS were lower in the gelatine film without the addition of any oil or added with rice bran and sesame oil. This indicated that after coconut oil was added to the gelatine film, it decreased oxidation in the meat products during storage.
Collapse
|
21
|
Qi D, Xiao Y, Xia L, Li L, Jiang S, Jiang S, Wang H. Colorimetric films incorporated with nisin and anthocyanins of pomegranate/Clitoria ternatea for shrimp freshness monitoring and retaining. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Luciano CG, Tessaro L, Bonilla J, Balieiro JCDC, Trindade MA, Sobral PJDA. Application of bi-layers active gelatin films for sliced dried-cured Coppa conservation. Meat Sci 2022; 189:108821. [PMID: 35421736 DOI: 10.1016/j.meatsci.2022.108821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
Processed meat products have been increasingly consumed, a highlight being dried-cured coppa, commonly purchased sliced, making it more susceptible to bacterial deterioration and lipid oxidation. The aim of this work was to produce and apply bi-layers films based on gelatin (in both layers) with addition of nisin and/or Pitanga leaf hydroethanolic extract (PLHE) only in the food contact thinner layer, in order to evaluate their effect on the refrigerated storage of sliced dried-cured coppa. Dried-cured coppa slices covered with active films were vacuum-packaged and stored under refrigeration for 120 days. Every 30 days, samples were tested for moisture content, water activity, pH, color parameters, lipid oxidation by TBARS and peroxide index methods, and microbiological analysis. The different film formulations presented no influence on the water activity, pH and color parameters of sliced dried-cured coppa. However, they significantly affected moisture content, bacterial count and lipid oxidation. The addition of both active compounds - nisin and PLHE - in the food contact thinner layer was observed to have the most favorable effect.
Collapse
Affiliation(s)
- Carla Giovana Luciano
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Jeannine Bonilla
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Júlio César de Carvalho Balieiro
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marco Antonio Trindade
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil; Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-industrial building, block C; 05508-080 São Paulo (SP), Brazil.
| |
Collapse
|
23
|
Effect of crosslinking by microbial transglutaminase of gelatin films on lysozyme kinetics of release in food simulants. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Starch/PBAT blown antimicrobial films based on the synergistic effects of two commercial antimicrobial peptides. Int J Biol Macromol 2022; 204:457-465. [DOI: 10.1016/j.ijbiomac.2022.01.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/24/2023]
|
25
|
Lu Y, Luo Q, Chu Y, Tao N, Deng S, Wang L, Li L. Application of Gelatin in Food Packaging: A Review. Polymers (Basel) 2022; 14:polym14030436. [PMID: 35160426 PMCID: PMC8838392 DOI: 10.3390/polym14030436] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Owing to the increasing environmental concerns and requirements for high-quality foods, edible films and coatings (based on proteins, polysaccharides, natural phenolic active substances, etc.) are being developed as effective alternatives to traditional plastic packaging. Gelatin is extracted from collagen. It is an ideal material for food packaging due to its versatile advantages such as low price, polymerization, biodegradability, good antibacterial and antioxidant properties, etc. However, gelatin film exists poor waterproof and mechanical properties, which limit its developments and applications in food packaging. Previous studies show that pure gelatin can be modified by adding active ingredients and incorporating them with bio-polymers to improve its mechanical properties, aiming to achieve the desirable effect of preservation. This review mainly shows the preparation and molding ways of gelatin-based edible films and the applications of gelatin modified with other biopolymers. Furthermore, this review provides the latest advances in gelatin-based biodegradable packaging and food applications that exhibit outstanding advantages in food preservation.
Collapse
Affiliation(s)
- Yanan Lu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Qijun Luo
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Yuchan Chu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Li Wang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| |
Collapse
|
26
|
Sha H, Cui B, Yuan C, Li Y, Guo L, Liu P, Wu Z. Catechin/β-cyclodextrin complex modulates physicochemical properties of pre-gelatinized starch-based orally disintegrating films. Int J Biol Macromol 2022; 195:124-131. [PMID: 34896463 DOI: 10.1016/j.ijbiomac.2021.11.206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
Abstract
The study aimed to develop pre-gelatinized starch-based orally disintegrating films (ODFs) containing catechin/β-cyclodextrin (CAT/β-CD) complex and to evaluate the influence of the complex on the physicochemical properties of the ODFs. SEM images showed that a compacter and more homogeneous ODFs were formed due to interactions between starch matrix and CAT/β-CD. FTIR spectra demonstrated that the interactions between starches or starch and CAT/β-CD were enhanced by hydrogen bonds. Thermal stability of ODFs was improved by incorporating CAT/β-CD, its peak decomposition temperature was enhanced from 310.74 to 321.83 °C. Tensile strength was increased from 11.597 ± 0.153 to 22.172 ± 0.752 MPa, while elongation at break decreased by from 11.233% ± 1.079% to 3.633% ± 0.058%. The prepared ODFs have an acceptable in vitro disintegration time, which were between 9.03 ± 0.79 s and 42.23 ± 1.76 s. Antimicrobial test showed that ODFs incorporating CAT/β-CD inhibited the growth of S. aureus and S. mutans successfully. The limited release of CAT molecules from the ODFs was also found. In addition, the ODFs have excellent antioxidant capacity. Its antioxidant activity remained at around 70% after 28 days of storage. The study indicated that the combination of ODFs and β-CD complex have a high potential for the delivery of natural active ingredients.
Collapse
Affiliation(s)
- Haojie Sha
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Yuhang Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
27
|
Haghighatpanah N, Omar-Aziz M, Gharaghani M, Khodaiyan F, Hosseini SS, Kennedy JF. Effect of mung bean protein isolate/pullulan films containing marjoram (Origanum majorana L.) essential oil on chemical and microbial properties of minced beef meat. Int J Biol Macromol 2022; 201:318-329. [PMID: 35026220 DOI: 10.1016/j.ijbiomac.2022.01.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/18/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
In this study, the effect of marjoram essential oil (MEO) on the mechanical, barrier, antioxidant and antimicrobial properties of mung bean protein isolate (MPI)/pullulan (PU) composite films and its influence on the quality of minced beef meat during 14 days storage at 4 °C was studied. The Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results confirmed the compatibility between components. Also, depend on the different ratios of combination of MEO and MPI/PU, tensile strength (TS) and elongation at break (EAB) were varied. The results showed that an increase in the level of the MPI led to a significant increment in TS and water-proof properties of the composite films. Also, with addition of MEO, the EAB of the antimicrobial blend-films was decreased, while TS and water-proof properties were increased. In addition, enrichment of the films with MEO led to a considerable positive effect on DPPH radical scavenging and antibacterial activity against pathogenic bacteria (Staphylococcus aureus and Escherichia coli). Based on the bacterial and chemical analyses of the minced meat samples, MEO-incorporation in MPI/PU films enhanced oxidative stability of minced beef samples, and also showed effective antimicrobial activity against all of the tested bacteria.
Collapse
Affiliation(s)
- Negar Haghighatpanah
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Maedeh Omar-Aziz
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Mohammad Gharaghani
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran.
| | - Seyed Saeid Hosseini
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 The Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcestershire B60 4JE, UK
| |
Collapse
|
28
|
Edible active film based on gelatin and Malpighia emarginata waste extract to inhibit lipid and protein oxidation in beef patties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Luo Q, Hossen MA, Zeng Y, Dai J, Li S, Qin W, Liu Y. Gelatin-based composite films and their application in food packaging: A review. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110762] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Zhou P, Tang D, Zou J, Wang X. An alternative strategy for enhancing stability and antimicrobial activity of catechins by natural deep eutectic solvents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Martinengo P, Arunachalam K, Shi C. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods 2021; 10:foods10102469. [PMID: 34681518 PMCID: PMC8536111 DOI: 10.3390/foods10102469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Natural alternatives replacing artificial additives have gained much attention in the consumer’s view because of the growing search for clean label products that are devoid of carcinogenic and toxic effects. Plant polyphenols are considered as suitable alternative natural preservatives with antioxidant and antimicrobial properties. However, their uses in the food industry are undermined by a series of limitations such as low solubility and stability during food processing and storage, lack of standardization, and undesirable organoleptic properties. Different approaches in the use of polyphenols have been proposed in order to overcome the current hurdles related to food preservation. This review article specifically focuses on the antibacterial activity of plant-derived polyphenols as well as their applications as food preservatives, main challenges, and other trends in the food industry.
Collapse
|
32
|
Santos LG, Silva GFA, Gomes BM, Martins VG. A novel sodium alginate active films functionalized with purple onion peel extract (Allium cepa). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Berberine carried gelatin/sodium alginate hydrogels with antibacterial and EDTA-induced detachment performances. Int J Biol Macromol 2021; 181:1039-1046. [PMID: 33892030 DOI: 10.1016/j.ijbiomac.2021.04.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Most existing hydrogel wound dressings lack gentle detachment property. In this work, novel hydrogels with anti-bacterial and induced detachment properties were prepared. Both gelatin (G) and sodium alginate (SA) are natural polymer materials. The G/SA hydrogels were prepared by dual cross-linking. The addition of SA significantly improves the mechanical properties of composite hydrogels. The tensile modulus and elongation at break of the G/SA hydrogels with 2.0% SA could reach 99.23 ± 2.18 kPa and 85.47 ± 5.01%, respectively. In addition, the interconnected porous network and high swelling ratio (over 9.99 ± 0.33) are beneficial to the transmission of oxygen and absorption of exudates to accelerate the healing of wound. Subsequently, berberine (BBR) was loaded into the G/SA hydrogels. The BBR/G/SA hydrogels show sustained drug release for 168 h and exhibit anti-bacterial effect against Staphylococcus aureus. The results of L929 cells cultured with the hydrogel extracts indicate good biocompatibility. Finally, results of EDTA-induced detachment performances demonstrate that the hydrogels could be removed from the wound as the internal structure destroyed. All illustrated results above demonstrated the BBR carried G/SA hydrogels have potential used as wound dressing materials in future.
Collapse
|
34
|
Homem NC, Tavares TD, Miranda CS, Antunes JC, Amorim MTP, Felgueiras HP. Functionalization of Crosslinked Sodium Alginate/Gelatin Wet-Spun Porous Fibers with Nisin Z for the Inhibition of Staphylococcus aureus-Induced Infections. Int J Mol Sci 2021; 22:ijms22041930. [PMID: 33669209 PMCID: PMC7919837 DOI: 10.3390/ijms22041930] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Nisin Z, an amphipathic peptide, with a significant antibacterial activity against Gram-positive bacteria and low toxicity in humans, has been studied for food preservation applications. Thus far, very little research has been done to explore its potential in biomedicine. Here, we report the modification of sodium alginate (SA) and gelatin (GN) blended microfibers, produced via the wet-spinning technique, with Nisin Z, with the purpose of eradicating Staphylococcus aureus-induced infections. Wet-spun SAGN microfibers were successfully produced at a 70/30% v/v of SA (2 wt%)/GN (1 wt%) polymer ratio by extrusion within a calcium chloride (CaCl2) coagulation bath. Modifications to the biodegradable fibers' chemical stability and structure were then introduced via crosslinking with CaCl2 and glutaraldehyde (SAGNCL). Regardless of the chemical modification employed, all microfibers were labelled as homogeneous both in size (≈246.79 µm) and shape (cylindrical and defect-free). SA-free microfibers, with an increased surface area for peptide immobilization, originated from the action of phosphate buffer saline solution on SAGN fibers, were also produced (GNCL). Their durability in physiological conditions (simulated body fluid) was, however, compromised very early in the experiment (day 1 and 3, with and without Nisin Z, respectively). Only the crosslinked SAGNCL fibers remained intact for the 28 day-testing period. Their thermal resilience in comparison with the unmodified and SA-free fibers was also demonstrated. Nisin Z was functionalized onto the unmodified and chemically altered fibers at an average concentration of 178 µg/mL. Nisin Z did not impact on the fiber's morphology nor on their chemical/thermal stability. However, the peptide improved the SA fibers (control) structural integrity, guaranteeing its stability for longer, in physiological conditions. Its main effect was detected on the time-kill kinetics of the bacteria S. aureus. SAGNCL and GNCL loaded with Nisin Z were capable of progressively eliminating the bacteria, reaching an inhibition superior to 99% after 24 h of culture. The peptide-modified SA and SAGN were not as effective, losing their antimicrobial action after 6 h of incubation. Bacteria elimination was consistent with the release kinetics of Nisin Z from the fibers. In general, data revealed the increased potential and durable effect of Nisin Z (significantly superior to its free, unloaded form) against S. aureus-induced infections, while loaded onto prospective biomedical wet-spun scaffolds.
Collapse
|
35
|
Astray G, Albuquerque BR, Prieto MA, Simal-Gandara J, Ferreira ICFR, Barros L. Stability assessment of extracts obtained from Arbutus unedo L. fruits in powder and solution systems using machine-learning methodologies. Food Chem 2020; 333:127460. [PMID: 32673953 DOI: 10.1016/j.foodchem.2020.127460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 11/28/2022]
Abstract
Arbutus unedo L. (strawberry tree) has showed considerable content in phenolic compounds, especially flavan-3-ols (catechin, gallocatechin, among others). The interest of flavan-3-ols has increased due their bioactive actions, namely antioxidant and antimicrobial activities, and by association of their consumption to diverse health benefits including the prevention of obesity, cardiovascular diseases or cancer. These compounds, mainly catechin, have been showed potential for use as natural preservative in foodstuffs; however, their degradation is increased by pH and temperature of processing and storage, which can limit their use by food industry. To model the degradation kinetics of these compounds under different conditions of storage, three kinds of machine learning models were developed: i) random forest, ii) support vector machine and iii) artificial neural network. The selected models can be used to track the kinetics of the different compounds and properties under study without the prior knowledge requirement of the reaction system.
Collapse
Affiliation(s)
- G Astray
- Department of Physical Chemistry, Faculty of Science, University of Vigo, 32004 Ourense, Spain.
| | - B R Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - M A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| | - I C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - L Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
36
|
Lorenzo ME, Casero CN, Gómez PE, Segovia AF, Figueroa LC, Quiroga A, Werning ML, Wunderlin DA, Baroni MV. Antioxidant characteristics and antibacterial activity of native woody species from Catamarca, Argentina. Nat Prod Res 2020; 36:885-890. [PMID: 33185143 DOI: 10.1080/14786419.2020.1839461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Numerous reports describe the antioxidant and antimicrobial activity of polyphenols-rich plant extracts. The aim of this study was to determine the total polyphenols content (TPC), and the in vitro (DPPH, FRAP and TEAC) antioxidant and antibacterial activity of leaves and wood of six native woody species (Aspidosperma quebracho-blanct, Sarcomphalus mistol, Geoffroea decorticans, Prosopis chilensis, Larrea divaricata and Larrea cuneifolia) from Catamarca. Also, the phenolic profile was determined in the species with higher activity. L. cuneifolia leaf extracts showed the highest antioxidant activity followed by L. divaricata and S. mistol, while S. mistol wood extracts showed the highest. Furthermore, Larrea species showed antibacterial activity against S. aureus and E. faecalis strains showing cidal effects mainly against S. aureus. Fifty-nine polyphenols were identified in leaves and wood of Larrea and S. mistol species, which are likely to be responsible for the different activities observed.
Collapse
Affiliation(s)
| | - Carina Noelia Casero
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, UNC - IMBIV-CONICET, Córdoba, Argentina
| | | | | | | | | | - María Laura Werning
- Facultad de Ciencias, Exactas y Naturales, UNCA, CITCA/CONICET-UNCA, Catamarca, Argentina
| | - Daniel Alberto Wunderlin
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, ISIDSA, SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina.,CONICET, ICYTAC, Córdoba, Argentina
| | - María Verónica Baroni
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, ISIDSA, SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina.,CONICET, ICYTAC, Córdoba, Argentina
| |
Collapse
|
37
|
Djenane D, Aboudaou M, Djenane F, García-Gonzalo D, Pagán R. Improvement of the Shelf-Life Status of Modified Atmosphere Packaged Camel Meat Using Nisin and Olea europaea Subsp. laperrinei Leaf Extract. Foods 2020; 9:foods9091336. [PMID: 32971898 PMCID: PMC7555406 DOI: 10.3390/foods9091336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
The impact of combined biopreservation treatment with Olea europaea subsp. laperrinei leave extracts (laper.OLE) and nisin on the quality attributes of camel steaks packaged under high O2 (80%) and CO2 (20%) atmosphere was investigated during refrigerated (1 ± 1 °C) long-term storage. As measured by reversed phase HPLC/DAD analysis, oleuropein is the phenolic compound most present in the chemical composition of laper.OLE (63.03%). Camel steaks treated with laper.OLE had a lower concentration of thiobarbituric acid-reactive substances (TBA-RSs) in the course of 30 days of storage. Surface metmyoglobin (MetMb) increased at a reduced rate in laper.OLE-treated samples compared to control samples. Neither modified atmosphere packaging (MAP) nor biopreservation treatments significantly altered the tenderness of camel steaks, expressed in terms of Warner-Bratzler shear force (WBSF), as compared to control samples. After 30 days of storage, psychrotrophic bacteria and Pseudomonas spp. counts were significantly lower in camel steaks treated with a combination of laper.OLE and nisin than in untreated steaks. Moreover, samples treated with laper.OLE received higher scores on bitterness acceptability. In sum, the use of combined biopreservation methods could be a sustainable solution for the preservation and promotion of the quality characteristics of camel meat in arid regions.
Collapse
Affiliation(s)
- Djamel Djenane
- Laboratory of Food Quality and Food Safety, Department of Food Science, Mouloud MAMMERI University, P.O. Box. 17, Tizi-Ouzou RP 15000, Algeria;
- Correspondence: ; Tel.: +213-779-001-384; Fax: +213-261-861-56
| | - Malek Aboudaou
- Département Recherche & Développement, Isser Délice SARL, ISO 9 International, BP 10, 35230 Isser, Algeria;
| | - Fatiha Djenane
- Laboratory of Food Quality and Food Safety, Department of Food Science, Mouloud MAMMERI University, P.O. Box. 17, Tizi-Ouzou RP 15000, Algeria;
- Département Recherche & Développement, Isser Délice SARL, ISO 9 International, BP 10, 35230 Isser, Algeria;
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (D.G.-G.); (R.P.)
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (D.G.-G.); (R.P.)
| |
Collapse
|
38
|
Luciano CG, Tessaro L, Lourenço RV, Bittante AMQB, Fernandes AM, Moraes ICF, do Amaral Sobral PJ. Effects of nisin concentration on properties of gelatin film‐forming solutions and their films. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Carla Giovana Luciano
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Larissa Tessaro
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Rodrigo Vinicius Lourenço
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Ana Mônica Quinta Barbosa Bittante
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Andrezza Maria Fernandes
- Department of Veterinary Medicine Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Isabel Cristina Freitas Moraes
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte225Pirassununga SP Brazil
- Food Research Center (FoRC) University of São Paulo Rua do Lago, 250, Semi‐industrial building, block C05508‐080São Paulo SP Brazil
| |
Collapse
|
39
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem 2020; 338:127535. [PMID: 32798817 DOI: 10.1016/j.foodchem.2020.127535] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Polyphenols are compounds naturally present in fruits and vegetables that are gaining more and more attention due to their therapeutic effects and their potential technological applications. In this review, we intend to demonstrate the importance of some phenolic compounds, addressing their biological effects and potential for applications in various industrial fields. The intake of these compounds in appropriate concentrations can present promising effects in the prevention of diseases such as diabetes, obesity, Parkinson's, Alzheimer's, and others. They can also be used to improve the physicochemical properties of starch, in the preservation of foods, as natural dyes, prebiotic ingredients, hydrogels and nanocomplexes. In addition, these compounds have potential for innovation in the most diverse technological fields, including organic fine chemistry, basic materials chemistry, pharmaceuticals, food chemistry, chemical engineering, etc.
Collapse
Affiliation(s)
- Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil.
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil.
| | - Iramaia Angélica Neri-Numa
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|
40
|
Sun G, Chi W, Xu S, Wang L. Developing a simultaneously antioxidant and pH-responsive κ-carrageenan/hydroxypropyl methylcellulose film blended with Prunus maackii extract. Int J Biol Macromol 2020; 155:1393-1400. [DOI: 10.1016/j.ijbiomac.2019.11.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/29/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
|
41
|
Jamróz E, Kopel P. Polysaccharide and Protein Films with Antimicrobial/Antioxidant Activity in the Food Industry: A Review. Polymers (Basel) 2020; 12:E1289. [PMID: 32512853 PMCID: PMC7361989 DOI: 10.3390/polym12061289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
From an economic point of view, the spoilage of food products during processing and distribution has a negative impact on the food industry. Lipid oxidation and deterioration caused by the growth of microorganisms are the main problems during storage of food products. In order to reduce losses and extend the shelf-life of food products, the food industry has designed active packaging as an alternative to the traditional type. In the review, the benefits of active packaging materials containing biopolymers (polysaccharides and/or proteins) and active compounds (plant extracts, essential oils, nanofillers, etc.) are highlighted. The antioxidant and antimicrobial activity of this type of film has also been highlighted. In addition, the impact of active packaging on the quality and durability of food products during storage has been described.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland;
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| |
Collapse
|
42
|
Nessianpour E, Khodanazary A, Hosseini SM. Shelf Life of Saurida tumbil during Storage at Refrigeration Condition as affected by Gelatin-Based Edible Coatings Incorporated with propolis Extract. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1651738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Elham Nessianpour
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Ainaz Khodanazary
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Seyyed Mehdi Hosseini
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| |
Collapse
|
43
|
Cottaz A, Bouarab L, De Clercq J, Oulahal N, Degraeve P, Joly C. Potential of Incorporation of Antimicrobial Plant Phenolics Into Polyolefin-Based Food Contact Materials to Produce Active Packaging by Melt-Blending: Proof of Concept With Isobutyl-4-Hydroxybenzoate. Front Chem 2019; 7:148. [PMID: 30968015 PMCID: PMC6439309 DOI: 10.3389/fchem.2019.00148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/28/2019] [Indexed: 01/22/2023] Open
Abstract
There is an increasing interest for active food packaging incorporated with natural antimicrobial agents rather than synthetic preservatives. However, most of plastics for direct contact with food are made of polyolefins, usually processed by extrusion, injection, or blow-molding methods while most of natural antimicrobial molecules are thermolabile compounds (e.g., essential oils). Therefore, addition of plant phenolics (with low volatility) to different polyolefins might be promising to design active controlled release packaging processed by usual plastic compounding and used for direct contact with food products. Therefore, up to 2% (wt/wt) of isobutyl-4-hydroxybenzoate (IBHB) was mixed with 3 polyolefins: EVA poly(ethylene-co-vinyl acetate), LLDPE (Linear Low Density Polyethylene), and PP (PolyPropylene) by melt-blending from 75 to 170°C and then pelletized in order to prepare heat-pressed films. IBHB was chosen as an antibacterial phenolic active model molecule against Staphylococcus aureus to challenge the entire processing. Antibacterial activity of films against S. aureus (procedure adapted from ISO 22196 standard) were 4, 6, and 1 decimal reductions in 24 h for EVA, LLDPE, and PP films, respectively, demonstrating the preservation of the antibacterial activity after melt processing. For food contact materials, the efficacy of antimicrobial packaging depends on the release of the antimicrobial molecules. Therefore, the three types of films were placed at 23°C in 95% (v/v) ethanol and the release rates of IBHB were monitored: 101 ± 1%, 32 ± 7%, and 72 ± 9% at apparent equilibrium for EVA, LLDPE, and PP films, respectively. The apparent diffusion coefficients of IBHB in EVA and PP films were 2.8 ± 0.3 × 10−12 and 4.0 ± 1.0 × 10−16 m2s−1. For LLDPE films, IBHB crystals were observed on the surface of films by SEM (Scanning Electron Microscopy): this blooming effect was due the partial incompatibility of IBHB in LLDPE and its fast diffusion out of the polymer matrix onto the film surface. In conclusion, none of these three materials was suitable for a relevant controlled release packaging targeting the preservation of fresh food, but a combination of two of them is promising by the design of a multilayer packaging: the release could result from permeation through an inner PE layer combined with an EVA one acting as a reservoir.
Collapse
Affiliation(s)
- Amandine Cottaz
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Lynda Bouarab
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Justine De Clercq
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Nadia Oulahal
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Pascal Degraeve
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Catherine Joly
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| |
Collapse
|