1
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024; 28:875-894. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Li J, Wang M, Wang M, Sang H, Wang W, Gong M, Zhang H. Bradykinin induces acute kidney injury after hypothermic circulatory arrest through the repression of the Nrf2-xCT pathway. iScience 2024; 27:110075. [PMID: 38868208 PMCID: PMC11167524 DOI: 10.1016/j.isci.2024.110075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/17/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
Postoperative acute kidney injury (AKI) is a common complication in patients undergoing deep hypothermic circulatory arrest (HCA); however, its underlying pathogenesis is unclear. In this study, we established a rat cardiopulmonary bypass model and demonstrated that hypothermia during HCA, rather than circulatory arrest, was responsible for the occurrence of AKI. By recruiting 56 patients who underwent surgery with HCA and analyzing the blood samples, we found that post-HCA AKI was associated with an increase in bradykinin. Animal experiments confirmed this and showed that hypothermia during HCA increased bradykinin levels by increasing kallikrein expression. Mechanistically, bradykinin inhibited the Nrf2-xCT pathway through B2R and caused renal oxidative stress damage. Application of Icatibant, a B2R inhibitor, reversed changes in the Nrf2-xCT pathway and oxidative stress damage. Finally, Icatibant reversed hypothermia-induced AKI in vivo. This finding reveals the pathogenesis of AKI after HCA and helps to provide therapeutic strategy for patients with post-HCA AKI.
Collapse
Affiliation(s)
- Jinzhang Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Maozhou Wang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - He Sang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Ming Gong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| |
Collapse
|
3
|
Tang S, An X, Sun W, Zhang Y, Yang C, Kang X, Sun Y, Jiang L, Zhao X, Gao Q, Ji H, Lian F. Parallelism and non-parallelism in diabetic nephropathy and diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1336123. [PMID: 38419958 PMCID: PMC10899692 DOI: 10.3389/fendo.2024.1336123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular complications of diabetes mellitus, are currently the leading causes of end-stage renal disease (ESRD) and blindness, respectively, in the adult working population, and they are major public health problems with social and economic burdens. The parallelism between the two in the process of occurrence and development manifests in the high overlap of disease-causing risk factors and pathogenesis, high rates of comorbidity, mutually predictive effects, and partial concordance in the clinical use of medications. However, since the two organs, the eye and the kidney, have their unique internal environment and physiological processes, each with specific influencing molecules, and the target organs have non-parallelism due to different pathological changes and responses to various influencing factors, this article provides an overview of the parallelism and non-parallelism between DN and DR to further recognize the commonalities and differences between the two diseases and provide references for early diagnosis, clinical guidance on the use of medication, and the development of new drugs.
Collapse
Affiliation(s)
- Shanshan Tang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuedong An
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cunqing Yang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Gao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hangyu Ji
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Sharma N, Anders HJ, Gaikwad AB. Fiend and friend in the renin angiotensin system: An insight on acute kidney injury. Biomed Pharmacother 2018; 110:764-774. [PMID: 30554115 DOI: 10.1016/j.biopha.2018.12.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Besides assisting the maintenance of blood pressure and sodium homeostasis, the renin-angiotensin system (RAS) plays a pivotal role in pathogenesis of acute kidney injury (AKI). The RAS is equipped with two arms i) the pressor arm composed of Angiotensin II (Ang II)/Angiotensin converting enzyme (ACE)/Angiotensin II type 1 receptor (AT1R) also called conventional RAS, and ii) the depressor arm consisting of Angiotensin (1-7) (Ang 1-7)/Angiotensin converting enzyme 2 (ACE2)/MasR known as non-conventional RAS. Activation of conventional RAS triggers oxidative stress, inflammatory, hypertrophic, apoptotic, and pro-fibrotic signaling cascades which promote AKI. The preclinical and clinical studies have reported beneficial as well as deleterious effects of RAS blockage either by angiotensin receptor blocker or ACE inhibitor in AKI. On the contrary, the depressor arm opposes the conventional RAS, has beneficial effects on the kidney but has been less explored in pathogenesis of AKI. This review focuses on significance of RAS in pathogenesis of AKI and provides better understanding of novel and possible therapeutic approaches to combat AKI.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333 031, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333 031, India.
| |
Collapse
|
5
|
Liu Z, Qu M, Yang Q, Chang Y. Lipoxin A4 ameliorates renal ischaemia–reperfusion‐induced acute lung injury in rats. Clin Exp Pharmacol Physiol 2018; 46:65-74. [PMID: 30118542 DOI: 10.1111/1440-1681.13023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/05/2018] [Accepted: 08/13/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Zhaohui Liu
- Department of AnesthesiologyCangzhou Central Hospital Cangzhou Hebei China
| | - Min Qu
- Department of AnesthesiologyCangzhou Central Hospital Cangzhou Hebei China
| | - Qiang Yang
- Department of AnesthesiologyCangzhou Central Hospital Cangzhou Hebei China
| | - Yulin Chang
- Department of AnesthesiologyCangzhou Central Hospital Cangzhou Hebei China
| |
Collapse
|
6
|
Neuroprotective Effects of Dehydroepiandrosterone Sulfate Through Inhibiting Expression of Matrix Metalloproteinase-9 from Bradykinin-Challenged Astroglia. Mol Neurobiol 2018; 56:736-747. [PMID: 29796990 DOI: 10.1007/s12035-018-1125-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
Abstract
Dehydroepiandrosterone sulfate (DHEAS), one of the most important neuroactive steroids, is produced in the adrenals and the brain. DHEAS is believed to play a critical role in modulating different forms of cellular control, including processes associated with human neural systems. Its production rate and level in serum, adrenals, and brain gradually decrease with advancing age. The decline of DHEAS level was associated with age-related neuronal dysfunction and degeneration, most probably because the steroids protect the central nervous system (CNS) neurons against neurotoxic challenges. Moreover, increasing studies show that matrix metalloproteinases (MMPs), MMP-9 especially, are upregulated by proinflammatory mediators in the CNS disorders. The increased MMP-9 as an inflammatory biomarker of several CNS disorders that may participate in the CNS inflammation and neurodegeneration. Herein, we investigate the effects of DHEAS on brain inflammation by the model we have defined of bradykinin (BK)-induced MMP-9 expression in rat brain astrocyte (RBA) and its mechanism. The results showed that DHEAS significantly reduce MMP-9 induced by BK. Pretreatment with DHEAS can inhibit BK-stimulated phosphorylation of c-Src and PYK2. Moreover, DHEAS attenuated BK-stimulated NADPH oxidase (Nox)-derived reactive oxygen species (ROS) production, suggesting that DHEAS has an antioxidative effect. We further demonstrated that DHEAS blocked activation of ERK1/2, Akt, and c-Fos/AP-1 by BK. Finally, DHEAS decreased MMP-9-related events including RBA migration and neuronal apoptosis. The results will provide new insights into the anti-inflammatory action of DHEAS, supporting that DHEAS may have a neuroprotective effect in the improvement of the CNS disorders by reducing neuroinflammation.
Collapse
|
7
|
Peng J, Ren X, Lan T, Chen Y, Shao Z, Yang C. Renoprotective effects of ursolic acid on ischemia/reperfusion‑induced acute kidney injury through oxidative stress, inflammation and the inhibition of STAT3 and NF‑κB activities. Mol Med Rep 2016; 14:3397-402. [PMID: 27573738 DOI: 10.3892/mmr.2016.5654] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/22/2016] [Indexed: 11/05/2022] Open
Abstract
Ursolic acid, a pentacyclic triterpene compound with low toxicity and easy availability, has a variety of biological activities, including antitumor, antioxidant, antihepatitis, anti‑inflammatory and antibacterial effects. The present study aimed to investigate the renoprotective effects of ursolic acid on ischemia/reperfusion‑induced acute kidney injury (I/R‑IAKI) in rats associated with its antioxidant and anti‑inflammatory effects, as well as interference with the signal transducer and activator of transcription (STAT)3/nuclear factor (NF)‑κB signaling pathway. The present study demonstrated that pre‑treatment with ursolic acid significantly increased renal functioning and attenuated increases of serum angiotensin II levels in rats subjected to I/R‑IAKI. In addition, I/R‑IAKI‑induced inflammation and oxidative stress were significantly reduced by pre‑treatment with ursolic acid. Furthermore, ursolic acid significantly suppressed the upregulation of STAT3, NF‑κB and caspase‑3 activities in rats following I/R‑IAKI. These results indicated that ursolic acid may be a potential drug for reducing I/R‑IAKI through suppression of inflammation and oxidative stress damage, as well as modulation of STAT3 and NF‑κB activities.
Collapse
Affiliation(s)
- Jun Peng
- Department of Nephrology, Wuhan General Hospital of Guangzhou Military Area, Wuhan, Hubei 430030, P.R. China
| | - Xingfeng Ren
- Department of Nephrology, Wuhan General Hospital of Guangzhou Military Area, Wuhan, Hubei 430030, P.R. China
| | - Tianbiao Lan
- Department of Nephrology, Wuhan General Hospital of Guangzhou Military Area, Wuhan, Hubei 430030, P.R. China
| | - Yan Chen
- Department of Nephrology, Wuhan General Hospital of Guangzhou Military Area, Wuhan, Hubei 430030, P.R. China
| | - Ziyun Shao
- Department of Nephrology, Wuhan General Hospital of Guangzhou Military Area, Wuhan, Hubei 430030, P.R. China
| | - Cheng Yang
- Department of Nephrology, Wuhan General Hospital of Guangzhou Military Area, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
8
|
Filippou PS, Karagiannis GS, Musrap N, Diamandis EP. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer. Crit Rev Clin Lab Sci 2016; 53:277-91. [PMID: 26886390 DOI: 10.3109/10408363.2016.1154643] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The kallikrein-related peptidases (KLKs) represent the largest family of serine proteases within the human genome and are expressed in various tissues. Although they regulate several important physiological functions, KLKs have also been implicated in numerous pathophysiological processes, including cancer. Growing evidence describing the deregulation of KLK expression and secretion, as well as activation in various malignancies, has uncovered their potential as mediators of cancer progression, biomarkers of disease and as candidate therapeutic targets. The diversity of signalling pathways and proteolytic cascades involving KLKs and their downstream targets appears to affect cancer biology through multiple mechanisms, including those related to the hallmarks of cancer. The aim of this review is to provide an update on the importance of KLK-driven molecular pathways in relation to cancer cell traits associated with the hallmarks of cancer and to highlight their potential in personalized therapeutics.
Collapse
Affiliation(s)
- Panagiota S Filippou
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
| | - George S Karagiannis
- b Department of Anatomy & Structural Biology , Albert Einstein College of Medicine, Yeshiva University Bronx , New York , NY , USA
| | - Natasha Musrap
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
| | - Eleftherios P Diamandis
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada .,c Department of Clinical Biochemistry , University Health Network , Toronto , ON , Canada , and.,d Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
9
|
Yang CM, Yang SH, Lee TH, Fang JY, Lin CF, Jou MJ, Hsieh HL. Evaluation of Anti-Inflammatory Effects of Helminthostachys zeylanica Extracts via Inhibiting Bradykinin-Induced MMP-9 Expression in Brain Astrocytes. Mol Neurobiol 2015; 53:5995-6005. [PMID: 26526842 DOI: 10.1007/s12035-015-9511-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Abstract
Phytochemicals present in vegetables, fruits, and herbs are believed to reduce the risk of several major diseases including cardiovascular or neurodegenerative disorders. The roots of the fern Helminthostachys zeylanica (L.) Hook. (Ophioglossaceae) have been used for centuries in the treatment of inflammation and as a folk medicine in several countries. The plant has been shown to possess an array of medicinal properties, including antioxidants and anti-inflammatory activities. Moreover, a rising level of matrix metalloproteinase-9 (MMP-9) has been found in blood fluid of these patients suffering from brain inflammatory diseases, which may be considered an inflammatory biomarker in several inflammatory diseases including the central nervous system (CNS) inflammation. Previously, we have demonstrated the signaling mechanisms of bradykinin (BK)-induced MMP-9 expression in brain astrocytes. Herein, we evaluate the effects of H. zeylanica extracts on BK-induced MMP-9 expression in brain astrocytes and its influencing mechanism. The results showed that H. zeylanica extracts, including E0, E1, and E2 significantly reduce MMP-9 induced by BK in brain astrocytes (RBA-1 cells). These H. zeylanica extracts can inhibit BK-stimulated phosphorylation of c-Src, Pyk2, and PKC(α/δ). Moreover, BK-stimulated NADPH oxidase (Nox)-derived reactive oxygen species (ROS) generation has also been attenuated by pretreatment with these extracts, suggesting that the H. zeylanica extracts have an antioxidative activity. We further demonstrated that the H. zeylanica extracts blocked activation of MAPKs (e.g., ERK1/2 and p38 MAPK) by BK. These data indicated that the H. zeylanica extracts may be has anti-inflammatory activity by reducing BK-induced ROS-dependent MMP-9 expression via these related pathways in brain astrocytes.
Collapse
Affiliation(s)
| | - Sien-Hung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tsong-Hai Lee
- Stroke Center and Stroke Section, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Jia-You Fang
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Gui-Shan, Tao-Yuan, Taiwan
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Gui-Shan, Tao-Yuan, Taiwan
| | | | - Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Gui-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
10
|
Wang Y, Tong K. Glycogen synthase kinase-3β inhibitor ameliorates imbalance of connexin 43 in an acute kidney injury model. Toxicol Rep 2015; 2:1391-1395. [PMID: 28962480 PMCID: PMC5598357 DOI: 10.1016/j.toxrep.2015.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/10/2015] [Accepted: 10/11/2015] [Indexed: 01/14/2023] Open
Abstract
This study was designed to evaluate whether glycogen synthase kinase-3β (GSK-3β) inhibitor, 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) induced the the expression of connexin 43 (Cx43) to protect against renal ischemia–reperfusion (I/R) injury (RI/RI) in rats. Rats were subjected to 45 min ischemia followed 2 h reperfusion with TDZD-8 (1 mg/kg) for 5 min prior to reperfusion. The results indicated that TDZD-8 improved the recovery of renal function, reduced oxidative stress and inflammation injury, and upregulated the expression of (Cx43) as compared to I/R group. Therefore, our study demonstrated that TDZD-8 provided a protection to the kidney against I/R injury in rats through inducing the expression of (Cx43).
Collapse
Affiliation(s)
- Yini Wang
- Department of Nursing, Medical College, Shantou University, 26 Xinling Road, Shantou 515041, PR China.,Southwest University of Science and Technology, College of Life Science and Engineering, Mianyang, Sichuan 621010, PR China
| | - Ke Tong
- Department of Nursing, Medical College, Shantou University, 26 Xinling Road, Shantou 515041, PR China.,Southwest University of Science and Technology, College of Life Science and Engineering, Mianyang, Sichuan 621010, PR China
| |
Collapse
|
11
|
The protein kinase 2 inhibitor tetrabromobenzotriazole protects against renal ischemia reperfusion injury. Sci Rep 2015; 5:14816. [PMID: 26423352 PMCID: PMC4589787 DOI: 10.1038/srep14816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023] Open
Abstract
Protein kinase 2 (CK2) activation was reported to enhance reactive oxygen species production and activate the nuclear factor κB (NF-κB) pathway. Because oxidative stress and inflammation are critical events for tissue destruction during ischemia reperfusion (I/R), we sought to determine whether CK2 was important in the renal response to I/R. Mice underwent 25 min of renal ischemia and were then reperfused. We confirmed an increased expression of CK2α during the reperfusion period, while expression of CK2β remained consistent. We administered tetrabromobenzotriazole (TBBt), a selective CK2α inhibitor before inducing I/R injury. Mice subjected to I/R injury showed typical patterns of acute kidney injury; blood urea nitrogen and serum creatinine levels, tubular necrosis and apoptosis, inflammatory cell infiltration and proinflammatory cytokine production, and oxidative stress were markedly increased when compared to sham mice. However, pretreatment with TBBt abolished these changes and improved renal function and architecture. Similar renoprotective effects of CK2α inhibition were observed for emodin. Renoprotective effects of CK2α inhibition were associated with suppression of NF-κB and mitogen activated protein kinase (MAPK) pathways. Taken together, these results suggest that CK2α mediates proapoptotic and proinflammatory signaling, thus the CK2α inhibitor may be used to prevent renal I/R injuries observed in clinical settings.
Collapse
|
12
|
Estrela GR, Wasinski F, Bacurau RF, Malheiros DM, Câmara NO, Araújo RC. Kinin B2 receptor deletion and blockage ameliorates cisplatin-induced acute renal injury. Int Immunopharmacol 2014; 22:115-9. [DOI: 10.1016/j.intimp.2014.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 12/16/2022]
|
13
|
Yang CM, Hsieh HL, Yu PH, Lin CC, Liu SW. IL-1β Induces MMP-9-Dependent Brain Astrocytic Migration via Transactivation of PDGF Receptor/NADPH Oxidase 2-Derived Reactive Oxygen Species Signals. Mol Neurobiol 2014; 52:303-17. [DOI: 10.1007/s12035-014-8838-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/28/2014] [Indexed: 01/14/2023]
|
14
|
Curcumin treatment protects against renal ischemia and reperfusion injury-induced cardiac dysfunction and myocardial injury. Transplant Proc 2014; 45:3546-9. [PMID: 24314955 DOI: 10.1016/j.transproceed.2013.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Renal ischemia and reperfusion (I/R) injury frequently leads to acute renal failure (ARF) and multiple-organ injury with a substantial morbidity rate. The primary cause of ARF-associated death is, however, cardiac failure instead of renal failure itself, and the pathogenesis of renal I/R-induced cardiac injury is still poorly understood. We evaluated the efficacy of curcumin pretreatment on cardioprotection. METHODS Thirty Sprague-Dawley rats were evenly divided into 3 groups of sham-operated control, renal I/R injury, and a curcumin pretreatment group. Renal ischemia was conducted by bilateral occlusions of pedicles for 45 minutes, followed by 3 hours of reperfusion. The cardiac function was assessed by the left ventricular end-systolic-pressure-volume-relation (ESPVR), systolic pressure (SP), ejection fraction (EF), and stroke volume (SV). Myocardial injury was assessed based on creatine kinase muscle brain fraction (CK-MB) and Troponin I (cTnI), and kidney injury was assessed based on blood urea nitrogen (BUN) and creatinine. We also assessed the levels of tumor necrosis factor-α (TNF-α) and malondialdehyde (MDA) in the heart tissues. RESULTS SV, EF, and SP reduced moderately during the ischemic phase with no major change in ESPVR. During reperfusion, SV, SP, and ESPVR initially increased, and then steadily decreased. Myocardial and kidney injury were marked by the increases in serum CK-MB and cTnI, and creatinine and BUN level. Curcumin pretreatment ameliorated ESPVR and attenuated injuries of both the heart and kidney resulting from I/R insult. CONCLUSIONS Curcumin pretreatment improved cardiac contractility and attenuated myocardial and renal injury through reducing inflammatory response in the kidney and heart and oxidative stress in the myocardium.
Collapse
|
15
|
Yeh JH, Yang YC, Wang JC, Wang D, Wang JJ. Curcumin attenuates renal ischemia and reperfusion injury-induced restrictive respiratory insufficiency. Transplant Proc 2014; 45:3542-5. [PMID: 24314954 DOI: 10.1016/j.transproceed.2013.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Pulmonary failure, instead of kidney failure, is one of the leading causes of acute kidney injury (AKI)-related death. Volume overload was previously regarded as the primary cause of lung injury, presumably by impaired renal fluid clearance. Recent evidence suggested that proinflammatory cytokines, chemokines, and free radicals released during AKI are playing a crucial role in the lung injury. We aimed to examine the protective efficacy of lung function with curcumin pretreatment. METHODS AKI was induced by 45 minutes of kidney ischemia (bilateral occlusion of renal pedicles) followed by 3 hours of reperfusion. Rats were divided into 3 groups: sham-operated, kidney ischemia and reperfusion (I/R), and a group with 2 days of oral pretreatment with curcumin (12.5 mg/kg/d) before I/R injury. The pulmonary function test (PFT) was conducted at baseline and after 3 hours of reperfusion, yielding parameters of lung volumes, chord compliance (Cchord), inspiratory resistance (RI), and forced expiratory volume at the first 200 millisecond (FEV200). We also examined levels of protein concentration (PC), methylguanidine (MG), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) in the bronchoalveolar lavage (BAL). RESULTS Ischemic AKI-induced restrictive lung disease was demonstrated by the decreased Cchord, total lung capacitance (TLC), and FEV200, in addition to the increased lavage PCBAL, MG, TNF-α, and MDA level. Curcumin pretreatment ameliorated lung function impairment and alveolar vascular protein leak and attenuated lung inflammation. CONCLUSIONS The protective effect of curcumin pretreatment against restrictive lung disease is most likely associated with decreasing hydroxyl radical, lipid peroxidation, and inflammation in the lungs and improving alveolar vascular permeability.
Collapse
Affiliation(s)
- J-H Yeh
- Department of Neurology, Shin Kong Wu Ho Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
16
|
Differential bradykinin B1 and B2 receptor regulation in cell death induced by hepatic ischaemia/reperfusion injury. Clin Sci (Lond) 2014; 127:405-13. [DOI: 10.1042/cs20130313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the present study, we have demonstrated that the kinin B1 receptor may participate in apoptotic cell death signalling, whereas the B2 receptor may be involved in necrotic cell death during IRI.
Collapse
|
17
|
Dokuyucu R, Gogebakan B, Yumrutas O, Bozgeyik I, Gokce H, Demir T. Expressions of TRPM6 and TRPM7 and histopathological evaluation of tissues in ischemia reperfusion performed rats. Ren Fail 2014; 36:932-6. [PMID: 24679001 DOI: 10.3109/0886022x.2014.900405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is very little work on the expression of TRPM6/7 in ischemia reperfusion models. In previous studies, after ischemia, reperfusion had been kept limited to 24 h, yet in our study, expressions of these channels were elucidated after its modification to 48 h to establish what kind of changes renal tissues undergo. For the current study, 20 Wistar albino rats were divided into two groups equally. Group I: control group, Group II = I/R group (60 min ischemia + 48 h reperfusion). For the mRNA analysis, right kidneys of I/R group was used as a reference in order to eliminate genetic differences. The left renal artery (I/R generated part) of I/R area was removed from all rats in the second group. Likewise, normal tissues of right renal artery were removed from all rats. Histopathologic scoring of the tissue samples were achieved semi-quantitatively according to normal tissue composition. Consequently, both TRPM6 and TRPM7 expression levels were decreased in all groups according to control groups, yet results were not counted as significant (p > 0.05). Additionally, correlation analysis confirmed these results. Also, I/R performed kidneys had more tissue damage compared to control group. To conclude, our study results suggest that TRPM6/7 expressions may be increased and after 48 h of reperfusion expression levels of these two stored to normal levels. At the same time, damages have occurred in renal tissues after ischemia. These damages were considered to be resulted from the oxidative effects as previously reported.
Collapse
Affiliation(s)
- Recep Dokuyucu
- Department of Physiology, Faculty of Medicine, Mustafa Kemal University , Hatay , Turkey
| | | | | | | | | | | |
Collapse
|
18
|
Chao J, Bledsoe G, Chao L. Tissue kallikrein-kinin therapy in hypertension and organ damage. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:37-57. [PMID: 25130039 DOI: 10.1007/978-3-319-06683-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tissue kallikrein is a serine proteinase that cleaves low molecular weight kininogen to produce kinin peptides, which in turn activate kinin receptors to trigger multiple biological functions. In addition to its kinin-releasing activity, tissue kallikrein directly interacts with the kinin B2 receptor, protease-activated receptor-1, and gamma-epithelial Na channel. The tissue kallikrein-kinin system (KKS) elicits a wide spectrum of biological activities, including reducing hypertension, cardiac and renal damage, restenosis, ischemic stroke, and skin wound injury. Both loss-of-function and gain-of-function studies have shown that the KKS plays an important endogenous role in the protection against health pathologies. Tissue kallikrein/kinin treatment attenuates cardiovascular, renal, and brain injury by inhibiting oxidative stress, apoptosis, inflammation, hypertrophy, and fibrosis and promoting angiogenesis and neurogenesis. Approaches that augment tissue kallikrein-kinin activity might provide an effective strategy for the treatment of hypertension and associated organ damage.
Collapse
|
19
|
Zhao ZG, Niu CY, Qiu JF, Chen XD, Li JC. Effect of mesenteric lymph duct ligation on gene expression profiles of renal tissue in hemorrhagic shock rats with fluid resuscitation. Ren Fail 2013; 36:271-7. [DOI: 10.3109/0886022x.2013.844623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Multiple factors from bradykinin-challenged astrocytes contribute to the neuronal apoptosis: involvement of astroglial ROS, MMP-9, and HO-1/CO system. Mol Neurobiol 2013; 47:1020-33. [PMID: 23307413 DOI: 10.1007/s12035-013-8402-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/03/2013] [Indexed: 12/28/2022]
Abstract
Bradykinin (BK) has been shown to induce the expression of several inflammatory mediators, including reactive oxygen species (ROS) and matrix metalloproteinases (MMPs), in brain astrocytes. These mediators may contribute to neuronal dysfunction and death in various neurological disorders. However, the effects of multiple inflammatory mediators released from BK-challenged astrocytes on neuronal cells remain unclear. Here, we found that multiple factors were released from brain astrocytes (RBA-1) exposed to BK in the conditioned culture media (BK-CM), including ROS, MMP-9, and heme oxygenase-1 (HO-1)/carbon monoxide (CO), leading to neuronal cell (SK-N-SH) death. Exposure of SK-N-SH cells to BK-CM or H2O2 reduced cell viability and induced cell apoptosis which were attenuated by N-acetyl cysteine, indicating a role of ROS in these responses. The effect of BK-CM on cell viability and cell apoptosis was also reversed by immunoprecipitation of BK-CM with anti-MMP-9 antibody (MMP-9-IP-CM) or MMP2/9 inhibitor, suggesting the involvement of MMP-9 in BK-CM-mediated responses. Astroglial HO-1/CO in BK-CM induced cell apoptosis and reduced cell viability which was reversed by hemoglobin. Consistently, the involvement of CO in these cellular responses was revealed by incubation with a CO donor CO-RM2 which was reversed by hemoglobin. The role of HO-1 in BK-CM-induced responses was confirmed by overexpression of HO-1 in SK-N-SH infected with Adv-HO-1. BK-CM-induced cell apoptosis was due to the activation of caspase-3 and cleavage of PARP. Together, we demonstrate that BK-induced several neurotoxic factors, including ROS, MMP-9, and CO released from astrocytes, may induce neuronal death through a caspase-3-dependent apoptotic pathway.
Collapse
|
21
|
Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Chen JC, Yang CM. NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes. Cell Commun Signal 2012; 10:35. [PMID: 23176293 PMCID: PMC3518199 DOI: 10.1186/1478-811x-10-35] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/14/2012] [Indexed: 12/16/2022] Open
Abstract
Background Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Moreover, bradykinin (BK) induces the expression of several inflammatory proteins in brain astrocytes. Recent studies have suggested that increased oxidative stress is implicated in the brain inflammation and injury. However, whether BK induced MMP-9 expression mediated through oxidative stress remains virtually unknown. Herein we investigated the role of redox signals in BK-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells). Results In the study, we first demonstrated that reactive oxygen species (ROS) plays a crucial role in BK-induced MMP-9 expression in cultured brain astrocytes (in vitro) and animal brain tissue (in vivo) models. Next, BK-induced MMP-9 expression is mediated through a Ca2+-mediated PKC-α linking to p47phox/NADPH oxidase 2 (Nox2)/ROS signaling pathway. Nox2-dependent ROS generation led to activation and up-regulation of the downstream transcriptional factor AP-1 (i.e. c-Fos and c-Jun), which bound to MMP-9 promoter region, and thereby turned on transcription of MMP-9 gene. Functionally, BK-induced MMP-9 expression enhanced astrocytic migration. Conclusions These results demonstrated that in RBA-1 cells, activation of AP-1 (c-Fos/c-Jun) by the PKC-α-mediated Nox2/ROS signals is essential for up-regulation of MMP-9 and cell migration enhanced by BK.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Meng Z, Wang X, Yang Z, Xiang F. Expression of Transient Receptor Potential Melastatin 7 Up-regulated in the Early Stage of Renal Ischemia-Reperfusion. Transplant Proc 2012; 44:1206-10. [DOI: 10.1016/j.transproceed.2011.11.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 11/23/2011] [Indexed: 01/06/2023]
|
23
|
Billings FT, Ball SK, Roberts LJ, Pretorius M. Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic Biol Med 2011; 50:1480-7. [PMID: 21334433 PMCID: PMC3090463 DOI: 10.1016/j.freeradbiomed.2011.02.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/27/2011] [Accepted: 02/10/2011] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) frequently afflicts patients undergoing cardiopulmonary bypass and independently predicts death. Both hemoglobinemia and myoglobinemia are independent predictors of postoperative AKI. Release of free hemeproteins into the circulation is known to cause oxidative injury to the kidneys. This study tested the hypothesis that postoperative AKI is associated with both enhanced intraoperative hemeprotein release and increased lipid peroxidation assessed by measuring F₂-isoprostanes and isofurans. In a case-control study nested within an ongoing randomized trial of perioperative statin treatment and AKI, we compared levels of F₂-isoprostanes and isofurans with plasma levels of free hemoglobin and myoglobin in 10 cardiac surgery AKI patients to those of 10 risk-matched controls. Peak plasma free hemoglobin concentrations were significantly higher in AKI subjects (289.0 ± 37.8 versus 104.4 ± 36.5mg/dl, P = 0.01), whereas plasma myoglobin concentrations were similar between groups. The change in plasma F₂-isoprostane and isofuran levels (repeated-measures ANOVA, P = 0.02 and P = 0.001, respectively) as well as the change in urine isofuran levels (P = 0.04) was significantly greater in AKI subjects. In addition, change in peak plasma isofuran levels correlated not only with peak free plasma hemoglobin concentrations (r² = 0.39, P = 0.001) but also with peak change in serum creatinine (r² = 0.20, P = 0.01). Postoperative AKI is associated with both enhanced intraoperative hemeprotein release and enhanced lipid peroxidation. The correlations among hemoglobinemia, lipid peroxidation, and AKI indicate a potential role for hemeprotein-induced oxidative damage in the pathogenesis of postoperative AKI.
Collapse
Affiliation(s)
- Frederic T Billings
- Division of Clinical Pharmacology, Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
24
|
Lahm T. Bradykinin and the heart: left, right, or both? J Surg Res 2011; 167:216-9. [PMID: 20691989 DOI: 10.1016/j.jss.2010.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/07/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Affiliation(s)
- Tim Lahm
- Department of Medicine, Richard L. Roudebush VA Medical Center and Indiana University School of Medicine, 1481 W. 10th St., VA 111P-IU, Indianapolis, IN 46202, USA.
| |
Collapse
|
25
|
Tissue kallikrein protects cortical neurons against hypoxia/reoxygenation injury via the ERK1/2 pathway. Biochem Biophys Res Commun 2011; 407:283-7. [DOI: 10.1016/j.bbrc.2011.02.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 11/22/2022]
|
26
|
Woodfin A, Hu DE, Sarker M, Kurokawa T, Fraser P. Acute NADPH oxidase activation potentiates cerebrovascular permeability response to bradykinin in ischemia-reperfusion. Free Radic Biol Med 2011; 50:518-24. [PMID: 21167936 PMCID: PMC3038265 DOI: 10.1016/j.freeradbiomed.2010.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/12/2010] [Accepted: 12/08/2010] [Indexed: 12/02/2022]
Abstract
Free radical generation is a key event in cerebral reperfusion injury. Bradykinin (Bk) and interleukin-1β (IL-1β) have both been implicated in edema formation after stroke, although acute Bk application itself results in only a modest permeability increase. We have investigated the molecular mechanism by assessing the permeability of single pial venules in a stroke model. Increased permeability on reperfusion was dependent on the duration of ischemia and was prevented by applying the B(2) receptor antagonist HOE 140. Postreperfusion permeability increases were mimicked by applying Bk (5μM) for 10 min and blocked by coapplying the IL-1 receptor antagonist with Bk. Furthermore, 10 min pretreatment with IL-1β resulted in a 3 orders of magnitude leftward shift of the acutely applied Bk concentration-response curve. The left shift was abolished by scavenging free radicals with superoxide dismutase and catalase. Apocynin coapplied with IL-1β completely blocked the potentiation, implying that NADPH oxidase assembly is the immediate target of IL-1β. In conclusion, this is first demonstration that bradykinin, released during cerebral ischemia, leads to IL-1β release, which in turn activates NADPH oxidase leading to blood-brain barrier breakdown.
Collapse
|
27
|
Hsieh HL, Wang HH, Wu CY, Yang CM. Reactive Oxygen Species-Dependent c-Fos/Activator Protein 1 Induction Upregulates Heme Oxygenase-1 Expression by Bradykinin in Brain Astrocytes. Antioxid Redox Signal 2010; 13:1829-44. [PMID: 20486760 DOI: 10.1089/ars.2009.2957] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heme oxygenase-1 (HO-1) plays a crucial role in tissue pathological changes such as brain injuries. Our previous studies have demonstrated that bradykinin (BK) induces the expression of several inflammatory proteins, including matrix metalloproteinase-9 and COX-2, via mitogen-activated protein kinases and nuclear factor-κB (NF-κB) in rat brain astrocytes (RBA-1). However, the molecular mechanisms underlying BK-induced HO-1 expression in RBA-1 cells remain poorly defined. Here we demonstrated that BK induced HO-1 expression and enzymatic activity via a B(2) BK receptor-activated reactive oxygen species (ROS)-dependent signaling pathway. NADPH oxidase (Nox)-dependent ROS generation led to activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun-N-terminal kinase (JNK) and then activated the downstream molecules NF-κB and c-Jun, respectively. The c-Fos, an activator protein 1 (AP-1) subunit, was upregulated by activation of NF-κB and c-Jun, which bound to HO-1 promoter and thereby turned on transcription of HO-1 gene. The rat HO-1 promoter containing a putative AP-1 cis-binding site was identified as a crucial domain linking to BK action. Taken together, these results suggested that in RBA-1 cells, activation of ERK/NF-κB and JNK/c-Jun cascades by a Nox/ROS-dependent event enhancing c-Fos/AP-1 activity is essential for HO-1 upregulation and activation induced by BK. Moreover, ROS-dependent NF-E2-related factor 2 activation also contributes to HO-1 induction by BK in astrocytes.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung Institute of Technology , Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
28
|
Vink R, van den Heuvel C. Substance P antagonists as a therapeutic approach to improving outcome following traumatic brain injury. Neurotherapeutics 2010; 7:74-80. [PMID: 20129499 PMCID: PMC5084114 DOI: 10.1016/j.nurt.2009.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/29/2009] [Indexed: 11/17/2022] Open
Abstract
Although a number of secondary injury factors are known to contribute to the development of morphological injury and functional deficits following traumatic brain injury, accumulating evidence has suggested that neuropeptides, and in particular substance P, may play a critical role. Substance P is released early following acute injury to the CNS as part of a neurogenic inflammatory response. In so doing, it facilitates an increase in the permeability of the blood-brain barrier and the development of vasogenic edema. At the cellular level, substance P has been shown to directly result in neuronal cell death; functionally, substance P has been implicated in learning and memory, mood and anxiety, stress mechanisms, emotion-processing, migraine, emesis, pain, and seizures, all of which may be adversely affected after brain injury. Inhibition of post-traumatic substance P activity, either by preventing release or by antagonism of the neurokinin-1 receptor, has consistently resulted in a profound decrease in development of edema and marked improvements in functional outcome. This review summarizes the current evidence supporting a role for substance P in acute brain injury.
Collapse
Affiliation(s)
- Robert Vink
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | | |
Collapse
|
29
|
Marney AM, Ma J, Luther JM, Ikizler TA, Brown NJ. Endogenous bradykinin contributes to increased plasminogen activator inhibitor 1 antigen following hemodialysis. J Am Soc Nephrol 2009; 20:2246-52. [PMID: 19628666 DOI: 10.1681/asn.2009050505] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and inflammation predict cardiovascular events in chronic hemodialysis patients. Hemodialysis activates the kallikrein-kinin system, increasing bradykinin. Bradykinin promotes inflammation but also stimulates endothelial release of tissue-plasminogen activator and inhibits platelet aggregation. Understanding the detrimental and beneficial effects of endogenous bradykinin during hemodialysis has implications for the treatment of cardiovascular disease in the hemodialysis population. To test the hypothesis that bradykinin contributes to the inflammatory and fibrinolytic responses to dialysis, we conducted a double-blind, randomized, placebo-controlled crossover study comparing the effect of the bradykinin B(2) receptor blocker HOE-140 with vehicle on markers of oxidative stress, inflammation, fibrinolysis, and coagulation in nine hemodialysis patients without coronary artery disease. Bradykinin receptor antagonism did not affect the mean arterial pressure or heart rate response to dialysis. Monocyte chemoattractant protein 1 (MCP-1) peaked postdialysis; HOE-140 blunted the increase in MCP-1 (5.9 +/- 5.9 versus 25.6 +/- 20.1 pg/ml, P = 0.01). HOE-140 also abolished the increase in plasminogen activator inhibitor 1 (PAI-1) antigen observed at the end of dialysis. In contrast, HOE-140 significantly accentuated the effect of dialysis on F(2)-isoprostanes and P-selectin. Taken together, these results suggest that endogenous bradykinin contributes to increases in MCP-1 and PAI-1 antigen after hemodialysis via its B(2) receptor. Factors that increase the production of bradykinin or decrease its degradation may enhance the inflammatory response to hemodialysis.
Collapse
Affiliation(s)
- Annis M Marney
- Division of Diabetes, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6602, USA
| | | | | | | | | |
Collapse
|
30
|
Kakoki M, Smithies O. The kallikrein-kinin system in health and in diseases of the kidney. Kidney Int 2009; 75:1019-30. [PMID: 19190676 DOI: 10.1038/ki.2008.647] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since kallikrein was discovered as a vasodilatory substance in human urine, the kallikrein-kinin system (KKS) has been considered to play a physiological role in controlling blood pressure. Gene targeting experiments in mice in which the KKS has been inactivated to varying degrees have, however, questioned this role, because basal blood pressures are not altered. Rather, these experiments have shown that the KKS has a different and important role in preventing changes associated with normal senescence in mice, and in reducing the nephropathy and accelerated senescence-associated phenotypes induced in mice by diabetes. Other experiments have shown that the KKS suppresses mitochondrial respiration, partly by nitric oxide and prostaglandins, and that this suppression may be a key to understanding how the KKS influences senescence-related diseases. Here we review the logical progression and experimental data leading to these conclusions, and discuss their relevance to human conditions.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| | | |
Collapse
|
31
|
Hagiwara M, Shen B, Chao L, Chao J. Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum Gene Ther 2008. [PMID: 18554097 DOI: 10.1089/hgt.2008.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) migrate to sites of tissue injury and serve as an ideal vehicle for cellular gene transfer. As tissue kallikrein has pleiotropic effects in protection against oxidative organ damage, we investigated the potential of kallikrein-modified MSCs (TK-MSCs) in healing injured kidney after acute ischemia/reperfusion (I/R). TK-MSCs secreted recombinant human kallikrein with elevated vascular endothelial growth factor levels in culture medium, and were more resistant to oxidative stress-induced apoptosis than control MSCs. Expression of human kallikrein was identified in rat glomeruli after I/R injury and systemic TK-MSC injection. Engrafted TK-MSCs exhibited advanced protection against renal injury by reducing blood urea nitrogen, serum creatinine levels, and tubular injury. Six hours after I/R, TK-MSC implantation significantly reduced renal cell apoptosis in association with decreased inducible nitric oxide synthase expression and nitric oxide levels. Forty-eight hours after I/R, TK-MSCs inhibited interstitial neutrophil and monocyte/macrophage infiltration and decreased myeloperoxidase activity, superoxide formation, p38 mitogen-activated protein kinase phosphorylation, and expression of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and intercellular adhesion molecule-1. In addition, tissue kallikrein and kinin significantly inhibited H2O2-induced apoptosis and increased Akt phosphorylation and cell viability in cultured proximal tubular cells. These results indicate that implantation of kallikrein-modified MSCs in the kidney provides advanced benefits in protection against ischemia-induced kidney injury by suppression of apoptosis and inflammation.
Collapse
Affiliation(s)
- Makoto Hagiwara
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
32
|
Hagiwara M, Shen B, Chao L, Chao J. Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum Gene Ther 2008; 19:807-19. [PMID: 18554097 DOI: 10.1089/hum.2008.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) migrate to sites of tissue injury and serve as an ideal vehicle for cellular gene transfer. As tissue kallikrein has pleiotropic effects in protection against oxidative organ damage, we investigated the potential of kallikrein-modified MSCs (TK-MSCs) in healing injured kidney after acute ischemia/reperfusion (I/R). TK-MSCs secreted recombinant human kallikrein with elevated vascular endothelial growth factor levels in culture medium, and were more resistant to oxidative stress-induced apoptosis than control MSCs. Expression of human kallikrein was identified in rat glomeruli after I/R injury and systemic TK-MSC injection. Engrafted TK-MSCs exhibited advanced protection against renal injury by reducing blood urea nitrogen, serum creatinine levels, and tubular injury. Six hours after I/R, TK-MSC implantation significantly reduced renal cell apoptosis in association with decreased inducible nitric oxide synthase expression and nitric oxide levels. Forty-eight hours after I/R, TK-MSCs inhibited interstitial neutrophil and monocyte/macrophage infiltration and decreased myeloperoxidase activity, superoxide formation, p38 mitogen-activated protein kinase phosphorylation, and expression of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and intercellular adhesion molecule-1. In addition, tissue kallikrein and kinin significantly inhibited H2O2-induced apoptosis and increased Akt phosphorylation and cell viability in cultured proximal tubular cells. These results indicate that implantation of kallikrein-modified MSCs in the kidney provides advanced benefits in protection against ischemia-induced kidney injury by suppression of apoptosis and inflammation.
Collapse
Affiliation(s)
- Makoto Hagiwara
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
33
|
Wang PHM, Campanholle G, Cenedeze MA, Feitoza CQ, Gonçalves GM, Landgraf RG, Jancar S, Pesquero JB, Pacheco-Silva A, Câmara NOS. Bradykinin [corrected] B1 receptor antagonism is beneficial in renal ischemia-reperfusion injury. PLoS One 2008; 3:e3050. [PMID: 18725957 PMCID: PMC2516176 DOI: 10.1371/journal.pone.0003050] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 07/31/2008] [Indexed: 02/07/2023] Open
Abstract
Previously we have demonstrated that bradykinin B1 receptor deficient mice (B1KO) were protected against renal ischemia and reperfusion injury (IRI). Here, we aimed to analyze the effect of B1 antagonism on renal IRI and to study whether B1R knockout or antagonism could modulate the renal expression of pro and anti-inflammatory molecules. To this end, mice were subjected to 45 minutes ischemia and reperfused at 4, 24, 48 and 120 hours. Wild-type mice were treated intra-peritoneally with antagonists of either B1 (R-954, 200 µg/kg) or B2 receptor (HOE140, 200 µg/kg) 30 minutes prior to ischemia. Blood samples were collected to ascertain serum creatinine level, and kidneys were harvested for gene transcript analyses by real-time PCR. Herein, B1R antagonism (R-954) was able to decrease serum creatinine levels, whereas B2R antagonism had no effect. The protection seen under B1R deletion or antagonism was associated with an increased expression of GATA-3, IL-4 and IL-10 and a decreased T-bet and IL-1β transcription. Moreover, treatment with R-954 resulted in lower MCP-1, and higher HO-1 expression. Our results demonstrated that bradykinin B1R antagonism is beneficial in renal IRI.
Collapse
Affiliation(s)
- Pamella H. M. Wang
- Laboratório de Imunologia Clínica e Experimental, Division of Nephrology, Universidade Federal de São Paulo, São Paulo, Brazil
- * E-mail:
| | - Gabriela Campanholle
- Laboratório de Imunobiologia de Transplantes, Department of Immunology, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos A. Cenedeze
- Laboratório de Imunologia Clínica e Experimental, Division of Nephrology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carla Q. Feitoza
- Laboratório de Imunologia Clínica e Experimental, Division of Nephrology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Giselle M. Gonçalves
- Laboratório de Imunologia Clínica e Experimental, Division of Nephrology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richardt G. Landgraf
- Laboratório de Imunofarmacologia, Department of Immunology, Universidade de São Paulo, São Paulo, Brazil
| | - Sonia Jancar
- Laboratório de Imunofarmacologia, Department of Immunology, Universidade de São Paulo, São Paulo, Brazil
| | - João B. Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alvaro Pacheco-Silva
- Laboratório de Imunologia Clínica e Experimental, Division of Nephrology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Niels O. S. Câmara
- Laboratório de Imunologia Clínica e Experimental, Division of Nephrology, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratório de Imunobiologia de Transplantes, Department of Immunology, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Abstract
Diabetic retinopathy and diabetic nephropathy are common microvascular complications of diabetes. The kallikrein-kinin system (KKS) has been implicated in the development of both conditions, and, in particular, bradykinin and its receptors have been shown to exert angiogenic and proinflammatory actions. Several of the key processes that underlie the development of diabetic retinopathy, such as increased vascular permeability, edema, neovascularization, and inflammatory changes, have been associated with the KKS, and recent work has shown that components of the KKS, including plasma kallikrein, factor XIIa, and high-molecular-weight kininogen, are present in the vitreous of people with diabetic retinopathy. The role of the KKS in the development of diabetic nephropathy is controversial, with both adverse and protective effects of bradykinin and its receptors reported. The review examines the role of the KKS in pathways central to the development of diabetic retinopathy and compares this with reported actions of this system in diabetic nephropathy. The possibility of therapeutic intervention targeting bradykinin and its receptors as treatment for diabetic microvascular conditions is considered.
Collapse
|
35
|
Increased severity of renal ischemia-reperfusion injury with venous clamping compared to arterial clamping in a rat model. Surgery 2007; 143:243-51. [PMID: 18242341 DOI: 10.1016/j.surg.2007.07.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/26/2007] [Accepted: 07/29/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND Arterial inflow occlusion is a well-known mechanism of renal injury during major vascular surgery. In contrast, renal injury from venous outflow obstruction is poorly understood. The goal of this study was to examine the injury pattern of renal venous outflow obstruction, compare this with the traditional model of arterial occlusion, and examine possible mechanisms. METHODS Male Fisher rats were used for the renal warm ischemia model. Twenty-five minutes of renal ischemia was induced by selectively occluding either the renal artery or vein. After 24 h of reperfusion, whole blood and kidney tissue were collected for further analysis. RESULTS Serum creatinine (SCr) concentrations taken 24 h after reperfusion were significantly greater in the venous occlusion group (V) when compared to the arterial group (A). While histology did not demonstrate significant differences in extent of necrosis between both groups, a stronger inflammatory response resulted from venous occlusion. Specifically, significantly greater MCP-1 mRNA and significantly greater MCP-1, TNF-alpha, and HO-1 protein levels were found in the venous group, while no differences in MIP-2, ICAM-1, and VCAM-1 mRNA expression existed between A and V. Further analysis demonstrated presence of increased cleaved caspase-3 protein in the artery group than in the venous group. CONCLUSIONS Venous renal outflow obstruction results in more severe functional renal injury when compared to arterial inflow occlusion. Macrophage activation and neutrophilic infiltration appear to be exaggerated during venous occlusion.
Collapse
|
36
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|
37
|
Chiang WC, Chen YM, Lin SL, Wu KD, Tsai TJ. Bradykinin enhances reactive oxygen species generation, mitochondrial injury, and cell death induced by ATP depletion--a role of the phospholipase C-Ca(2+) pathway. Free Radic Biol Med 2007; 43:702-10. [PMID: 17664134 DOI: 10.1016/j.freeradbiomed.2007.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 04/26/2007] [Accepted: 04/30/2007] [Indexed: 11/28/2022]
Abstract
This study aimed to study the effect of bradykinin on reactive oxygen species (ROS) generation, mitochondrial injury, and cell death induced by ATP depletion in cell culture. Renal tubular cells were subjected to ATP depletion. Cell death was evaluated with LDH release, sub-G0/G1 fraction, Hoechst staining, and annexin V binding assay. ROS generation, mitochondrial membrane potential (DeltaPsi(m)), and intramitochondrial calcium were evaluated with flow cytometry. Translocation of cytochrome c and activation of apoptotic protein were analyzed with cell fractionating and Western blotting. Intracellular calcium was measured with a spectrofluorometer. Bradykinin enhanced cellular LDH release, apoptosis, generation of superoxide, and hydrogen peroxide induced by ATP depletion. Bradykinin also enhanced the loss of DeltaPsi(m), translocation of cytochrome c into cytosol, and activation of apoptotic protein. The intracellular/mitochondrial calcium was higher in bradykinin-treated cells. All these effects were reversed by coadministration with bradykinin B2 receptor (B2R) antagonist. Besides, blocking the phospholipase C (PLC) could reverse the synergistic effect of bradykinin with ATP depletion on ROS generation, mitochondrial damage, accumulation of intracellular/mitochondrial calcium, and apoptosis. Activation of B2R aggravates ROS generation, mitochondrial damage, and cell death induced by ATP depletion. These effects may act through the PLC-Ca(2+) signaling pathway.
Collapse
Affiliation(s)
- Wen-Chih Chiang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Jhongshan S. Rd., Taipei 10016, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Kakoki M, McGarrah RW, Kim HS, Smithies O. Bradykinin B1 and B2 receptors both have protective roles in renal ischemia/reperfusion injury. Proc Natl Acad Sci U S A 2007; 104:7576-81. [PMID: 17452647 PMCID: PMC1855073 DOI: 10.1073/pnas.0701617104] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To explore the role of the kallikrein-kinin system in relation to ischemia/reperfusion injury in the kidney, we generated mice lacking both the bradykinin B1 and B2 receptor genes (B1RB2R-null, Bdkrb1-/-/Bdkrb2-/-) by deleting the genomic region encoding the two receptors. In 4-month-old mice, blood pressures were not significantly different among B1RB2R-null, B2R-null (Bdkrb2-/-), and WT mice. After 30 min of bilateral renal artery occlusion and 24 h of reperfusion, mortality rates, renal histological and functional changes, 8-hydroxy-2'-deoxyguanosine levels in total DNA, mtDNA deletions, and the number of TUNEL-positive cells in the kidneys increased progressively in the following order (from lowest to highest): WT, B2R-null, and B1RB2R-null mice. Increases in mRNA levels of TGF-beta1, connective tissue growth factor, and endothelin-1 after ischemia/reperfusion injury were also exaggerated in the same order (from lowest to highest): WT, B2R-null, and B1RB2R-null. Thus, both the B1 and B2 bradykinin receptors play an important role in reducing DNA damage, apoptosis, morphological and functional kidney changes, and mortality during renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
- *To whom correspondence should be addressed. E-mail: or
| | - Robert W. McGarrah
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
| | - Hyung-Suk Kim
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
| | - Oliver Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
- *To whom correspondence should be addressed. E-mail: or
| |
Collapse
|