1
|
Kavianinia M, Kalantar H, Salehcheh M, Khorsandi L, Shariati S, Mohtadi S, Khodayar MJ. Dimethyl fumarate effects on paraquat-induced hepatotoxicity in mice via anti-oxidative, anti-inflammatory, and anti-apoptotic activities. Sci Rep 2025; 15:3897. [PMID: 39890857 PMCID: PMC11785811 DOI: 10.1038/s41598-025-88461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
Paraquat (PQ) toxicity is a common problem in the world, associated with oxidative stress, inflammation, and apoptosis. Therefore, the use of agents that reduce these disorders can be effective in the treatment of PQ toxicity. The protective effects of dimethyl fumarate (DMF) on liver disorders have been suggested in many reports. In this study, mice were divided into 6 groups; control, PQ (30 mg/kg, i.p., at day 4), DMF (100 mg/kg, p.o.), and PQ groups pretreated by DMF in three doses 10, 30, and 100 mg/kg, respectively. DMF was administered for 7 days to counteract PQ-induced liver toxicity. On the 8th day, mice were euthanized with ketamine/xylazine, and serum factors, oxidative stress markers, apoptosis index, and inflammatory markers were measured. PQ significantly increased the activity level of serum enzymes, thiobarbituric acid reactive substances, apoptotic factor (Bax/Bcl-2 ratio), inflammatory factors (NF-κB protein expression, tumor necrosis factor-α, interleukin-1β), nitric oxide, and Nrf-2 protein expression. Furthermore, PQ decreased hepatic total thiol and activity levels of catalase, superoxide dismutase, and glutathione peroxidase. However, DMF reduced the harmful effects caused by the imbalance in the oxidant and antioxidant system and histopathological damage in PQ-poisoned mice and improved the damage caused by inflammation and apoptosis.
Collapse
Affiliation(s)
- Maryam Kavianinia
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Salehcheh
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokooh Mohtadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Tayeb FJ, Felemban MF, Adnan Ashour A, Shafie A. Paraquat-Induced Toxicities: Epidemiological Insights and Advances in Colorimetric and Fluorimetric Detection Methods. Crit Rev Anal Chem 2024:1-31. [PMID: 39602183 DOI: 10.1080/10408347.2024.2433005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Paraquat (PQ) is a potent and widely utilized herbicide known for its effectiveness in controlling a broad spectrum of weeds. Its chemical properties make it an invaluable tool in agriculture, where it helps maintain crop yields and manage invasive plant species. However, despite its benefits in weed management, PQ poses significant risks due to its severe toxicity, which affects multiple organ systems in both humans and animals. The dual nature of PQ, as both a valuable agricultural chemical and a hazardous toxicant, necessitates a comprehensive understanding of its toxicological impacts and the development of effective detection and development strategies. This review aims to provide a comprehensive overview of PQ-induced toxicities, including neurotoxicity, lung toxicity, liver toxicity, kidney toxicity, and immunotoxicity. By synthesizing current knowledge on PQ health impacts, highlighting epidemiological trends, and exploring recent advancements in colorimetric and fluorimetric detection methods, this review seeks to contribute to the development of strategies for improving public health outcomes and enhancing our ability to manage the risks associated with PQ exposure. Addressing PQ toxicity through a multidisciplinary approach, incorporating toxicological, epidemiological, and technological perspectives, is essential for safeguarding health and promoting effective interventions.
Collapse
Affiliation(s)
- Faris J Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed Fareed Felemban
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
3
|
Nuwongsa I, Markmee T, Pholpo N, Chockjamsai M, Monum T, Amornlertwatana Y, Tajai P. Paraquat Poisoning: Insights from Autopsy, Histology, and Liquid Chromatography with Tandem Mass Spectrometry in Multidisciplinary Forensic Toxicology Practice. TOXICS 2024; 12:675. [PMID: 39330603 PMCID: PMC11435590 DOI: 10.3390/toxics12090675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
The herbicide paraquat (PQ) is responsible for a significant number of fatalities resulting from self-poisoning. Nevertheless, only a limited number of comprehensive studies focusing on fatal PQ poisoning, which include examination of autopsy findings, histopathology, and quantitative analysis of post-mortem samples, have been published. This study aimed to evaluate autopsy findings, histopathology, and quantitative analysis of PQ in post-mortem human serum samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a simple, sensitive, and specific method. Autopsies were performed on all deaths due to PQ poisoning, and serum samples were sent to the toxicology laboratory for chemical analysis. The method was successfully applied to seven human serum samples, and the results indicate its reliability for detecting PQ. The study reports fatal serum PQ levels ranging from 0.5 to 372.0 µg/mL. The comprehensive data presented in this study can be useful for further research and practical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Preechaya Tajai
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (I.N.); (T.M.); (N.P.); (M.C.); (T.M.); (Y.A.)
| |
Collapse
|
4
|
Bucci-Muñoz M, Gola AM, Rigalli JP, Ceballos MP, Ruiz ML. Extracellular Vesicles and Cancer Multidrug Resistance: Undesirable Intercellular Messengers? Life (Basel) 2023; 13:1633. [PMID: 37629489 PMCID: PMC10455762 DOI: 10.3390/life13081633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer multidrug resistance (MDR) is one of the main mechanisms contributing to therapy failure and mortality. Overexpression of drug transporters of the ABC family (ATP-binding cassette) is a major cause of MDR. Extracellular vesicles (EVs) are nanoparticles released by most cells of the organism involved in cell-cell communication. Their cargo mainly comprises, proteins, nucleic acids, and lipids, which are transferred from a donor cell to a target cell and lead to phenotypical changes. In this article, we review the scientific evidence addressing the regulation of ABC transporters by EV-mediated cell-cell communication. MDR transfer from drug-resistant to drug-sensitive cells has been identified in several tumor entities. This was attributed, in some cases, to the direct shuttle of transporter molecules or its coding mRNA between cells. Also, EV-mediated transport of regulatory proteins (e.g., transcription factors) and noncoding RNAs have been indicated to induce MDR. Conversely, the transfer of a drug-sensitive phenotype via EVs has also been reported. Additionally, interactions between non-tumor cells and the tumor cells with an impact on MDR are presented. Finally, we highlight uninvestigated aspects and possible approaches to exploiting this knowledge toward the identification of druggable processes and molecules and, ultimately, the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- María Bucci-Muñoz
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - Aldana Magalí Gola
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
| | - María Paula Ceballos
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - María Laura Ruiz
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| |
Collapse
|
5
|
Signaling pathways involved in paraquat-induced pulmonary toxicity: Molecular mechanisms and potential therapeutic drugs. Int Immunopharmacol 2022; 113:109301. [DOI: 10.1016/j.intimp.2022.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
6
|
Wang X, Wang X, Zhu Y, Chen X. ADME/T-based strategies for paraquat detoxification: Transporters and enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118137. [PMID: 34536650 DOI: 10.1016/j.envpol.2021.118137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a toxic, organic herbicide for which there is no specific antidote. Although banned in some countries, it is still used as an irreplaceable weed killer in others. The lack of understanding of the precise mechanism of its toxicity has hindered the development of treatments for PQ exposure. While toxicity is thought to be related to PQ-induced oxidative stress, antioxidants are limited in their ability to ameliorate the untoward biological responses to this agent. Summarized in this review are data on the absorption, distribution, metabolism, excretion, and toxicity (ADME/T) of PQ, focusing on the essential roles of individual transporters and enzymes in these processes. Based on these findings, strategies are proposed to design and test specific and effective antidotes for the clinical management of PQ poisoning.
Collapse
Affiliation(s)
- Xianzhe Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yanyan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
7
|
Semeniuk M, Ceré LI, Ciriaci N, Bucci-Muñoz M, Quiroga AD, Luquita MG, Roma S, Catania VA, Mottino AD, Rigalli JP, Ruiz ML. Protective effect of genistein pre-treatment on paraquat hepatotoxicity in rats. Toxicol Appl Pharmacol 2021; 426:115636. [PMID: 34214573 DOI: 10.1016/j.taap.2021.115636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
Paraquat (PQ), an herbicide widely used in agriculture, is considered a highly toxic compound. In hepatocytes, P-glycoprotein (P-gp/Abcb1) is a canalicular transporter involved in PQ extrusion from the cell. Previously, we demonstrated that genistein (GNT) induces P-gp in rat liver. In this study, the protective role of GNT pretreatment towards hepatic damage in a model of acute intoxication with PQ in rats, was investigated. Wistar rats were randomized in 4 groups: Control, GNT (5 mg/kg/day sc, 4 days), PQ (50 mg/kg/day ip, last day) and GNT+ PQ. Hepatic lipoperoxidation (LPO) was evaluated by the thiobarbituric acid reactive substances method. Hepatic levels of 4-hydroxynonenal protein adducts (4-HNEp-add) and glutathione-S-transferase alpha (GSTα) protein expression were evaluated by Western blotting. Hepatic glutathione levels and plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Biliary excretion of PQ was studied in vivo and in isolated perfused liver. PQ was quantified by HPLC. PQ significantly increased AST and ALT activities, malondialdehyde and 4-HNEp-add levels, whereby pretreatment with GNT ameliorated this effect. PQ biliary excretion remained unchanged after treatments in both experimental models. Hepatic GSTα expression was augmented in GNT group. GNT pretreatment increased hepatic glutathione levels in PQ + GNT group. These results agree with the lower content of 4-HNEp-adds in GNT + PQ group respect to PQ group. Unexpectedly, increased activity of P-gp did not enhance PQ biliary excretion. Thus, GNT protective mechanism is likely through the induction of GSTα which results in increased 4-HNE metabolism before formation of protein adducts.
Collapse
Affiliation(s)
- Mariana Semeniuk
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, (2000) Rosario, Argentina
| | - Lucila Inés Ceré
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, (2000) Rosario, Argentina
| | - Nadia Ciriaci
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, (2000) Rosario, Argentina
| | - María Bucci-Muñoz
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, (2000) Rosario, Argentina
| | - Ariel Dario Quiroga
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, (2000) Rosario, Argentina
| | - Marcelo Gabriel Luquita
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, (2000) Rosario, Argentina
| | - Stella Roma
- Cátedra de Histología y Embriología, Facultad de Ciencias Médicas-UNR, Santa Fe 3100, (2000) Rosario, Argentina
| | - Viviana Alicia Catania
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, (2000) Rosario, Argentina
| | - Aldo Domingo Mottino
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, (2000) Rosario, Argentina
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - María Laura Ruiz
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, (2000) Rosario, Argentina.
| |
Collapse
|
8
|
Interaction between the Renin-Angiotensin System and Enteric Neurotransmission Contributes to Colonic Dysmotility in the TNBS-Induced Model of Colitis. Int J Mol Sci 2021; 22:ijms22094836. [PMID: 34063607 PMCID: PMC8125095 DOI: 10.3390/ijms22094836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Angiotensin II (Ang II) regulates colon contraction, acting not only directly on smooth muscle but also indirectly, interfering with myenteric neuromodulation mediated by the activation of AT1 /AT2 receptors. In this article, we aimed to explore which mediators and cells were involved in Ang II-mediated colonic contraction in the TNBS-induced rat model of colitis. The contractile responses to Ang II were evaluated in distinct regions of the colon of control animals or animals with colitis in the absence and presence of different antagonists/inhibitors. Endogenous levels of Ang II in the colon were assessed by ELISA and the number of AT1/AT2 receptors by qPCR. Ang II caused AT1 receptor-mediated colonic contraction that was markedly decreased along the colons of TNBS-induced rats, consistent with reduced AT1 mRNA expression. However, the effect mediated by Ang II is much more intricate, involving (in addition to smooth muscle cells and nerve terminals) ICC and EGC, which communicate by releasing ACh and NO in a complex mechanism that changes colitis, unveiling new therapeutic targets.
Collapse
|
9
|
Development and Validation of a Radiomics Nomogram for Prognosis Prediction of Patients with Acute Paraquat Poisoning: A Retrospective Cohort Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6621894. [PMID: 33604379 PMCID: PMC7872759 DOI: 10.1155/2021/6621894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 11/18/2022]
Abstract
Objective To evaluate the efficiency of a radiomics model in predicting the prognosis of patients with acute paraquat poisoning (APP). Materials and Methods Chest computed tomography images and clinical data of 80 patients with APP were obtained from November 2014 to October 2017, which were randomly assigned to a primary group and a validation group by a ratio of 7 : 3, and then the radiomics features were extracted from the whole lung. Principal component analysis (PCA) and least absolute shrinkage and selection operator (LASSO) regression were used to select the features and establish the radiomics signature (Rad-score). Multivariate logistic regression analysis was used to establish a radiomics prediction model incorporating the Rad-score and clinical risk factors; the model was represented by nomogram. The performance of the nomogram was confirmed by its discrimination and calibration. Result The area under the ROC curve of operation was 0.942 and 0.865, respectively, in the primary and validation datasets. The sensitivity and specificity were 0.864 and 0.914 and 0.778 and 0.929, and the prediction accuracy rates were 89.5% and 87%, respectively. Predictors included in the individualized predictive nomograms include the Rad-score, blood paraquat concentration, creatine kinase, and serum creatinine. The AUC of the nomogram was 0.973 and 0.944 in the primary and validation datasets, and the sensitivity and specificity were 0.943 and 0.955, respectively, in the primary dataset and 0.889 and 0.929 in the validation dataset, and the prediction accuracy was 94.7% and 91.3%, respectively. Conclusion The radiomics nomogram incorporates the radiomics signature and hematological laboratory data, which can be conveniently used to facilitate the individualized prediction of the prognosis of APP patients.
Collapse
|
10
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Pereira FC, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinically Relevant Doses of the Prescription Opioids Tramadol and Tapentadol Causes Lung, Cardiac, and Brain Toxicity in Wistar Rats. Pharmaceuticals (Basel) 2021; 14:ph14020097. [PMID: 33513867 PMCID: PMC7912343 DOI: 10.3390/ph14020097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol, two structurally related synthetic opioid analgesics, are widely prescribed due to the enhanced therapeutic profiles resulting from the synergistic combination between μ-opioid receptor (MOR) activation and monoamine reuptake inhibition. However, the number of adverse reactions has been growing along with their increasing use and misuse. The potential toxicological mechanisms for these drugs are not completely understood, especially for tapentadol, owing to its shorter market history. Therefore, in the present study, we aimed to comparatively assess the putative lung, cardiac, and brain cortex toxicological damage elicited by the repeated exposure to therapeutic doses of both prescription opioids. To this purpose, male Wistar rats were intraperitoneally injected with single daily doses of 10, 25, and 50 mg/kg tramadol or tapentadol, corresponding to a standard analgesic dose, an intermediate dose, and the maximum recommended daily dose, respectively, for 14 consecutive days. Such treatment was found to lead mainly to lipid peroxidation and inflammation in lung and brain cortex tissues, as shown through augmented thiobarbituric acid reactive substances (TBARS), as well as to increased serum inflammation biomarkers, such as C reactive protein (CRP) and tumor necrosis factor-α (TNF-α). Cardiomyocyte integrity was also shown to be affected, since both opioids incremented serum lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) activities, while tapentadol was associated with increased serum creatine kinase muscle brain (CK-MB) isoform activity. In turn, the analysis of metabolic parameters in brain cortex tissue revealed increased lactate concentration upon exposure to both drugs, as well as augmented LDH and creatine kinase (CK) activities following tapentadol treatment. In addition, pneumo- and cardiotoxicity biomarkers were quantified at the gene level, while neurotoxicity biomarkers were quantified both at the gene and protein levels; changes in their expression correlate with the oxidative stress, inflammatory, metabolic, and histopathological changes that were detected. Hematoxylin and eosin (H & E) staining revealed several histopathological alterations, including alveolar collapse and destruction in lung sections, inflammatory infiltrates, altered cardiomyocytes and loss of striation in heart sections, degenerated neurons, and accumulation of glial and microglial cells in brain cortex sections. In turn, Masson's trichrome staining confirmed fibrous tissue deposition in cardiac tissue. Taken as a whole, these results show that the repeated administration of both prescription opioids extends the dose range for which toxicological injury is observed to lower therapeutic doses. They also reinforce previous assumptions that tramadol and tapentadol are not devoid of toxicological risk even at clinical doses.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Frederico C. Pereira
- Institute of Pharmacology and Experimental Therapeutics/iCBR, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal;
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| |
Collapse
|
11
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinical Doses of Tramadol and Tapentadol Causes Hepato- and Nephrotoxic Effects in Wistar Rats. Pharmaceuticals (Basel) 2020; 13:ph13070149. [PMID: 32664348 PMCID: PMC7407499 DOI: 10.3390/ph13070149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol are fully synthetic and extensively used analgesic opioids, presenting enhanced therapeutic and safety profiles as compared with their peers. However, reports of adverse reactions, intoxications and fatalities have been increasing. Information regarding the molecular, biochemical, and histological alterations underlying their toxicological potential is missing, particularly for tapentadol, owing to its more recent market authorization. Considering the paramount importance of liver and kidney for the metabolism and excretion of both opioids, these organs are especially susceptible to toxicological damage. In the present study, we aimed to characterize the putative hepatic and renal deleterious effects of repeated exposure to therapeutic doses of tramadol and tapentadol, using an in vivo animal model. Male Wistar rats were randomly divided into six experimental groups, composed of six animals each, which received daily single intraperitoneal injections of 10, 25 or 50 mg/kg tramadol or tapentadol (a low, standard analgesic dose, an intermediate dose and the maximum recommended daily dose, respectively). An additional control group was injected with normal saline. Following 14 consecutive days of administration, serum, urine and liver and kidney tissue samples were processed for biochemical, metabolic and histological analysis. Repeated administration of therapeutic doses of both opioids led to: (i) increased lipid and protein oxidation in liver and kidney, as well as to decreased total liver antioxidant capacity; (ii) decreased serum albumin, urea, butyrylcholinesterase and complement C3 and C4 levels, denoting liver synthesis impairment; (iii) elevated serum activity of liver enzymes, such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyl transpeptidase, as well as lipid profile alterations, also reflecting hepatobiliary commitment; (iv) derangement of iron metabolism, as shown through increases in serum iron, ferritin, haptoglobin and heme oxygenase-1 levels. In turn, elevated serum cystatin C, decreased urine creatinine output and increased urine microalbumin levels were detected upon exposure to tapentadol only, while increased serum amylase and urine N-acetyl-β-D-glucosaminidase activities were observed for both opioids. Collectively, these results are compatible with kidney injury. Changes were also found in the expression levels of liver- and kidney-specific toxicity biomarker genes, upon exposure to tramadol and tapentadol, correlating well with alterations in lipid profile, iron metabolism and glomerular and tubular function. Histopathological analysis evidenced sinusoidal dilatation, microsteatosis, mononuclear cell infiltrates, glomerular and tubular disorganization, and increased Bowman's spaces. Although some findings are more pronounced upon tapentadol exposure, our study shows that, when compared with acute exposure, prolonged administration of both opioids smooths the differences between their toxicological effects, and that these occur at lower doses within the therapeutic range.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| |
Collapse
|
12
|
Mandal S, Verma N, Bora NS, Dey P, Islam J, Dwivedi SK, Chattopadhyay P. Exploration of therapeutic role of montelukast and dexamethasone combination against paraquat induced inhalational toxicity. Inhal Toxicol 2020; 32:299-310. [PMID: 32597253 DOI: 10.1080/08958378.2020.1784321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To explore the therapeutic role of a single dose combination of montelukast (MON) and dexamethasone (DXM) through intra-peritoneal route against paraquat (PQ)-intoxicated experimental Wistar rats. METHODS In vivo the survival rate was investigated following the administration of both MON and DXM in PQ exposed rats. Lungs parameters including enhanced pause (Penh), tidal volume (TV) and breath per minute (BPM) were determined using the whole body plethysmograph (WBP). Further chest imaging and histopathological studies were conducted to evaluate the lungs injury. In vivo the antioxidant activity was carried out by determining the levels of catalase (SOD), superoxide dismutase (CAT) and glutathione peroxidase (GSH-Px). Lungs tissue concentration of different proinflammatory cytokines like IL-1β, IL-6, TGF-β1 and TNF-α was also determined. Finally, expression of NF-kB and p-NF-kB was investigated by western blot. RESULTS Results of survival rate and levels of lungs parameters indicated therapeutic potential of combination treatment of MON and DXM. Protective activity on lungs was reflected in chest imaging and histopathological investigations. Moreover, combination treatment exhibited significant increased levels of all anti-oxidant parameters. Significant decrease in the levels of IL-1β; IL-6; TGF-β1 and TNF-α was also observed with the combination treatment of MON and DXM. Evidence of significant down regulation of NF-kB and phospho-NF-kB was also found with the combination treatment of MON and DXM. CONCLUSIONS Given the advantage of therapeutic synergism activity of MON and DXM, it may be used in the prophylaxis of PQ-intoxication following clinical trials.
Collapse
Affiliation(s)
- Santa Mandal
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India.,School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Navneet Verma
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Nilutpal S Bora
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India.,Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Piyali Dey
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India.,School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Johirul Islam
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India
| | | |
Collapse
|
13
|
Chaves C, Campanelli F, Chapy H, Gomez-Zepeda D, Glacial F, Smirnova M, Taghi M, Pallud J, Perrière N, Declèves X, Menet MC, Cisternino S. An Interspecies Molecular and Functional Study of Organic Cation Transporters at the Blood-Brain Barrier: From Rodents to Humans. Pharmaceutics 2020; 12:pharmaceutics12040308. [PMID: 32231079 PMCID: PMC7238036 DOI: 10.3390/pharmaceutics12040308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 01/11/2023] Open
Abstract
Organic cation transporters (OCTs) participate in the handling of compounds in kidneys and at the synaptic cleft. Their role at the blood-brain barrier (BBB) in brain drug delivery is still unclear. The presence of OCT1,2,3 (SLC22A1-3) in mouse, rat and human isolated brain microvessels was investigated by either qRT-PCR, quantitative proteomics and/or functional studies. BBB transport of the prototypical substrate [3H]-1-methyl-4-phenylpyridinium ([3H]-MPP+) was measured by in situ brain perfusion in six mouse strains and in Sprague Dawley rats, in primary human brain microvascular endothelial cells seeded on inserts, in the presence or absence of OCTs and a MATE1 (SLC49A1) inhibitor. The results show negligible OCT1 (SLC22A1) and OCT2 (SLC22A2) expression in either mice, rat or human brain microvessels, while OCT3 expression was identified in rat microvessels by qRT-PCR. The in vitro human cellular uptake of [3H]-MPP+ was not modified by OCTs/MATE-inhibitor. Brain transport of [3H]-MPP+ remains unchanged between 2- and 6-month old mice, and no alteration was observed in mice and rats with inhibitors. In conclusion, the evidenced lack of expression and/or functional OCTs and MATE at the BBB allows the maintenance of the brain homeostasis and function as it prevents an easy access of their neurotoxicant substrates to the brain parenchyma.
Collapse
Affiliation(s)
- Catarina Chaves
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Federica Campanelli
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Hélène Chapy
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - David Gomez-Zepeda
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Fabienne Glacial
- BrainPlotting SAS, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; (F.G.); (N.P.)
| | - Maria Smirnova
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Meryam Taghi
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Johan Pallud
- Department of Neurosurgery, Sainte Anne Hospital, 75014 Paris, France;
- Inserm, U894, IMA-Brain, Centre de Psychiatrie et Neurosciences, 75013 Paris, France
| | - Nicolas Perrière
- BrainPlotting SAS, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; (F.G.); (N.P.)
| | - Xavier Declèves
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpital Universitaire Cochin, Biologie du médicament et toxicologie, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpital Universitaire Cochin, Hormonologie adulte, 75006 Paris, France
| | - Salvatore Cisternino
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Service de pharmacie, 75015 Paris, France
- Correspondence: ; Tel.: +33-1-444-951-91
| |
Collapse
|
14
|
Rocha-Pereira C, Ghanem CI, Silva R, Casanova AG, Duarte-Araújo M, Gonçalves-Monteiro S, Sousa E, Bastos MDL, Remião F. P-glycoprotein activation by 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) in rat distal ileum: ex vivo and in vivo studies. Toxicol Appl Pharmacol 2020; 386:114832. [PMID: 31756430 DOI: 10.1016/j.taap.2019.114832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/30/2022]
Abstract
In vitro studies showed that 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) increases P-glycoprotein (P-gp) expression and activity in Caco-2 cells, preventing xenobiotic toxicity. The present study aimed at investigating TX5 effects on P-gp expression/activity using Wistar Han rats: a) in vivo, evaluating intestinal P-gp activity; b) ex vivo, evaluating P-gp expression in ileum brush border membranes (BBM) and P-gp activity in everted intestinal sacs; c) ex vivo, evaluating P-gp activity in everted intestinal sacs of the distal and proximal ileum. TX5 (30 mg/kg, b.w.), gavage, activated P-gp in vivo, given the significant decrease in the AUC of digoxin (0.25 mg/kg, b.w.). The efflux of rhodamine 123 (300 μM), a P-gp fluorescent substrate, significantly increased in TX5-treated everted sacs from the distal portion of the rat ileum, when P-gp activity was evaluated in the presence of TX5 (20 μM), an effect abolished by the P-gp inhibitor verapamil (100 μM). No increases on P-gp expression or activity were found in TX5-treated BBM of the distal ileum and everted distal sacs, respectively, 24 h after TX5 (10 mg/kg, b.w.) administration. In vivo, no differences were found on digoxin portal concentration between control (digoxin 0.025 mg/kg, b.w., intraduodenal) and TX5-treated (digoxin+TX5 20 μM, intraduodenal) rats. The observed discrepancies in digoxin results can be related to differences in TX5 dose administered and used methodologies. Thus, the results show that TX5 activates P-gp at the distal portion of the rat ileum, and, at the higher dose tested (30 mg/kg, b.w.), seems to modulate in vivo the AUC of P-gp substrates.
Collapse
Affiliation(s)
- Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Alfredo G Casanova
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain.
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
15
|
Guéniche N, Bruyere A, Le Vée M, Fardel O. Implication of human drug transporters to toxicokinetics and toxicity of pesticides. PEST MANAGEMENT SCIENCE 2020; 76:18-25. [PMID: 31392818 DOI: 10.1002/ps.5577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Human membrane drug transporters are recognized as major actors of pharmacokinetics. Pesticides also interact with human drug transporters, which may have consequences for pesticide toxicokinetics and toxicity. The present review summarizes key findings about this topic. In vitro assays have demonstrated that some pesticides, belonging to various chemical classes, modulate drug transporter activity, regulate transporter expression and/or are substrates, thus bringing the proof of concept for pesticide-transporter relationships. The expected low human concentration of pesticides in response to environmental exposure constitutes a key-parameter to be kept in mind for judging the in vivo relevance of such pesticide-transporter interactions and their consequences for human health. Existing data about interactions of pesticides with drug transporters remain, however, rather sparse; more extensive and systematic characterization of pesticide-transporter relationships, through the use of high throughput in vitro assays and/or in silico methods, is, therefore, required. In addition, consideration of transporter polymorphisms, pesticide mixture effects and physiological and pathological factors governing drug transporter expression may help to better define the in vivo relevance of pesticide-transporter interactions in terms of toxicokinetics and toxicity for humans. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nelly Guéniche
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of contaminant unit, Fougères, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
| |
Collapse
|
16
|
Radiomics Nomogram Analyses for Differentiating Pneumonia and Acute Paraquat Lung Injury. Sci Rep 2019; 9:15029. [PMID: 31636276 PMCID: PMC6803642 DOI: 10.1038/s41598-019-50886-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Paraquat poisoning has become a serious public health problem in some Asian countries because of misuse or suicide. We sought to develop and validate a radiomics nomogram incorporating radiomics signature and laboratory bio-markers, for differentiating bacterial pneumonia and acute paraquat lung injury. 180 patients with pneumonia and acute paraquat who underwent CT examinations between December 2014 and October 2017 were retrospectively evaluated for testing and validation. Clinical information including demographic data, clinical symptoms and laboratory test were also recorded. A prediction model was built by using backward logistic regression and presented on a nomogram. The radiomics-based features yielded areas under the receiver operating characteristic curve of 0.870 (95% CI 0.757–0.894), sensitivity of 0.857, specificity of 0.804, positive predictive value of 83.3%, negative predictive value of 0.818 in the primary cohort, while in the validation cohort the model showed similar results (0.865 (95% CI 0.686–0.907), 0.833, 0.792, 81.5%, respectively). The individualized nomogram included radiomics signature, body temperature, nausea and vomiting, and aspartate transaminase. We have developed a radiomics nomogram that combination of the radiomics features and clinical risk factors to differentiate paraquat lung injury and pneumonia for patients with an unclear medical history of exposure to paraquat poisoning, providing appropriate therapy decision support.
Collapse
|
17
|
Rocha-Pereira C, Silva V, Costa VM, Silva R, Garcia J, Gonçalves-Monteiro S, Duarte-Araújo M, Santos-Silva A, Coimbra S, Dinis-Oliveira RJ, Lopes C, Silva P, Long S, Sousa E, de Lourdes Bastos M, Remião F. Histological and toxicological evaluation, in rat, of a P-glycoprotein inducer and activator: 1-(propan-2-ylamino)-4-propoxy-9 H-thioxanthen-9-one (TX5). EXCLI JOURNAL 2019; 18:697-722. [PMID: 31611753 PMCID: PMC6785774 DOI: 10.17179/excli2019-1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-binding cassette transporter involved in the efflux of numerous compounds that influences the pharmacokinetics of xenobiotics. It reduces intestinal absorption and exposure of target cells to toxicity. Thioxanthones are compounds able to induce and/or activate P-gp in vitro. Particularly, 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) behaves as a P-gp inducer and activator in vitro. The aims of this study were: i) to perform a histological characterization, by testing a single high dose of TX5 [30 mg/kg, body weight (b.w.), gavage], administered to Wistar Han rats, 24 hours after administration; and ii) to perform both a complete histological characterization and a preliminary safety evaluation, in distinct target organs, 24 hours after administration of a single lower dose of TX5 (10 mg/kg, b.w., gavage) to Wistar Han rats. The results showed a relevant histological toxicity for the higher dose of TX5 administered (30 mg/kg, b.w.), manifested by extensive hepatic necrosis and splenic toxicity (parenchyma with hyperemia, increased volume of both white and red pulp, increased follicles marginal zone). Moreover, in the kidneys, a slight hyperemia and tubular edema were observed in TX5-treated animals, as well as an inflammation of the small intestine. On the contrary, for the lower tested dose (10 mg/kg, b.w.), we did not observe any relevant histological toxicity in the evaluated organs. Additionally, no significant differences were found in the ATP levels between TX5-exposed and control animals in any of the evaluated organs, with the exception of the intestine, where ATP levels were significantly higher in TX5-treated rats. Similarly, TX5 caused a significant increase in the ratio GSH/GSSG only in the lungs. TX5 (10 mg/kg, b.w.) did not induce any change in any of the hematological and biochemical circulating evaluated parameters. However, TX5 was able to significantly reduce the activated partial thromboplastin time, without affecting the prothrombin time. The urine biochemical analysis revealed a TX5-mediated increase in both creatinine and sodium. Taken together, our results show that TX5, at a dose of 10 mg/kg, does not induce considerable toxicity in the biological matrices studied. Given this adequate safety profile, TX5 becomes a particularly interesting compound for ex vivo and in vivo studies, regarding the potential for induction and activation of P-gp at the intestinal barrier.
Collapse
Affiliation(s)
- Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vera Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Juliana Garcia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Agronomy, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Susana Coimbra
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias Saúde (IINFACTS), Departamento de Ciências, Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias Saúde (IINFACTS), Departamento de Ciências, Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal.,Departamento de Saúde Pública e Ciências Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Catarina Lopes
- Molecular Oncology and Viral Pathology Group, Centro de Investigação do IPO-Porto
| | - Paula Silva
- Departamento de Microscopia, Laboratório de Histologia e Embriologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Solida Long
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Bai J, Zhao S, Fan X, Chen Y, Zou X, Hu M, Wang B, Jin J, Wang X, Hu J, Zhang D, Li Y. Inhibitory effects of flavonoids on P-glycoprotein in vitro and in vivo: Food/herb-drug interactions and structure–activity relationships. Toxicol Appl Pharmacol 2019; 369:49-59. [DOI: 10.1016/j.taap.2019.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022]
|
19
|
Wu B, Li HX, Lian J, Guo YJ, Tang YH, Chang ZJ, Hu LF, Zhao GJ, Hong GL, Lu ZQ. Nrf2 overexpression protects against paraquat-induced A549 cell injury primarily by upregulating P-glycoprotein and reducing intracellular paraquat accumulation. Exp Ther Med 2018; 17:1240-1247. [PMID: 30679998 PMCID: PMC6327482 DOI: 10.3892/etm.2018.7044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/26/2018] [Indexed: 12/26/2022] Open
Abstract
Paraquat (PQ) intoxication causes thousands of mortalities every year, worldwide. Its pulmonary-targeted accumulation and the acute lung injury it subsequently causes, remain a challenge for detoxification treatment. A previous study has demonstrated that the upregulation of nuclear factor erythroid-2 related factor 2 (Nrf2) prevents PQ toxicity in cell line and murine models. As Nrf2 target genes include a group of membrane transporters, the current study assessed the protective mechanism exerted by Nrf2 against PQ toxicity and intracellular PQ accumulation via its effects on P-glycoprotein (P-gp), a downstream transporter of Nrf2. Adenovirus vectors containing the Nrf2 gene were transfected into A549 cells. Cell proliferation was assessed by Cell Counting Kit-8. The levels of LDH, MDA, SOD, TNF-α, IL-6 levels were detected using their respective ELISA kits. In addition, the levels of Nrf2 and P-gp protein expression were detected by western blot analysis. The concentration of PQ was measured by HPLC. The results revealed that overexpressed Nrf2 significantly increased P-gp protein levels, decreased the intracellular accumulation of PQ and attenuated PQ-induced toxicity. However, the protective effects of Nrf2 overexpression on PQ-challenged A549 cells were abrogated following cyclosporine A treatment, a competitive inhibitor of P-gp, which also increased intracellular PQ levels. These data indicated that Nrf2 gene overexpression prevented PQ toxicity in A549 cells, potentially via the upregulation of P-gp activity and the inhibition of intracellular PQ accumulation. Thus, Nrf2 and P-gp may serve as potential therapeutic targets for the treatment of PQ-induced injury.
Collapse
Affiliation(s)
- Bin Wu
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hai-Xiao Li
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jie Lian
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yong-Jie Guo
- Department of Intensive Care Unit, Jiaxing Maternal and Child Health-Care Center, Jiaxing, Zhejiang 314000, P.R. China
| | - Ya-Hui Tang
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zi-Juan Chang
- Emergency Center, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Lu-Feng Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guang-Ju Zhao
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guang-Liang Hong
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhong-Qiu Lu
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
20
|
Cellular uptake of paraquat determines subsequent toxicity including mitochondrial damage in lung epithelial cells. Leg Med (Tokyo) 2018; 37:7-14. [PMID: 30502555 DOI: 10.1016/j.legalmed.2018.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/25/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
Abstract
Paraquat (PQ) is one of the commonly used herbicides in the world, despite its high toxicity. The ingestion of PQ accidentally or intentionally causes severe damage in diverse organs including the lung. Pulmonary fibrosis triggered by PQ accumulation in the lung epithelial cells is one of the major causes of death. This study investigated the intracellular accumulation of PQ, reactive oxygen species (ROS) generation and mitochondrial injury using two lung epithelial cell lines A549 and BEAS-2B (BEAS). Although A549 exhibit greater resistance to oxidative stress than BEAS, a cytotoxicity assay for PQ demonstrated that EC50 for lethality in A549 was 7 times lower than that in BEAS. When exposed to PQ at a concentration around EC50 for lethality, the amount of ROS generated in A549 was as low as that in BEAS. Conversely, the cellular concentration of PQ in A549 after exposure was higher than that in BEAS, which suggests a distinct difference in the susceptibility to PQ between these cell lines. After a 16 h exposure to PQ, mitochondrial membrane potential (MMP) decreased in A549, but decreased only slightly in BEAS even following a 30 h exposure. PQ-exposed A549 reduced an accumulation of PTEN-induced kinase 1 (PINK1), which works in degradation of damaged mitochondria, following the decrease of MMP, whereas PQ did not decline the PINK1 in BEAS. These results suggest that mitochondrial dysfunction due to cellular accumulation of PQ might contribute to the PQ-provoked toxicity more than the ROS generation in the lung epithelial cells.
Collapse
|
21
|
Chedik L, Bruyere A, Bacle A, Potin S, Le Vée M, Fardel O. Interactions of pesticides with membrane drug transporters: implications for toxicokinetics and toxicity. Expert Opin Drug Metab Toxicol 2018; 14:739-752. [DOI: 10.1080/17425255.2018.1487398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lisa Chedik
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Astrid Bacle
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Sophie Potin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| |
Collapse
|
22
|
Wu W, Li Y. Lung injury caused by paraquat poisoning results in increased interleukin-6 and decreased microRNA-146a levels. Exp Ther Med 2018; 16:406-412. [PMID: 29896267 DOI: 10.3892/etm.2018.6153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to investigate the expression of microRNA (miR)-146a in the pulmonary macrophages, peripheral blood mononuclear cells and serum of patients with lung injury caused by paraquat poisoning, as well as the underlying mechanism of its regulation in the disease. A total of 26 patients with lung injury caused by paraquat poisoning were included in the present study. In addition, 33 healthy subjects were included as the control group. The expression levels of interleukin (IL)-6 mRNA and miR-146a was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blotting was used to measure IL-6 protein expression, while enzyme-linked immunosorbent assay was also performed to determine the secretion of IL-6 protein. A dual-luciferase reporter assay was conducted to examine whether IL-6 mRNA is a direct target of miR-146a. Patients with lung injury caused by paraquat poisoning exhibited higher IL-6 mRNA and protein levels as compared with those in healthy subjects. In addition, miR-146a expression in patients with paraquat poisoning-induced lung injury was significantly reduced in comparison with that in healthy subjects. Notably, the overexpression of miR-146a by mimic transfection downregulated the expression of IL-6 in pulmonary macrophages. The results of dual-luciferase reporter assay demonstrated that IL-6 mRNA was a direct target of miR-146a. Therefore, the present study demonstrated that increased expression of IL-6 in patients with lung injury caused by paraquat poisoning is associated with decreased expression of miR-146a. Furthermore, miR-146a may regulate the occurrence and immune response of lung injury caused by paraquat poisoning and this process is possibly achieved via IL-6, an important cytokine that mediates inflammation.
Collapse
Affiliation(s)
- Wei Wu
- Department of Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Yong Li
- Emergency Department, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
23
|
Zhu Y, Deng G, Ji A, Yao J, Meng X, Wang J, Wang Q, Wang Q, Wang R. Porous Se@SiO 2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress. Int J Nanomedicine 2017; 12:7143-7152. [PMID: 29026307 PMCID: PMC5627737 DOI: 10.2147/ijn.s143192] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute paraquat (PQ) poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI). Selenium (Se) can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6), PQ (n=18), and PQ + Se@SiO2 (n=18). The PQ and PQ + Se@SiO2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h) after PQ treatment. Porous Se@SiO2 nanospheres 1 mg/kg (in the PQ + Se@SiO2 group) were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS), nuclear factor-κB (NF-κB), phosphorylated NF-κB (p-NF-κB), tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung tissues showed that lung damage was reduced after porous Se@SiO2 nanosphere treatment. These data indicate that porous Se@SiO2 nanospheres may reduce NF-κB, p-NF-κB and inflammatory cytokine levels by inhibiting ROS in PQ-induced ALI. This study demonstrates that porous Se@SiO2 nanospheres may be a therapeutic method for use in the future for PQ poisoning.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Anqi Ji
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jiayi Yao
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Jinfeng Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Qian Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Qiugen Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| |
Collapse
|
24
|
Barbosa J, Faria J, Leal S, Afonso LP, Lobo J, Queirós O, Moreira R, Carvalho F, Dinis-Oliveira RJ. Acute administration of tramadol and tapentadol at effective analgesic and maximum tolerated doses causes hepato- and nephrotoxic effects in Wistar rats. Toxicology 2017; 389:118-129. [PMID: 28689766 DOI: 10.1016/j.tox.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/21/2017] [Accepted: 07/04/2017] [Indexed: 01/12/2023]
Abstract
Tramadol and tapentadol are two atypical synthetic opioid analgesics, with monoamine reuptake inhibition properties. Mainly aimed at the treatment of moderate to severe pain, these drugs are extensively prescribed for multiple clinical applications. Along with the increase in their use, there has been an increment in their abuse, and consequently in the reported number of adverse reactions and intoxications. However, little is known about their mechanisms of toxicity. In this study, we have analyzed the in vivo toxicological effects in liver and kidney resulting from an acute exposure of a rodent animal model to both opioids. Male Wistar rats were intraperitoneally administered with 10, 25 and 50mg/kg tramadol and tapentadol, corresponding to a low, effective analgesic dose, an intermediate dose and the maximum recommended daily dose, respectively, for 24h. Toxicological effects were assessed in terms of oxidative stress, biochemical and metabolic parameters and histopathology, using serum and urine samples, liver and kidney homogenates and tissue specimens. The acute exposure to tapentadol caused a dose-dependent increase in protein oxidation in liver and kidney. Additionally, exposure to both opioids led to hepatic commitment, as shown by increased serum lipid levels, decreased urea concentration, increased alanine aminotransferase and decreased butyrylcholinesterase activities. It also led to renal impairment, as reflected by proteinuria and decreased glomerular filtration rate. Histopathological findings included sinusoidal dilatation, microsteatosis, vacuolization, cell infiltrates and cell degeneration, indicating metabolic changes, inflammation and cell damage. In conclusion, a single effective analgesic dose or the maximum recommended daily dose of both opioids leads to hepatotoxicity and nephrotoxicity, with tapentadol inducing comparatively more toxicity. Whether these effects reflect risks during the therapeutic use or human overdoses requires focused attention by the medical community.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE - Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Juliana Faria
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE - Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sandra Leal
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - João Lobo
- Department of Pathology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Odília Queirós
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA - Center for Molecular Biology and Environment, Department of Biology, University of Minho, Braga, Portugal
| | - Roxana Moreira
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA - Center for Molecular Biology and Environment, Department of Biology, University of Minho, Braga, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE - Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE - Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
25
|
Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev 2017; 116:73-91. [PMID: 28111348 DOI: 10.1016/j.addr.2017.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Renal proximal tubules are targets for toxicity due in part to the expression of transporters that mediate the secretion and reabsorption of xenobiotics. Alterations in transporter expression and/or function can enhance the accumulation of toxicants and sensitize the kidneys to injury. This can be observed when xenobiotic uptake by carrier proteins is increased or efflux of toxicants and their metabolites is reduced. Nephrotoxic chemicals include environmental contaminants (halogenated hydrocarbon solvents, the herbicide paraquat, the fungal toxin ochratoxin, and heavy metals) as well as pharmaceuticals (certain beta-lactam antibiotics, antiviral drugs, and chemotherapeutic drugs). This review explores the mechanisms by which transporters mediate the entry and exit of toxicants from renal tubule cells and influence the degree of kidney injury. Delineating how transport proteins regulate the renal accumulation of toxicants is critical for understanding the likelihood of nephrotoxicity resulting from competition for excretion or genetic polymorphisms that affect transporter function.
Collapse
|
26
|
Effective analgesic doses of tramadol or tapentadol induce brain, lung and heart toxicity in Wistar rats. Toxicology 2017; 385:38-47. [PMID: 28499616 DOI: 10.1016/j.tox.2017.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/30/2017] [Accepted: 05/07/2017] [Indexed: 12/26/2022]
|
27
|
Alves EA, Brandão P, Neves JF, Cravo SM, Soares JX, Grund JPC, Duarte JA, Afonso CMM, Pereira Netto AD, Carvalho F, Dinis-Oliveira RJ. Repeated subcutaneous administrations of krokodil causes skin necrosis and internal organs toxicity in Wistar rats: putative human implications. Hum Psychopharmacol 2017; 32. [PMID: 28657190 DOI: 10.1002/hup.2572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/11/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE "Krokodil" is the street name for an impure homemade drug mixture used as a cheap substitute for heroin, containing desomorphine as the main opioid. Abscesses, gangrene, thrombophlebitis, limb ulceration and amputations, jaw osteonecrosis, skin discoloration, ulcers, skin infections, and bleeding are some of the typical reported signs in humans. This study aimed to understand the toxicity of krokodil using Wistar male rats as experimental model. METHODS Animals were divided into seven groups and exposed subcutaneously to NaCl 0.9% (control), krokodil mixture free of psychotropic substances (blank krokodil), pharmaceutical grade desomorphine 1 mg/kg, and four different concentrations of krokodil (containing 0.125, 0.25, 0.5, and 1 mg/kg of desomorphine) synthesized accordingly to a "domestic" protocol followed by people who inject krokodil (PWIK). Daily injections for five consecutive days were performed, and animals were sacrificed 24 hr after the last administration. Biochemical and histological analysis were carried out. RESULTS It was shown that the continuous use of krokodil may cause injury at the injection area, with formation of necrotic zones. The biochemical results evidenced alterations on cardiac and renal biomarkers of toxicity, namely, creatine kinase, creatine kinase-MB, and uric acid. Significant alteration in levels of reduced and oxidized glutathione on kidney and heart suggested that oxidative stress may be involved in krokodil-mediated toxicity. Cardiac congestion was the most relevant finding of continuous krokodil administration. CONCLUSIONS These findings contribute notably to comprehension of the local and systemic toxicological impact of this complex drug mixture on major organs and will hopefully be useful for the development of appropriate treatment strategies towards the human toxicological effects of krokodil.
Collapse
Affiliation(s)
- Emanuele Amorim Alves
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.,Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal.,EPSJV-Joaquim Venâncio Polytechnic School of Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Pedro Brandão
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Filipe Neves
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sara Manuela Cravo
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Xavier Soares
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jean-Paul C Grund
- CVO-Addiction Research Centre, Utrecht, The Netherlands.,Department of Addictology, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic.,Freudenthal Institute for Science and Mathematics Education, Utrecht University, Utrecht, The Netherlands
| | | | - Carlos M M Afonso
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Porto, Portugal
| | | | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.,Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
28
|
Cellular Models and In Vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017; 22:molecules22040600. [PMID: 28397762 PMCID: PMC6153761 DOI: 10.3390/molecules22040600] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are highly expressed in tumor cells, as well as in organs involved in absorption and secretion processes, mediating the ATP-dependent efflux of compounds, both endogenous substances and xenobiotics, including drugs. Their expression and activity levels are modulated by the presence of inhibitors, inducers and/or activators. In vitro, ex vivo and in vivo studies with both known and newly synthesized P-glycoprotein (P-gp) inducers and/or activators have shown the usefulness of these transport mechanisms in reducing the systemic exposure and specific tissue access of potentially harmful compounds. This article focuses on the main ABC transporters involved in multidrug resistance [P-gp, multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP)] expressed in tissues of toxicological relevance, such as the blood-brain barrier, cardiovascular system, liver, kidney and intestine. Moreover, it provides a review of the available cellular models, in vitro and ex vivo assays for the screening and selection of safe and specific inducers and activators of these membrane transporters. The available cellular models and in vitro assays have been proposed as high throughput and low-cost alternatives to excessive animal testing, allowing the evaluation of a large number of compounds.
Collapse
|
29
|
Efferth T, Volm M. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol 2017; 91:2515-2538. [DOI: 10.1007/s00204-017-1938-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
|
30
|
Ferreira AF, Ponte F, Silva R, Rocha-Pereira C, Sousa E, Pinto M, Bastos MDL, Remião F. Quantification of 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5), a newly synthetized P-glycoprotein inducer/activator, in biological samples: method development and validation. Biomed Chromatogr 2016; 31. [PMID: 27465355 DOI: 10.1002/bmc.3802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/06/2016] [Accepted: 07/23/2016] [Indexed: 01/23/2023]
Abstract
A simple, rapid and economical method was developed and validated for the analysis and quantification of 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5), a P-glycoprotein inducer/activator, in biological samples, using reverse-phase high-performance liquid chromatography (HPLC). A C18 column and a mobile phase composed of methanol-water (90/10, v/v) with 1% (v/v) triethylamine, at a flow rate of 1 mL/min, were used for chromatographic separation. TX5 standards (0.5-150 μm) were prepared in human serum. Methanol was used for TX5 extraction and serum protein precipitation. After filtration, samples were injected into the HPLC apparatus and TX5 was quantified by a conventional UV detector at 255 nm. The TX5 retention time was 13 min in this isocratic system. The method was validated according to ICH guidelines for specificity/selectivity, linearity, accuracy, precision, limits of detection and quantification (LOD and LOQ) and recovery. The method was proved to be selective, as there were no interferences of endogenous compounds with the same retention time of TX5. Also, the developed method was linear (r2 ≥ 0.99) for TX5 concentrations between 0.5 and 150 μm and the LOD and LOQ were 0.08 and 0.23 μm, respectively. The results indicated that the reported method could meet the requirements for TX5 analysis in the trace amounts expected to be present in biological samples.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Filipa Ponte
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carolina Rocha-Pereira
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Madalena Pinto
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Multifactorial theory applied to the neurotoxicity of paraquat and paraquat-induced mechanisms of developing Parkinson's disease. J Transl Med 2016; 96:496-507. [PMID: 26829122 DOI: 10.1038/labinvest.2015.161] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 11/08/2022] Open
Abstract
Laboratory studies involving repeated exposure to paraquat (PQ) in different animal models can induce many of the pathological features of Parkinson's disease (PD), such as the loss of dopaminergic neurons in the nigrostriatal dopamine system. Epidemiological studies identify an increased risk of developing PD in human populations living in areas where PQ exposure is likely to occur and among workers lacking appropriate protective equipment. The mechanisms involved in developing PD may not be due to any single cause, but rather a multifactorial situation may exist where PQ exposure may cause PD in some circumstances. Multifactorial theory is adopted into this review that includes a number of sub-cellular mechanisms to explain the pathogenesis of PD. The theory is placed into an environmental context of chronic low-dose exposure to PQ that consequently acts as an oxidative stress inducer. Oxidative stress and the metabolic processes of PQ-inducing excitotoxicity, α-synuclein aggregate formation, autophagy, alteration of dopamine catabolism, and inactivation of tyrosine hydroxylase are positioned as causes for the loss of dopaminergic cells. The environmental context and biochemistry of PQ in soils, water, and organisms is also reviewed to identify potential routes that can lead to chronic rates of low-dose exposure that would replicate the type of response that is observed in animal models, epidemiological studies, and other types of laboratory investigations involving PQ exposure. The purpose of this review is to synthesize key relations and summarize hypotheses linking PD to PQ exposure by using the multifactorial approach. Recommendations are given to integrate laboratory methods to the environmental context as a means to improve on experimental design. The multifactorial approach is necessary for conducting valid tests of causal relations, for understanding of potential relations between PD and PQ exposure, and may prevent further delay in solving what has proven to be an evasive etiological problem.
Collapse
|
32
|
Ferreira A, Pousinho S, Fortuna A, Falcão A, Alves G. Flavonoid compounds as reversal agents of the P-glycoprotein-mediated multidrug resistance: biology, chemistry and pharmacology. PHYTOCHEMISTRY REVIEWS 2015; 14:233-272. [DOI: 10.1007/s11101-014-9358-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Silva R, Carmo H, Vilas-Boas V, Barbosa DJ, Monteiro M, de Pinho PG, de Lourdes Bastos M, Remião F. Several transport systems contribute to the intestinal uptake of Paraquat, modulating its cytotoxic effects. Toxicol Lett 2015; 232:271-83. [DOI: 10.1016/j.toxlet.2014.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 11/29/2022]
|
34
|
Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes Bastos M, Remião F. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 2014; 149:1-123. [PMID: 25435018 DOI: 10.1016/j.pharmthera.2014.11.013] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2023]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene in humans, known to mediate multidrug resistance of neoplastic cells to cancer therapy. For several decades, P-gp inhibition has drawn many significant research efforts in an attempt to overcome this phenomenon. However, P-gp is also constitutively expressed in normal human epithelial tissues and, due to its broad substrate specificity, to its cellular polarized expression in many excretory and barrier tissues, and to its great efflux capacity, it can play a crucial role in limiting the absorption and distribution of harmful xenobiotics, by decreasing their intracellular accumulation. Such a defense mechanism can be of particular relevance at the intestinal level, by significantly reducing the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the target organs. In this review, the current knowledge on this important efflux pump is summarized, and a new focus is brought on the therapeutic interest of inducing and/or activating P-gp for limiting the toxicity caused by its substrates. Several in vivo and in vitro studies validating the use of such a therapeutic strategy are discussed. An extensive literature search for reported P-gp inducers/activators and for the experimental models used in their characterization was conducted. Those studies demonstrate that effective antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious xenobiotics, resulting in a significant reduction in their intracellular levels and, consequently, in a significant reduction of their toxicity.
Collapse
Affiliation(s)
- Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences - North (ISCS-N), CESPU, CRL, Gandra, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
35
|
Wen X, Gibson CJ, Yang I, Buckley B, Goedken MJ, Richardson JR, Aleksunes LM. MDR1 transporter protects against paraquat-induced toxicity in human and mouse proximal tubule cells. Toxicol Sci 2014; 141:475-83. [PMID: 25015657 PMCID: PMC4271045 DOI: 10.1093/toxsci/kfu141] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022] Open
Abstract
Paraquat is a herbicide that is highly toxic to the lungs and kidneys following acute exposures. Prior studies have demonstrated that the organic cation transporter 2 and multidrug and toxin extrusion protein 1 contribute to the urinary secretion of paraquat in the kidneys. The purpose of this study was to determine whether the multidrug resistance protein 1 (MDR1/Mdr1, ABCB1, or P-glycoprotein) also participates in the removal of paraquat from the kidneys and protects against renal injury. Paraquat transport and toxicity were quantified in human renal proximal tubule epithelial cells (RPTEC) that endogenously express MDR1, HEK293 cells overexpressing MDR1, and Mdr1a/1b knockout mice. In RPTEC cells, reduction of MDR1 activity using the antagonist PSC833 or siRNA transfection increased the cellular accumulation of paraquat by 50%. Reduced efflux of paraquat corresponded with enhanced cytotoxicity in PSC833-treated cells. Likewise, stable overexpression of the human MDR1 gene in HEK293 cells reduced intracellular levels of paraquat by 50%. In vivo studies assessed the renal accumulation and subsequent nephrotoxicity of paraquat (10 or 30 mg/kg ip) in wild-type and Mdr1a/1b knockout mice. At 4 h after paraquat treatment, renal concentrations of paraquat in the kidneys of Mdr1a/1b knockout mice were 750% higher than wild-type mice. By 72 h, paraquat-treated Mdr1a/1b knockout mice had more extensive tubular degeneration and significantly greater mRNA expression of kidney injury-responsive genes, including kidney injury molecule-1, lipocalin-2, and NAD(P)H quinone oxidoreductase 1, compared with wild-type mice. In conclusion, MDR1/Mdr1 participates in the elimination of paraquat from the kidneys and protects against subsequent toxicity.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Cyclosporins/pharmacology
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- HEK293 Cells
- Herbicides/metabolism
- Humans
- Kidney Diseases/chemically induced
- Kidney Diseases/genetics
- Kidney Diseases/metabolism
- Kidney Diseases/pathology
- Kidney Diseases/prevention & control
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Paraquat/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- Renal Elimination/drug effects
- Time Factors
- Transfection
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Xia Wen
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Christopher J Gibson
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854 Joint Graduate Program in Toxicology, Rutgers University, Piscataway, New Jersey 08854
| | - Ill Yang
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Michael J Goedken
- Office of Translational Science, Rutgers University, Piscataway, New Jersey 08854
| | - Jason R Richardson
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854 Department of Environmental and Occupational Medicine, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854 Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
36
|
Li SP, Han JY, Sun P, Wu GY, Bai XY. Effect of SP-A/B in lipoic acid on acute paraquat poisoning. World J Emerg Med 2014; 5:57-62. [PMID: 25215149 DOI: 10.5847/wjem.j.issn.1920-8642.2014.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study was undertaken to observe the concentration of SP-A/B and the pulmonary surfactant in the lung tissue of rats with acute lung injury/acute respiratory distress syndrome caused by paraquat poisoning after the treatment of metabolic antioxidant-lipoic acid and whether its influence was related to TNF-α. METHODS Sixty-six male Sprage-Dawley rats were randomly divided into three groups: normal control group (NS group), 6 rats; paraquat poisoning group (PQ group), 30 rats; and paraquat+lipoic acid treatment group (LA group), 30 rats. The rats in the PQ and LA groups were subdivided into 3-, 6-, 12-, 24-, 48-hour subgroups, with 6 rats in each group. After the rats were sacrificed, lung tissue from the same part was taken from the rats. After HE staining, histological changes were observed in the tissue under a light microscope. Lung tissue was also taken to test the levels of superoxide dismutase (SOD) and malondialdehyde (MDA). Whole blood (0.8 mL) without anticoagulant was drawn from the tail vein of rats for the determination of the TNF-α level. The total RNA of the lung tissue was collected, and the Rt-PCR method was used to measure the levels of SP-A and SP-B mRNA. RESULTS HE staining showed that histopathological changes were milder in the LA group than in the PQ group. There were significant differences in MDA and SOD levels between different intervals both in intergroups and intragroups except the 3-hour subgroup (P<0.01). Likewise, the significant differences in the levels of TNF-α were also present between the three groups and between different intervals (P<0.01). The significant differences in SP-A mRNA and SP-B mRNA amplification ratio were seen between the three groups at the same intervals (P<0.01), but the differences between different intervals in the PQ group were statistically significant (P<0.05). The differences between different intervals in the LA group were statistically significant (P<0.01). CONCLUSION Lipoic acid in acute paraquat poisoning could diminish lung tissue damage by regulating directly tumor necrosis factor and indirectly the content of pulmonary surfactant so as to reduce pulmonary edema, improve lung compliance, and finally protect lung tissues.
Collapse
Affiliation(s)
- Shou-Peng Li
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ji-Yuan Han
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Sun
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guo-Yan Wu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang-Yan Bai
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
37
|
Amirshahrokhi K, Bohlooli S. Effect of methylsulfonylmethane on paraquat-induced acute lung and liver injury in mice. Inflammation 2014; 36:1111-21. [PMID: 23595869 DOI: 10.1007/s10753-013-9645-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methylsulfonylmethane (MSM) is a natural organosulfur compound that exhibits antioxidative and anti-inflammatory effects. This study was carried out to investigate the effect of MSM on paraquat (PQ)-induced acute lung and liver injury in mice. A single dose of PQ (50 mg/kg, i.p.) induced acute lung and liver toxicity. Mice were treated with MSM (500 mg/kg/day, i.p.) for 5 days. At the end of the experiment, animals were euthanized, and lung and liver tissues were collected for histological and biochemical analysis. Tissue samples were used to determine malondialdehyde (MDA), myeloperoxidase (MPO), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and tumor necrosis factor-α (TNF-α) levels. Blood samples were used to measure plasma alanine transaminase (ALT), γ-glutamyl transferase (GGT), and alkaline phosphatase (ALP). Histological examination indicated that MSM decreased lung and liver damage caused by PQ. Biochemical results showed that MSM treatment significantly reduced tissue levels of MDA, MPO, and TNF-α, while increased the levels of SOD, CAT, and GSH compared with PQ group. MSM treatment also significantly reduced plasma levels of ALT, GGT, and ALP. These findings suggest that MSM as a natural product attenuates PQ-induced pulmonary and hepatic oxidative injury.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Medicine, Ardabil University of Medical Sciences, P.O. Box 5618953141, Ardabil, Iran,
| | | |
Collapse
|
38
|
Lacher SE, Gremaud JN, Skagen K, Steed E, Dalton R, Sugden KD, Cardozo-Pelaez F, Sherwin CMT, Woodahl EL. Absence of P-glycoprotein transport in the pharmacokinetics and toxicity of the herbicide paraquat. J Pharmacol Exp Ther 2014; 348:336-45. [PMID: 24297779 PMCID: PMC3912546 DOI: 10.1124/jpet.113.209791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/26/2013] [Indexed: 01/25/2023] Open
Abstract
Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a(-/-)/mdr1b(-/-)) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil-37.0 [95% confidence interval (CI): 33.2-41.4], 46.2 (42.5-50.2), and 34.1 µM (31.2-37.2)-respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice: clearances of 0.47 [95% confidence interval (CI): 0.42-0.52] and 0.78 l/h (0.58-0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50-2.04) and 3.36 liters (2.39-4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between ABCB1 pharmacogenomics and Parkinson disease is not attributed to alterations in paraquat transport.
Collapse
Affiliation(s)
- Sarah E Lacher
- Department of Biomedical and Pharmaceutical Sciences (S.E.L, K.S., E.S., R.D., F.C.-P, E.L.W.), Center for Environmental Health Sciences (S.E.L., F.C.-P.), Center for Biomolecular Structure and Dynamics (E.L.W.), Department of Chemistry (J.N.G., K.D.S.), University of Montana, Missoula, Montana; and Department of Pediatrics, University of Utah, Salt Lake City, Utah (C.M.T.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Silva R, Sousa E, Carmo H, Palmeira A, Barbosa DJ, Gameiro M, Pinto M, de Lourdes Bastos M, Remião F. Induction and activation of P-glycoprotein by dihydroxylated xanthones protect against the cytotoxicity of the P-glycoprotein substrate paraquat. Arch Toxicol 2014; 88:937-51. [DOI: 10.1007/s00204-014-1193-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/09/2014] [Indexed: 12/18/2022]
|
40
|
Baltazar MT, Dinis-Oliveira RJ, Bastos MDL, Duarte JA, Carvalho F. Lysine acetylsalicylate improves the safety of paraquat formulation in rats by increasing its elimination and preventing lung and kidney injury. Toxicol Res (Camb) 2014; 3:266. [DOI: 10.1039/c3tx50102g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
41
|
Vilas-Boas V, Silva R, Guedes-de-Pinho P, Carvalho F, Bastos ML, Remião F. RBE4 cells are highly resistant to paraquat-induced cytotoxicity: studies on uptake and efflux mechanisms. J Appl Toxicol 2013; 34:1023-30. [PMID: 24105845 DOI: 10.1002/jat.2926] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/26/2013] [Accepted: 08/04/2013] [Indexed: 01/18/2023]
Affiliation(s)
- V. Vilas-Boas
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| | - R. Silva
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| | - P. Guedes-de-Pinho
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| | - F. Carvalho
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| | - M. L. Bastos
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| | - F. Remião
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| |
Collapse
|
42
|
Vilas-Boas V, Silva R, Palmeira A, Sousa E, Ferreira LM, Branco PS, Carvalho F, Bastos MDL, Remião F. Development of novel rifampicin-derived P-glycoprotein activators/inducers. synthesis, in silico analysis and application in the RBE4 cell model, using paraquat as substrate. PLoS One 2013; 8:e74425. [PMID: 23991219 PMCID: PMC3753303 DOI: 10.1371/journal.pone.0074425] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022] Open
Abstract
P-glycoprotein (P-gp) is a 170 kDa transmembrane protein involved in the outward transport of many structurally unrelated substrates. P-gp activation/induction may function as an antidotal pathway to prevent the cytotoxicity of these substrates. In the present study we aimed at testing rifampicin (Rif) and three newly synthesized Rif derivatives (a mono-methoxylated derivative, MeORif, a peracetylated derivative, PerAcRif, and a reduced derivative, RedRif) to establish their ability to modulate P-gp expression and activity in a cellular model of the rat’s blood–brain barrier, the RBE4 cell line P-gp expression was assessed by western blot using C219 anti-P-gp antibody. P-gp function was evaluated by flow cytometry measuring the accumulation of rhodamine123. Whenever P-gp activation/induction ability was detected in a tested compound, its antidotal effect was further tested using paraquat as cytotoxicity model. Interactions between Rif or its derivatives and P-gp were also investigated by computational analysis. Rif led to a significant increase in P-gp expression at 72 h and RedRif significantly increased both P-gp expression and activity. No significant differences were observed for the other derivatives. Pre- or simultaneous treatment with RedRif protected cells against paraquat-induced cytotoxicity, an effect reverted by GF120918, a P-gp inhibitor, corroborating the observed P-gp activation ability. Interaction of RedRif with P-gp drug-binding pocket was consistent with an activation mechanism of action, which was confirmed with docking studies. Therefore, RedRif protection against paraquat-induced cytotoxicity in RBE4 cells, through P-gp activation/induction, suggests that it may be useful as an antidote for cytotoxic substrates of P-gp.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- * E-mail: (VVB); (FR)
| | - Renata Silva
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Andreia Palmeira
- Departamento de Química, Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Centro de Química Medicinal (CEQUIMED-UP), Universidade do Porto, Porto, Portugal
| | - Emília Sousa
- Departamento de Química, Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Centro de Química Medicinal (CEQUIMED-UP), Universidade do Porto, Porto, Portugal
| | - Luísa Maria Ferreira
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Sério Branco
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Félix Carvalho
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- * E-mail: (VVB); (FR)
| |
Collapse
|
43
|
Choi JS, Jou SS, Oh MH, Kim YH, Park MJ, Gil HW, Song HY, Hong SY. The dose of cyclophosphamide for treating paraquat-induced rat lung injury. Korean J Intern Med 2013; 28:420-7. [PMID: 23864800 PMCID: PMC3712150 DOI: 10.3904/kjim.2013.28.4.420] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/13/2012] [Accepted: 08/21/2012] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND/AIMS Cyclophosphamide (CP) is a promising treatment for severe cases of paraquat (PQ) poisoning. We investigated the effective dose of CP for mitigating PQ-induced lung injury. METHODS Adult male Sprague-Dawley rats were allocated into five groups: control, PQ (35 mg/kg, intraperitoneal injection), and PQ + CP (1.5, 15, or 30 mg/kg). The dimensions of lung lesions were determined using X-ray microtomography (micro-CT), and histological changes and cytokine levels were recorded. RESULTS The micro-CT results showed that 15 mg/kg CP was more effective than 1.5 mg/kg CP for treating PQ-induced lung injury. At a dose of 1.5 mg/kg, CP alleviated the histological evidence of inflammation and altered superoxide dismutase activity. Using 15 mg/kg CP reduced the elevated catalase activity and serum transforming growth factor (TGF)-β1 level. CONCLUSIONS A CP dose of > 15 mg/kg is effective for reducing the severity of PQ-induced lung injury as determined by histological and micro-CT tissue examination, possibly by modulating antioxidant enzyme and TGF-β1 levels.
Collapse
Affiliation(s)
- Jae-Sung Choi
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Sung-Shick Jou
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Mee-Hye Oh
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Young-Hee Kim
- Department of Microbiology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Min-Ju Park
- Department of Microbiology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Ho-Yeon Song
- Department of Microbiology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sae-Yong Hong
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| |
Collapse
|
44
|
Salomon JJ, Ehrhardt C, Hosoya KI. The verapamil transporter expressed in human alveolar epithelial cells (A549) does not interact with β2-receptor agonists. Drug Metab Pharmacokinet 2013; 29:101-4. [PMID: 23803288 DOI: 10.2133/dmpk.dmpk-13-sh-026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Affinity of different organs for verapamil is highly variable and organ-specific. For example, the drug exhibits high levels of accumulation in lung tissues. A transporter recognising verapamil as a substrate has previously been identified in human retinal pigment epithelial (RPE) and in rat retinal capillary endothelial (TR-iBRB2) cells. This transporter is distinct from any of the cloned organic cation transporters. Therefore, we hypothesised that the verapamil transporter is also functionally expressed in the human respiratory mucosa. Moreover, we tested the hypothesis that this transporter interacts with pulmonary administered cationic drugs such as β2-agonists. The uptake of [(3)H]verapamil was studied in A549 human alveolar epithelial cell monolayers at different times and concentrations. The influence of extracellular proton concentration and various organic cations on verapamil uptake was determined. Verapamil uptake into A549 cells was time- and concentration-dependent, sensitive to pH and had a Km value of 39.8 ± 8.2 µM. Verapamil uptake was also sensitive to inhibition by amantadine, quinidine and pyrilamine, but insensitive to other typical modulators of organic cation and choline transporters. Whilst we demonstrated functional activity of the elusive verapamil transporter at the lung epithelium, our data suggest that this transporter does not interact with β2-agonists at therapeutic concentrations.
Collapse
Affiliation(s)
- Johanna J Salomon
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin
| | | | | |
Collapse
|
45
|
Vilas-Boas V, Silva R, Nunes C, Reis S, Ferreira L, Vieira C, Carvalho F, Bastos MDL, Remião F. Mechanisms of P-gp inhibition and effects on membrane fluidity of a new rifampicin derivative, 1,8-dibenzoyl-rifampicin. Toxicol Lett 2013; 220:259-66. [PMID: 23685082 DOI: 10.1016/j.toxlet.2013.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess P-glycoprotein (P-gp)-modulation ability and the mechanisms of P-gp inhibition mediated by a new synthetic rifampicin derivative, 1,8-dibenzoyl-rifampicin (DiBenzRif), in an in vitro model of the blood-brain barrier (BBB), RBE4 cells, and in membrane mimetic models (liposomes). METHODS P-gp expression (western blot) and activity [rhodamine 123 accumulation studies] were assessed until 72h of exposure to DiBenzRif. The effects on intracellular ATP levels and on P-gp ATPase activity were studied using luciferin-luciferase bioluminescence assay. Membrane fluidity changes were tracked by steady-state anisotropy measurements. Non-P-gp-related rhodamine 123 accumulation was evaluated using liposomes prepared with the main lipids present in RBE4 cell membranes. RESULTS A significant increase in intracellular rhodamine 123 content was observed in DiBenzRif-treated cells at all tested time-points. This effect was associated with a significant reduction in ATP intracellular levels, the inhibition of P-gp ATPase activity and a significant increase in membrane fluidity. DiBenzRif also favoured rhodamine 123 accumulation in a liposomal model of RBE4 cells, suggesting that it may be useful in increasing intracellular levels of substances that passively diffuse into the cells. CONCLUSION DiBenzRif-induced inhibitory effect on P-gp increases xenobiotic accumulation in BBB cells, which may contribute to the development of therapeutic adjuvants to enhance brain penetration of drugs.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
OBJECTIVE This observational study examined the outcome of Taiwanese pediatric patients with paraquat poisoning and compared these data with the published data on paraquat poisonings from other international poisoning centers. METHODS We performed a retrospective study on children with acute paraquat poisoning that were admitted to the Chang Gung Memorial Hospital during a period of 10 years (2000-2010). Of the 193 paraquat poisoning patients, only 6 were children. RESULTS The mean age was 8.85 ± 5.55 (1-15.6) years. Younger patients had accidentally swallowed paraquat, whereas older patients had intentionally ingested paraquat. Most patients were referred within a relatively short period (0.5-2.0 hours). Paraquat poisoning was associated with high morbidity and often resulted in severe complications, including acute respiratory distress syndrome and multiple-organ failure. The complications included shock (50.0%), hypoxemia (33.3%), respiratory failure (33.3%), nausea/vomiting (16.7%), abdominal pain (33.3%), hepatitis (66.7%), gastrointestinal tract bleeding (33.3%), acute renal failure (33.3%), and seizures (16.7%). Patients were treated aggressively with a standard detoxification protocol consisting of gastric lavage, active charcoal, charcoal hemoperfusion, and cyclophosphamide and steroid pulse therapies. Secondary bacterial infections were common after hospitalization and included sepsis (33.3%), pneumonia (33.3%), and urinary tract infection (50.0%). In the end, 2 patients (33.3%) died from multiple-organ failure, despite intensive resuscitation. CONCLUSIONS Our data (mortality rate, 33.3%) are comparable to the data of other published reports from other international poison centers. Evidently, a prompt diagnosis of paraquat poisoning and an immediate institution of a detoxification protocol is a prerequisite for a favorable outcome.
Collapse
|
47
|
Silva R, Carmo H, Vilas-Boas V, Pinho PGD, Dinis-Oliveira RJ, Carvalho F, Silva I, Correia-de-Sá P, Bastos MDL, Remião F. Doxorubicin decreases paraquat accumulation and toxicity in Caco-2 cells. Toxicol Lett 2013; 217:34-41. [PMID: 23220037 DOI: 10.1016/j.toxlet.2012.11.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
|
48
|
Carroll R, Metcalfe C, Gunnell D, Mohamed F, Eddleston M. Diurnal variation in probability of death following self-poisoning in Sri Lanka--evidence for chronotoxicity in humans. Int J Epidemiol 2012. [PMID: 23179303 DOI: 10.1093/ije/dys191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The absorption, distribution, metabolism and elimination of medicines are partly controlled by transporters and enzymes with diurnal variation in expression. Dose timing may be important for maximizing therapeutic and minimizing adverse effects. However, outcome data for such an effect in humans are sparse, and chronotherapeutics is consequently less practised. We examined a large prospective Sri Lankan cohort of patients with acute poisoning to seek evidence of diurnal variation in the probability of survival. METHODS In all, 14 840 patients admitted to hospital after yellow oleander (Cascabela thevetia) seed or pesticide [organophosphorus (OP), carbamate, paraquat, glyphosate] self-poisoning were investigated for variation in survival according to time of ingestion. RESULTS We found strong evidence that the outcome of oleander poisoning was associated with time of ingestion (P < 0.001). There was weaker evidence for OP insecticides (P = 0.041) and no evidence of diurnal variation in the outcome for carbamate, glyphosate and paraquat pesticides. Compared with ingestion in the late morning, and with confounding by age, sex, time of and delay to hospital presentation and year of admission controlled, case fatality of oleander poisoning was over 50% lower following evening ingestion (risk ratio = 0.40, 95% confidence interval 0.26-0.62). Variation in dose across the day was not responsible. CONCLUSIONS We have shown for the first time that timing of poison ingestion affects survival in humans. This evidence for chronotoxicity suggests chronotherapeutics should be given greater attention in drug development and clinical practice.
Collapse
Affiliation(s)
- Robert Carroll
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
49
|
Hsu CW, Lin JL, Lin-Tan DT, Chen KH, Yen TH, Wu MS, Lin SC. Early hemoperfusion may improve survival of severely paraquat-poisoned patients. PLoS One 2012; 7:e48397. [PMID: 23144759 PMCID: PMC3483292 DOI: 10.1371/journal.pone.0048397] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/25/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Thousands of paraquat (PQ)-poisoned patients continue to die, particularly in developing countries. Although animal studies indicate that hemoperfusion (HP) within 2-4 h after intoxication effectively reduces mortality, the effect of early HP in humans remains unknown. METHODS We analyzed the records of all PQ-poisoned patients admitted to 2 hospitals between 2000 and 2009. Patients were grouped according to early or late HP and high-dose (oral cyclophosphamide [CP] and intravenous dexamethasone [DX]) or repeated pulse (intravenous methylprednisolone [MP] and CP, followed by DX and repeated MP and/or CP) PQ therapy. Early HP was defined as HP <4 h, and late HP, as HP ≥ 4 h after PQ ingestion. We evaluated the associations between HP <4 h, <5 h, <6 h, and <7 h after PQ ingestion and the outcomes. Demographic, clinical, laboratory, and mortality data were analyzed. RESULTS The study included 207 severely PQ-poisoned patients. Forward stepwise multivariate Cox hazard regression analysis showed that early HP <4 h (hazard ratio [HR] = 0.38, 95% confidence interval (CI) 0.16-0.86; P = 0.020) or HP <5 h (HR = 0.60, 95% CI: 0.39-0.92; P = 0.019) significantly decreased the mortality risk. Further analysis showed that early HP reduced the mortality risk only in patients treated with repeated pulse therapy (n = 136), but not high-dose therapy (n = 71). Forward stepwise multivariate Cox hazard regression analysis showed that HP <4.0 h (HR = 0.19, 95% CI: 0.05-0.79; P = 0.022) or <5.0 h (HR = 0.49, 95% CI: 0.24-0.98; P = 0.043) after PQ ingestion significantly decreased the mortality risk in repeated pulse therapy patients, after adjustment for relevant variables. CONCLUSION The results showed that early HP after PQ exposure might be effective in reducing mortality in severely poisoned patients, particularly in those treated with repeated pulse therapy.
Collapse
Affiliation(s)
- Ching-Wei Hsu
- Division of Clinical Toxicology, Department of Nephrology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan, Republic of China
- Chang Gung University and School of Medicine, Taoyuan, Taiwan, Republic of China
| | - Ja-Liang Lin
- Division of Clinical Toxicology, Department of Nephrology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan, Republic of China
- Chang Gung University and School of Medicine, Taoyuan, Taiwan, Republic of China
| | - Dan-Tzu Lin-Tan
- Division of Clinical Toxicology, Department of Nephrology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan, Republic of China
- Chang Gung University and School of Medicine, Taoyuan, Taiwan, Republic of China
| | - Kuan-Hsing Chen
- Division of Clinical Toxicology, Department of Nephrology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan, Republic of China
- Chang Gung University and School of Medicine, Taoyuan, Taiwan, Republic of China
| | - Tzung-Hai Yen
- Division of Clinical Toxicology, Department of Nephrology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan, Republic of China
- Chang Gung University and School of Medicine, Taoyuan, Taiwan, Republic of China
| | - Mai-Szu Wu
- Chang Gung University and School of Medicine, Taoyuan, Taiwan, Republic of China
- Department of Nephrology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China
| | - Shih-Chieh Lin
- Division of Clinical Toxicology, Department of Nephrology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taoyuan, Taiwan, Republic of China
- Chang Gung University and School of Medicine, Taoyuan, Taiwan, Republic of China
| |
Collapse
|
50
|
Khan RA. Protective effect of Launaea procumbens (L.) on lungs against CCl4-induced pulmonary damages in rat. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:133. [PMID: 22909101 PMCID: PMC3522065 DOI: 10.1186/1472-6882-12-133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 08/09/2012] [Indexed: 12/02/2022]
Abstract
BACKGROUND Launaea procumbens (L.) is traditionally used in the treatment of various human ailments including pulmonary damages. The present study was arranged to evaluate the role of Launaea procumbens methanol extract (LME) against carbon tetrachloride (CCl4) induced oxidative pulmonary damages in rat. METHODS 36 Sprague-Dawley male rats (170-180 g) were randomly divided into 06 groups. After a week of acclamization, group I was remained untreated while group II was given olive oil intraperitoneally (i.p.) and dimethyl sulfoxide (DMSO) orally, groups III, IV, V and VI were administered CCl4, 3 ml/kg body weight (30% in olive oil i.p.). Groups IV, V were treated with 100 mg/kg, 200 mg/kg of LME whereas group VI was administered with 50 mg/kg body weight of rutin (RT) after 48 h of CCl4 treatment for four weeks. Antioxidant profile in lungs were evaluated by estimating the activities of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione reductase (GSR), glutathione peroxidase (GSH-Px), quinone reductase (QR) and reduced glutathione (GSH). CCl4-induced lipid peroxidation was determined by measuring the level of thiobarbituric acid reactive substances (TBARS) with conjugation of deoxyribonucleic acid (DNA) damages, argyrophilic nucleolar organizer regions (AgNORs) counts and histopathology. RESULTS Administration of CCl4 for 6 weeks significantly (p < 0.01) reduced the activities of antioxidant enzymes and GSH concentration while increased TBARS contents and DNA damages in lung samples. Co-treatment of LME and rutin restored the activities of antioxidant enzymes and GSH contents. Changes in TBARS concentration and DNA fragmentation were significantly (p < 0.01) decreased with the treatment of LME and rutin in lung. Changes induced with CCl4 in histopathology of lungs were significantly reduced with co-treatment of LME and rutin. CONCLUSION Results of present study revealed that LME could protect the lung tissues against CCl4-induced oxidative stress possibly by improving the antioxidant defence system.
Collapse
Affiliation(s)
- Rahmat Ali Khan
- Department of Biotechnology, Faculty of Biological Sciences, University of Science and Technology Bannu, Bannu, KPK, Pakistan.
| |
Collapse
|