1
|
Radi R. Interplay of carbon dioxide and peroxide metabolism in mammalian cells. J Biol Chem 2022; 298:102358. [PMID: 35961463 PMCID: PMC9485056 DOI: 10.1016/j.jbc.2022.102358] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/25/2022] Open
Abstract
The carbon dioxide/bicarbonate (CO2/HCO3-) molecular pair is ubiquitous in mammalian cells and tissues, mainly as a result of oxidative decarboxylation reactions that occur during intermediary metabolism. CO2 is in rapid equilibrium with HCO3-via the hydration reaction catalyzed by carbonic anhydrases. Far from being an inert compound in redox biology, CO2 enhances or redirects the reactivity of peroxides, modulating the velocity, extent, and type of one- and two-electron oxidation reactions mediated by hydrogen peroxide (H2O2) and peroxynitrite (ONOO-/ONOOH). Herein, we review the biochemical mechanisms by which CO2 engages in peroxide-dependent reactions, free radical production, redox signaling, and oxidative damage. First, we cover the metabolic formation of CO2 and its connection to peroxide formation and decomposition. Next, the reaction mechanisms, kinetics, and processes by which the CO2/peroxide interplay modulates mammalian cell redox biology are scrutinized in-depth. Importantly, CO2 also regulates gene expression related to redox and nitric oxide metabolism and as such influences oxidative and inflammatory processes. Accumulated biochemical evidence in vitro, in cellula, and in vivo unambiguously show that the CO2 and peroxide metabolic pathways are intertwined and together participate in key redox events in mammalian cells.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
2
|
Kaushik NK, Ghimire B, Li Y, Adhikari M, Veerana M, Kaushik N, Jha N, Adhikari B, Lee SJ, Masur K, von Woedtke T, Weltmann KD, Choi EH. Biological and medical applications of plasma-activated media, water and solutions. Biol Chem 2019; 400:39-62. [PMID: 30044757 DOI: 10.1515/hsz-2018-0226] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023]
Abstract
Non-thermal atmospheric pressure plasma has been proposed as a new tool for various biological and medical applications. Plasma in close proximity to cell culture media or water creates reactive oxygen and nitrogen species containing solutions known as plasma-activated media (PAM) or plasma-activated water (PAW) - the latter even displays acidification. These plasma-treated solutions remain stable for several days with respect to the storage temperature. Recently, PAM and PAW have been widely studied for many biomedical applications. Here, we reviewed promising reports demonstrating plasma-liquid interaction chemistry and the application of PAM or PAW as an anti-cancer, anti-metastatic, antimicrobial, regenerative medicine for blood coagulation and even as a dental treatment agent. We also discuss the role of PAM on cancer initiation cells (spheroids or cancer stem cells), on the epithelial mesenchymal transition (EMT), and when used for metastasis inhibition considering its anticancer effects. The roles of PAW in controlling plant disease, seed decontamination, seed germination and plant growth are also considered in this review. Finally, we emphasize the future prospects of PAM, PAW or plasma-activated solutions in biomedical applications with a discussion of the mechanisms and the stability and safety issues in relation to humans.
Collapse
Affiliation(s)
- Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Bhagirath Ghimire
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Ying Li
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Manish Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Mayura Veerana
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Nayansi Jha
- Graduate School of Clinical Dentistry, Korea University, Seoul 02841, Republic of Korea
| | - Bhawana Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Su-Jae Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Kai Masur
- Leibniz Institute for Plasma Science and Technology, D-17489 Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology, D-17489 Greifswald, Germany
| | | | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
3
|
Abstract
Current viewpoints concerning the bactericidal mechanisms of neutrophils are reviewed from a perspective that emphasizes challenges presented by the inability to duplicate ex vivo the intracellular milieu. Among the challenges considered are the influences of confinement upon substrate availability and reaction dynamics, direct and indirect synergistic interactions between individual toxins, and bacterial responses to stressors. Approaches to gauging relative contributions of various oxidative and nonoxidative toxins within neutrophils using bacteria and bacterial mimics as intrinsic probes are also discussed.
Collapse
Affiliation(s)
- James K Hurst
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
4
|
Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl Environ Microbiol 2010; 76:7662-4. [PMID: 20889799 DOI: 10.1128/aem.01615-10] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Electrical discharges in humid air at atmospheric pressure (nonthermal quenched plasma) generate long-lived chemical species in water that are efficient for microbial decontamination. The major role of nitrites was evidenced together with a synergistic effect of nitrates and H(2)O(2) and matching acidification. Other possible active compounds are considered, e.g., peroxynitrous acid.
Collapse
|
5
|
Iwasawa A, Saito K, Mokudai T, Kohno M, Ozawa T, Niwano Y. Fungicidal action of hydroxyl radicals generated by ultrasound in water. J Clin Biochem Nutr 2009; 45:214-8. [PMID: 19794931 PMCID: PMC2735635 DOI: 10.3164/jcbn.08-261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 04/20/2009] [Indexed: 11/29/2022] Open
Abstract
It is well known that hydroxyl radicals are generated by ultrasound in water. This study with an electron spin resonance spin-trapping technique showed that hydroxyl radical generation was positively correlated with ultrasound duration and water temperature. The clear fungicidal action against Trichophyton spp. evident by studying cultured cells and the degradation of cytoplasmic and surface structures observed by transmission and scanning electron microscopy suggest that ultrasound in hot water is effective for sterilization of dermatophyte contamination and could be effective for the treatment of tinea infection.
Collapse
Affiliation(s)
- Atsuo Iwasawa
- Tissue Culture Laboratory, Showa University Fujigaoka Hospital, 1-30, Fujigaoka, Aoba-ku, Yokohama, Kanagawa 227-8501, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Macrophages and neutrophils are essential elements of host cellular defense systems that function, at least in part, by generating respiration-driven oxidative toxins in response to external stimuli. In both cells, encapsulation by phagocytosis provides a mechanism to direct the toxins against the microbes. The toxic chemicals formed by these two phagocytic cells differ markedly, as do the enzymatic catalysts that generate them. Nitrite ion is microbicidal under certain conditions, is generated by activated macrophages, and is present at elevated concentration levels at infection sites. In this review, we consider potential roles that nitrite might play in cellular disinfection by these phagocytes within the context of available experimental information. Although the suggested roles are plausible, based upon the chemical and biochemical reactivity of NO2(-), studies to date provide little support for their implementation within phagosomes.
Collapse
Affiliation(s)
- Jonathan L. Cape
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | - James K. Hurst
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| |
Collapse
|
7
|
Kamgang-Youbi G, Herry JM, Meylheuc T, Brisset JL, Bellon-Fontaine MN, Doubla A, Naïtali M. Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett Appl Microbiol 2009; 48:13-8. [PMID: 19170858 DOI: 10.1111/j.1472-765x.2008.02476.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To evaluate the microbial disinfection efficacy of a plasmachemical solution obtained by the activation of water with gliding electric discharges. METHODS AND RESULTS Distilled water was activated for 5 min by a nonthermal quenched plasma of the glidarc type operating in humid air and at atmospheric pressure. The plasma-activated water (PAW) was then used to treat planktonic and adherent cells of Staphylococcus epidermidis, Leuconostoc mesenteroides (as models of Gram-positive bacteria), Hafnia alvei (a Gram-negative bacteria) and Saccharomyces cerevisiae (as a yeast model). The treatments were less efficient on adherent cells than on planktonic cells in the case of bacteria, but not of S. cerevisiae. Inactivation was more effective for bacteria than for the yeast. CONCLUSIONS Significant reductions in microbial populations were achieved in all cases, demonstrating the effectiveness of this new approach to treat contaminated media. SIGNIFICANCE AND IMPACT OF THE STUDY PAW is a promising solution with potential application to the decontamination of equipment and surfaces.
Collapse
Affiliation(s)
- G Kamgang-Youbi
- UMR 763 Bioadhésion et Hygiène des Matériaux, AgroParisTech, INRA, 25 Avenue de la République, Massy, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Lushchak OV, Bayliak MM, Korobova OV, Levine RL, Lushchak VI. Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae. Redox Rep 2009; 14:214-20. [PMID: 19843376 PMCID: PMC3399461 DOI: 10.1179/135100009x12525712409454] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The objective of this study was to compare, in vivo, the effects of bicarbonate and phosphate buffers on survival and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. At 25 mM concentration of buffers, menadione only slightly reduced yeast surviving; at 50 mM concentration, cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed.
Collapse
Affiliation(s)
- Oleh V Lushchak
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.
| | | | | | | | | |
Collapse
|
9
|
Palazzolo-Ballance AM, Suquet C, Hurst JK. Pathways for intracellular generation of oxidants and tyrosine nitration by a macrophage cell line. Biochemistry 2007; 46:7536-48. [PMID: 17530864 PMCID: PMC2584613 DOI: 10.1021/bi700123s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two transformed murine macrophage cell lines (RAW 264.7 ATCC TIB-71 and CRL-2278) were examined for oxidant production at various times following activation by using a set of fluorescence and ESR-active probes. Stimulation with a soluble agonist or activation with bacterial lipopolysaccharide plus gamma-interferon caused only very small initial increases in O2 consumption above basal rates; however, at 2-4 h post-activation, respiration increased to 2-3-fold and remained at these elevated levels over the subsequent lifetime of the cell (20-30 h). Oxidation reactions were confined primarily within the cell, as was demonstrated by using phagocytosable dichlorodihydrofluorescein-conjugated latex beads and cyclic hydroxylamines with differing membrane permeabilities. From the intrinsic reactivities of these probes and the time course of their oxidations, one infers the induction of apparent peroxidase activity beginning at approximately 2 h post-activation coinciding with the increase in overall respiratory rate; this acquired capability was accompanied by accumulation of a stable horseradish peroxidase-reactive oxidant, presumably H2O2, in the extracellular medium. Nitrite ion rapidly accumulated in the extracellular medium over a period of 5-8 h post-activation in both cell lines, indicating the presence of active nitric oxide synthase (iNOS) during that period. Prostaglandin endoperoxide H synthase (COX-2) activity was detected at 15-20 h post-activation by the use of a sensitive peroxide assay in conjunction with a COX-2 specific inhibitor (DuP-697). Superoxide formation was detected by reaction with hydroethidine within the first hour following activation, but not thereafter. Consistent with the absence of significant respiratory stimulation, the amount of O2*- formed was very small; comparative reactions of cyclic hydroxylamine probes indicated that virtually none of the O2*- was discharged into the external medium. Myeloperoxidase (MPO) activity was probed at various times post-activation by using fluorescein-conjugated polyacrylamide beads, which efficiently trap MPO-generated HOCl in neutrophils to give stable chlorofluorescein products. However, chlorination of the dye was not detected under any conditions in RAW cells, virtually precluding MPO involvement in their intracellular reactions. This same probe was used to determine changes in intraphagosomal pH, which increased slowly from approximately 6.5 to approximately 8.2 over a 20 h post-phagocytosis period. The cumulative data suggest that activation is followed by sequential induction of an endogenous peroxidase, iNOS, and COX-2, with NADPH oxidase-derived O2*- playing a minimal role in the direct generation of intracellular oxidants. To account for reported observations of intracellular tyrosine nitration late in the life cycles of macrophages, we propose a novel mechanism wherein iNOS-generated NO2- is used by COX-2 to produce NO2* as a terminal microbicidal oxidant and nitrating agent.
Collapse
|
10
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|