1
|
Koyano K, Arioka M, Nakao Y, Morimoto A, Sugino M, Morita H, Nakamura S, Kondo S, Konishi Y, Yasuda S, Kusaka T. Improvement of point of care testing device for accurate whole blood glucose measurement in early neonates. Ann Clin Biochem 2024; 61:386-390. [PMID: 38591468 DOI: 10.1177/00045632241249034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
BACKGROUND It is important that blood glucose concentrations be accurately and conveniently measured in infants. However, especially in the early neonatal period, point-of-care testing devices used for adults may not accurately measure blood glucose concentrations in neonates. METHODS In Study 1, the accuracy of neonatal whole-blood glucose measurements was evaluated for the existing glucose analyser Glutest Mint® (hereinafter MINT1; Sanwa Kagaku Kenkyusho, Nagoya, Japan) by comparing the data with reference blood glucose concentrations. In Study 2, we used MINT2, which was modified based on the findings from Study 1, to measure whole-blood glucose concentrations in newborns, and the accuracy of the measurements was compared with that of MINT1. RESULTS Blood glucose concentrations were measured in 100 infants each in Study 1 and 2. In Study 1, the whole-blood glucose concentrations measured using MINT1 were found to be significantly lower than the reference blood glucose concentrations in early neonates. The results of Study 1 suggested that characteristics of erythrocyte membranes in early neonates affected the measurements. Therefore, we conducted Study 2 using MINT2, which was modified to be less susceptible. MINT2 was found to accurately measure whole-blood glucose concentrations in the early neonatal period. CONCLUSION The study showed that the point-of-care testing device could be improved to allow for accurate whole-blood glucose measurements in the early neonatal period.
Collapse
Affiliation(s)
- Kosuke Koyano
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Maternal and Perinatal Center, Kagawa University Hospital, Kagawa University, Kagawa, Japan
| | - Makoto Arioka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Maternal and Perinatal Center, Kagawa University Hospital, Kagawa University, Kagawa, Japan
| | - Yasuhiro Nakao
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Aya Morimoto
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masashiro Sugino
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Division of Neonatology, NHO Shikoku Medical Center for Children and Adults, Zentsuji City, Japan
| | - Hirosuke Morita
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Maternal and Perinatal Center, Kagawa University Hospital, Kagawa University, Kagawa, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Sonoko Kondo
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yukihiko Konishi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Saneyuki Yasuda
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
2
|
Leem J, Kim S, Kim JS, Oh JS. ROS-independent cytotoxicity of 9,10-phenanthrenequinone inhibits cell cycle progression and spindle assembly during meiotic maturation in mouse oocytes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129248. [PMID: 35739767 DOI: 10.1016/j.jhazmat.2022.129248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Diesel exhaust particles (DEPs) are major components of ambient particulate matter and are associated with various adverse health effects. Typically, DEPs contain a vast number of organic compounds, among which 9,10-phenanthrenequinone (9,10-PQ), the quinone derivative of the polycyclic aromatic hydrocarbon phenanthrene, is one of the most abundant and toxic. 9,10-PQ can produce excessive reactive oxygen species (ROS) via redox cycling and exhibit cytotoxicity in various cells. However, the underlying mechanisms involved in cytotoxicity of 9,10-PQ remain elusive. In this study, we investigated the effects of exposure to 9,10-PQ using mouse oocytes as a model system. We found that 9,10-PQ compromised meiotic maturation by impairing acentriolar microtubule organizing center (MTOC) assembly and subsequent spindle formation during meiotic maturation. Moreover, 9,10-PQ exposure prevented cell cycle progression by inhibiting Cdk1 activation via disturbance of cyclin B1 accumulation. Importantly, meiotic defects induced by 9,10-PQ exposure were not rescued by decreasing ROS levels, revealing that 9,10-PQ has ROS-independent activity that regulates cell cycle progression and spindle assembly. Therefore, our findings reveal that 9,10-PQ has novel activity that regulates cell-cycle progression and spindle formation in an ROS-independent manner during meiotic maturation in mouse oocytes.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Seul Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
3
|
Yang G, Wang J, Zhang H, Jia H, Zhang Y, Gao F. New insight into quinones triggered ferrate in-situ synthesized polynuclear Fe-hydroxyl complex for enhancing interfacial adsorption in highly efficient removal of natural organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144844. [PMID: 33736414 DOI: 10.1016/j.scitotenv.2020.144844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
In this study, the effects of quinone on the formation of in-situ synthesized polynuclear Fe-hydroxide (PnFe-H) from ferrate activation and enhanced degradation of organics were investigated by in-situ UV linear differential absorbance spectra for the first time. Results indicated benzoquinone (BQ) efficiently activated ferrate for the flocculation of humic acid (HA) that the flocculation reactions rate constants in Fe(VI)-0.1 mM BQ was 3.3 times as much as the blank. Interestingly, quenching studies suggested PnFe-H derived from the high-valence iron species which were the active components by BQ activation, was proved the vital factor for removing of HA. According to the analysis of interaction energy, BQ promoted FeOH2+ converted to Fe(OH)2+ and Fe2(OH)24+ which weakened the polar property and increased hydrophobicity of compounds, further benefited for adsorption with lower Lifshitz-van del Waals (LW) and Lewis acid-base (AB) interfacial energy between PnFe-H-contaminant compounds. However, excessive BQ reduced freshly particulate Fe(III) to Fe(II), weakened the PnFe-H flocculation performance which retarded the transformation of iron species. In addition, the effects of HA concentration were also studied due to the existent of functional quinone-like moieties. The contribution of PnFe-H flocculation removal on the total removal (Reflocculation/Retotal) improved from 2.6% to 17.09% with Fe(VI)/HA from 0.1 to 1.12. Fe(VI) sufficient oxidized electron-rich moieties and decreased the aromaticity due to π bond was broken, further cooperated with PnFe-H captured small fragment particles by sweep flocculation that Fe(VI) self-accelerating decay produced more Fe(III). The research elucidated a new insight into of ferrate activation by quinone which could expand our knowledge of activation pathway, further regulate the relationship between oxidation and flocculation for enhancing organic and colloidal particle removal in practical application.
Collapse
Affiliation(s)
- Guang Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Hongwei Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Fei Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| |
Collapse
|
4
|
Luo K, Carmella SG, Zhao Y, Tang MK, Hecht SS. Identification and quantification of phenanthrene ortho-quinones in human urine and their association with lipid peroxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115342. [PMID: 32805605 PMCID: PMC8892176 DOI: 10.1016/j.envpol.2020.115342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/11/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Although human exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with in vivo oxidative damage, and hydroxyPAH metabolites have been used as biomarkers to assess PAH-induced oxidative stress, few studies have looked at the likely causative compounds for oxidative stress in humans - PAH quinones. We developed a method using pre-column derivatization - liquid chromatography-heated electrospray ionization-tandem mass spectrometry (LC-HESI-MS/MS) to analyze ortho-phenanthrene quinones (PheQs) in human urine. 1,2-PheQ and 3,4-PheQ were identified and quantified in 3 mL of human urine; their total concentrations were higher in cigarette smokers (0.79 ± 0.98 nmol/6h urine) than in nonsmokers (0.20 ± 0.98 nmol/6h urine) (p < 0.01). The total of 1,2-PheQ and 3,4-PheQ were more strongly correlated with urinary (Z)-7-[1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid (8-iso-PGF2α), a biomarker of lipid peroxidation (R2 = 0.53, p < 0.001), than the other phenanthrene metabolites including phenanthrene tetraol (PheT), phenanthrene-1,2-dihydrodiol (1,2-PheD), and total phenanthrene phenols (OHPhe), consistent with the concept that PheQs and likely other PAH quinones play a causal role in the generation of reactive oxygen species (ROS) in humans. Thus, PheQs may be suitable as biomarkers to assess human exposure to oxygenated PAH and the subsequent oxidative damage. This study provides unique support, by analysis of human urinary metabolites, for the PAH quinone mediated oxidative damage hypothesis of PAH carcinogenesis.
Collapse
Affiliation(s)
- Kai Luo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Mei Kuen Tang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Luong NC, Abiko Y, Shibata T, Uchida K, Warabi E, Suzuki M, Noguchi T, Matsuzawa A, Kumagai Y. Redox cycling of 9,10-phenanthrenequinone activates epidermal growth factor receptor signaling through S-oxidation of protein tyrosine phosphatase 1B. J Toxicol Sci 2020; 45:349-363. [PMID: 32493877 DOI: 10.2131/jts.45.349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
9,10-Phenanthrenequinone (9,10-PQ) is a polycyclic aromatic hydrocarbon quinone contaminated in diesel exhaust particles and particulate matter 2.5. It is an efficient electron acceptor that induces redox cycling with electron donors, resulting in excessive reactive oxygen species and oxidized protein production in cells. The current study examined whether 9,10-PQ could activate epidermal growth factor receptor (EGFR) signaling in A431 cells through S-oxidation of its negative regulators such as protein tyrosine phosphatase (PTP) 1B. 9,10-PQ oxidized recombinant human PTP1B at Cys215 and inhibited its catalytic activity, an effect that was blocked by catalase (CAT), whereas cis-9,10-dihydroxy-9,10-dihydrophenanthrene (DDP), which lacks redox cycling activity, had no effect on PTP1B activity. Exposure of A431 cells to 9,10-PQ, but not DDP, activated signaling through EGFR and its downstream extracellular signal-regulated kinase 1/2 (ERK1/2), coupled with a decrease of cellular PTP activity. Immunoprecipitation and UPLC-MSE revealed that PTP1B easily undergoes oxidation during exposure of A431 cells to 9,10-PQ. Pretreatment with polyethylene glycol conjugated with CAT (PEG-CAT) abolished 9,10-PQ-generated H2O2 production and significantly blocked the activation of EGFR-ERK1/2 signaling by 9,10-PQ, indicating the involvement of H2O2 in the activation because scavenging agents for hydroxyl radicals had no effect on the redox signal activation. These results suggest that such an air pollutant producing H2O2, activates EGFR-ERK1/2 signaling, presumably through the S-oxidation of PTPs such as PTP1B, and activation of the signal cascade may contribute, at least in part, to cellular responses in A431 cells.
Collapse
Affiliation(s)
- Nho Cong Luong
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| | - Yumi Abiko
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| | | | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University.,Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Eiji Warabi
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| | - Midori Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | | | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| |
Collapse
|
6
|
Ge D, Dong Y, Zhang W, Yuan H, Zhu N. A novel Fe 2+/persulfate/tannic acid process with strengthened efficacy on enhancing waste activated sludge dewaterability and mechanism insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139146. [PMID: 32446059 DOI: 10.1016/j.scitotenv.2020.139146] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 05/15/2023]
Abstract
As an essential section before final sludge disposal, sludge dewatering has currently been one of the focus issues. In this study, an innovative Fe2+/persulfate/tannic acid (TA) process was verified to further strengthen systemic efficacy on enhancing sludge dewaterability, compared with the conventional Fe2+/persulfate process. With the efficient TA/Fe2+ (molar ratio) of 0.25 added in Fe2+ (0.3 mmol/gTS (total solid))/persulfate (0.6 mmol/gTS) process, sludge dewaterability was enhanced remarkably. Capillary suction time, specific resistance to filtration, and water content of dewatered sludge cake were further reduced by 61.5%, 35.3%, and 6.4% than these in Fe2+/persulfate. Sludge supernatant viscosity was further reduced by 86.7% due to the more removal of extracellular polymeric substances (EPS). The secondary structure of EPS protein changed apparently and fluorescent components of EPS decreased distinctly. Sludge functional group contents were observed to be lower. TA effectually increased sludge particle size and heightened sludge flocculability, rendering the large and compact aggregations. Moreover, TA accelerated the recovery of Fe2+, facilitating persulfate activation to generate more SO4·- and ·OH for EPS disruption and cell lysis in the conditioning system. These findings provided a novel approach based on the Fe2+/persulfate process in sludge treatment for desirable dewaterability.
Collapse
Affiliation(s)
- Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanting Dong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenrui Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mass concentration of atmospheric particulate matter (PM) has been systematically used in epidemiological studies as an indicator of exposure to air pollutants, connecting PM concentrations with a wide variety of human health effects. However, these effects can be hardly explained by using one single parameter, especially because PM is formed by a complex mixture of chemicals. Current research has shown that many of these adverse health effects can be derived from the oxidative stress caused by the deposition of PM in the lungs. The oxidative potential (OP) of the PM, related to the presence of transition metals and organic compounds that can induce the production of reactive oxygen and nitrogen species (ROS/RNS), could be a parameter to evaluate these effects. Therefore, estimating the OP of atmospheric PM would allow us to evaluate and integrate the toxic potential of PM into a unique parameter, which is related to emission sources, size distribution and/or chemical composition. However, the association between PM and particle-induced toxicity is still largely unknown. In this commentary article, we analyze how this new paradigm could help to deal with some unanswered questions related to the impact of atmospheric PM over human health.
Collapse
|
8
|
Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol 2020; 34:101475. [PMID: 32336668 PMCID: PMC7327986 DOI: 10.1016/j.redox.2020.101475] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Living organisms are surrounded with heavy metals such as methylmercury, manganese, cobalt, cadmium, arsenic, as well as pesticides such as deltamethrin and paraquat, or atmospheric pollutants such as quinone. Extensive studies have demonstrated a strong link between environmental pollutants and human health. Redox toxicity is proposed as one of the main mechanisms of chemical-induced pathology in humans. Acting as both a sensor of oxidative stress and a positive regulator of antioxidants, the nuclear factor erythroid 2-related factor 2 (NRF2) has attracted recent attention. However, the role NRF2 plays in environmental pollutant-induced toxicity has not been systematically addressed. Here, we characterize NRF2 function in response to various pollutants, such as metals, pesticides and atmospheric quinones. NRF2 related signaling pathways and epigenetic regulations are also reviewed.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States
| | - Yumi Abiko
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| |
Collapse
|
9
|
Chemical and Biological Characterization of Particulate Matter (PM 2.5) and Volatile Organic Compounds Collected at Different Sites in the Los Angeles Basin. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Most studies on air pollution (AP) exposure have focused on adverse health effects of particulate matter (PM). Less well-studied are the actions of volatile organic compounds (VOCs) not retained in PM collections. These studies quantified chemical and biological properties of both PM2.5 and VOCs. Methods: Samples were collected near the Port of Los Angeles (Long Beach, LB), railroads (Commerce, CM), and a pollution-trapping topography-site (San Bernardino, SB). Quantitative assays were conducted: (1) chemical—prooxidant and electrophile content, (2) biological—tumor necrosis factor-α (TNF-α) and heme oxygenase-1 (HO-1) expression (3), VOC modulation of PM effects and (4), activation of the antioxidant response element (ARE) using murine RAW 264.7 macrophages. Results: SB site samples were the most potent in the chemical and biological assays, followed by a CM railroad site. Only PM2.5 exhibited significant proinflammatory responses. VOCs were more potent than PM2.5 in generating anti-inflammatory responses; further, VOC pretreatment reduced PM-associated TNF-α expression. VOCs significantly increased ARE activation compared to their corresponding PM2.5 which remained at background levels. Conclusion: Ambient VOCs are major contributors to adaptive responses that can modulate PM effects, in vitro, and, as such, need to be included in comprehensive assessments of AP.
Collapse
|
10
|
Morikawa K, Ushijima Y, Ohniwa RL, Miyakoshi M, Takeyasu K. What Happens in the Staphylococcal Nucleoid under Oxidative Stress? Microorganisms 2019; 7:microorganisms7120631. [PMID: 31795457 PMCID: PMC6956076 DOI: 10.3390/microorganisms7120631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
The evolutionary success of Staphylococcus aureus as an opportunistic human pathogen is largely attributed to its prominent abilities to cope with a variety of stresses and host bactericidal factors. Reactive oxygen species are important weapons in the host arsenal that inactivate phagocytosed pathogens, but S. aureus can survive in phagosomes and escape from phagocytic cells to establish infections. Molecular genetic analyses combined with atomic force microscopy have revealed that the MrgA protein (part of the Dps family of proteins) is induced specifically in response to oxidative stress and converts the nucleoid from the fibrous to the clogged state. This review collates a series of evidences on the staphylococcal nucleoid dynamics under oxidative stress, which is functionally and physically distinct from compacted Escherichia coli nucleoid under stationary phase. In addition, potential new roles of nucleoid clogging in the staphylococcal life cycle will be proposed.
Collapse
Affiliation(s)
- Kazuya Morikawa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| | - Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Ryosuke L. Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| | - Masatoshi Miyakoshi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| |
Collapse
|
11
|
Abiko Y, Nakai Y, Luong NC, Bianco CL, Fukuto JM, Kumagai Y. Interaction of Quinone-Related Electron Acceptors with Hydropersulfide Na 2S 2: Evidence for One-Electron Reduction Reaction. Chem Res Toxicol 2019; 32:551-556. [PMID: 30719914 DOI: 10.1021/acs.chemrestox.8b00158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously reported that 9,10-phenanthraquinone (9,10-PQ), an atmospheric electron acceptor, undergoes redox cycling with dithiols as electron donors, resulting in the formation of semiquinone radicals and monothiyl radicals; however, monothiols have little reactivity. Because persulfide and polysulfide species are highly reducing, we speculate that 9,10-PQ might undergo one-electron reduction with these reactive sulfides. In the present study, we explored the redox cycling capability of a variety of quinone-related electron acceptors, including 9,10-PQ, during interactions with the hydropersulfide Na2S2 and its related polysulfides. No reaction occurred when 9,10-PQ was incubated with Na2S; however, when 5 μM 9,10-PQ was incubated with either 250 μM Na2S2 or Na2S4, we detected extensive consumption of dissolved oxygen (84 μM). Under these conditions, both the semiquinone radicals of 9,10-PQ and their thiyl radical species were also detected using ESR, suggesting that a redox cycle reaction occurred utilizing one-electron reduction processes. Notably, the perthiyl radicals remained stable even under aerobic conditions. Similar phenomenon has also been observed with other electron acceptors, such as pyrroloquinoline quinone, vitamin K3, and coenzyme Q10. Our experiments with N-methoxycarbonyl penicillamine persulfide (MCPSSH), a precursor for endogenous cysteine persulfide, suggested the possibility of a redox coupling reaction with 9,10-PQ inside cells. Our study indicates that hydropersulfide and its related polysulfides are efficient electron donors that interact with quinones. Redox coupling reactions between quinoid electron acceptors and such highly reactive thiols might occur in biological systems.
Collapse
Affiliation(s)
- Yumi Abiko
- Environmental Biology Section, Faculty of Medicine , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8575 , Japan
| | - Yumi Nakai
- JEOL Resonance Inc. , Tokyo 196-8558 , Japan
| | - Nho C Luong
- Graduate School of Comprehensive Human Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8575 , Japan.,Faculty of Pharmacy , Hue University of Medicine and Pharmacy , 06 Ngo Quyen , Hue , Vietnam
| | - Christopher L Bianco
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Jon M Fukuto
- Sonoma State University , Rohnert Park , California 94928 , United States
| | - Yoshito Kumagai
- Environmental Biology Section, Faculty of Medicine , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8575 , Japan
| |
Collapse
|
12
|
Terpilovskii MA, Kuznetsov SV, Goncharov NV. Biochemical Aspects of Hydroquinone Impact on Motor Activity in Newborn Rats. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093018060017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Ebert B, Ebert D, Koebsch K, Maser E, Kisiela M. Carbonyl reductases from Daphnia are regulated by redox cycling compounds. FEBS J 2018; 285:2869-2887. [PMID: 29893480 DOI: 10.1111/febs.14578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/20/2018] [Accepted: 06/11/2018] [Indexed: 01/22/2023]
Abstract
Oxidative stress is a major source of reactive carbonyl compounds that can damage cellular macromolecules, leading to so-called carbonyl stress. Aside from endogenously formed carbonyls, including highly reactive short-chain aldehydes and diketones, air pollutants derived from diesel exhaust like 9,10-phenanthrenequinone (PQ) can amplify oxidative stress by redox cycling, causing tissue damage. Carbonyl reductases (CRs), which are inducible in response to ROS, represent a fundamental enzymatic defense mechanism against oxidative stress. While commonly two carbonyl reductases (CBR1 and CBR3) are found in mammalian genomes, invertebrate model organisms like Drosophila melanogaster express no CR but a functional homolog to human CBR1, termed sniffer. The microcrustacean Daphnia is an ideal model organism to investigate the function of CRs because of its unique equipment with even four copies of the CR gene (CR1, CR2, CR3, CR4) in addition to one sniffer gene. Cloning and catalytic characterization of two carbonyl reductases CR1 and CR3 from D. magna and D. pulex arenata revealed that both proteins reductively metabolize aromatic dicarbonyls (e.g., menadione, PQ) and aliphatic α-diketones (e.g., 2,3-hexanedione), while sugar-derived aldehydes (methylglyoxal, glyoxal) and lipid peroxidation products such as acrolein and butanal were poor substrates, indicating no physiological function in the metabolism of short-chain aldehydes. Treatment of D. magna with redox cyclers like menadione and the pesticide paraquat led to an upregulation of CR1 and CR3 mRNA, suggesting a role in oxidative stress defense. Further studies are needed to investigate their potential to serve as novel biomarkers for oxidative stress in Daphnia.
Collapse
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Dieter Ebert
- Departement Environmental Sciences, Zoology, Basel University, Switzerland
| | - Katrin Koebsch
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany.,Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Germany
| |
Collapse
|
14
|
Cytotoxicity of Air Pollutant 9,10-Phenanthrenequinone: Role of Reactive Oxygen Species and Redox Signaling. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9523968. [PMID: 29984252 PMCID: PMC6015725 DOI: 10.1155/2018/9523968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 01/22/2023]
Abstract
Atmospheric pollution has been a principal topic recently in the scientific and political community due to its role and impact on human and ecological health. 9,10-phenanthrenequinone (9,10-PQ) is a quinone molecule found in air pollution abundantly in the diesel exhaust particles (DEP). This compound has studied extensively and has been shown to develop cytotoxic effects both in vitro and in vivo. 9, 10-PQ has been proposed to play a critical role in the development of cytotoxicity via generation of reactive oxygen species (ROS) through redox cycling. This compound also reduces expression of glutathione (GSH), which is critical in Phase II detoxification reactions. Understanding the underlying cellular mechanisms involved in cytotoxicity can allow for the development of therapeutics designed to target specific molecules significantly involved in the 9,10-PQ-induced ROS toxicity. This review highlights the developments in the understanding of the cytotoxic effects of 9, 10-PQ with special emphasis on the possible mechanisms involved.
Collapse
|
15
|
Trypanosoma cruzi: death phenotypes induced by ortho-naphthoquinone substrates of the aldo-keto reductase (TcAKR). Role of this enzyme in the mechanism of action of β-lapachone. Parasitology 2018; 145:1251-1259. [DOI: 10.1017/s0031182018000045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSeveral ortho-naphthoquinones (o-NQs) have trypanocidal activity against Trypanosoma cruzi, the aetiological agent of Chagas disease. Previously, we demonstrated that the aldo-keto reductase from this parasite (TcAKR) reduces o-NQs, such as β-lapachone (β-Lap) and 9,10-phenanthrenequinone (9,10-PQ), with concomitant reactive oxygen species (ROS) production. Recent characterization of TcAKR activity and expression in two T. cruzi strains, CL Brener and Nicaragua, showed that TcAKR expression is 2.2-fold higher in CL Brener than in Nicaragua. Here, we studied the trypanocidal effect and induction of several death phenotypes by β-Lap and 9,10-PQ in epimastigotes of these two strains. The CL Brener strain was more resistant to both o-NQs than Nicaragua, indicating that greater TcAKR activity is unlikely to be a major influence on o-NQ toxicity. Evaluation of changes in ROS production, mitochondrial membrane potential, phosphatidylserine exposure and monodansylcadaverine labelling evidenced that β-Lap and 9,10-PQ induce different death phenotypes depending on the combination of drug and T. cruzi strain analysed. To study whether TcAKR participates in o-NQ activation in intact parasites, β-Lap and 9,10-PQ trypanocidal effect was next evaluated in TcAKR-overexpressing parasites. Only β-Lap was more effective and induced greater ROS production in TcAKR-overexpressing epimastigotes than in controls, suggesting that TcAKR may participate in β-Lap activation.
Collapse
|
16
|
Kumagai Y, Abiko Y, Cong NL. Chemical toxicology of reactive species in the atmosphere: two decades of progress in an electron acceptor and an electrophile. J Toxicol Sci 2017; 41:SP37-SP47. [PMID: 28003638 DOI: 10.2131/jts.41.sp37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Air pollutants such as diesel exhaust particles (DEP) are thought to cause pulmonary diseases such as asthma as a result of oxidative stress. While DEP contain a large number of polycyclic aromatic hydrocarbons, we have focused on 9,10-phenanthrenequinone (9,10-PQ) and 1,2-naphthoquinone (1,2-NQ) because of their chemical properties based on their oxidative and chemical modification capabilities. We have found that 9,10-PQ interacts with electron donors such as NADPH (in the presence of enzymes) and dithiols, resulting in generation of excess reactive oxygen species (ROS) through redox cycling. We have also shown that 1,2-NQ is able to modify protein thiols, leading to protein adducts associated with activation of redox signal transduction pathways at lower concentrations and toxicity at higher concentrations. In this review, we briefly introduce our findings from the last two decades.
Collapse
|
17
|
Tapia A, Salgado MS, Martín MP, Rodríguez-Fernández J, Rossi MJ, Cabañas B. Chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot after reactive gas probing using diffuse reflectance FTIR spectroscopy (DRIFTS). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7534-7543. [PMID: 28116624 DOI: 10.1007/s11356-017-8436-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
A chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot has been developed using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) before and after the reaction with different probe gases. Samples were generated under combustion conditions corresponding to an urban operation mode of a diesel engine and were reacted with probe gas-phase molecules in a Knudsen flow reactor. Specifically, NH2OH, O3 and NO2 were used as reactants (probes) and selected according to their reactivities towards specific functional groups on the sample surface. Samples of previously ground soot were diluted with KBr and were introduced in a DRIFTS accessory. A comparison between unreacted and reacted soot samples was made in order to establish chemical changes on the soot surface upon reaction. It was concluded that the interface of diesel and HVO soot before reaction mainly consists polycyclic aromatic hydrocarbons, nitro and carbonyl compounds, as well as ether functionalities. The main difference between both soot samples was observed in the band of the C=O groups that in diesel soot was observed at 1719 cm-1 but not in HVO soot. After reaction with probe gases, it was found that nitro compounds remain on the soot surface, that the degree of unsaturation decreases for reacted samples, and that new spectral bands such as hydroxyl groups are observed.
Collapse
Affiliation(s)
- A Tapia
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - M S Salgado
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - M P Martín
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - J Rodríguez-Fernández
- Grupo de Combustibles y Motores, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla La Mancha, Avda. Camilo José Cela 10, 13071, Ciudad Real, Spain
| | - M J Rossi
- Labor für Atmosphärenchemie (LAC), Paul Scherrer Institute (PSI), OBBA006, 5232, Villigen PSI, Switzerland
| | - B Cabañas
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
18
|
Hayakawa K, Tang N, Toriba A. Recent analytical methods for atmospheric polycyclic aromatic hydrocarbons and their derivatives. Biomed Chromatogr 2016; 31. [DOI: 10.1002/bmc.3862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Kazuichi Hayakawa
- Institute of Nature and Environmental Technology; Kanazawa University; Japan
| | - Ning Tang
- Institute of Nature and Environmental Technology; Kanazawa University; Japan
| | - Akira Toriba
- Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Japan
| |
Collapse
|
19
|
Toriba A, Homma C, Kita M, Uozaki W, Boongla Y, Orakij W, Tang N, Kameda T, Hayakawa K. Simultaneous determination of polycyclic aromatic hydrocarbon quinones by gas chromatography-tandem mass spectrometry, following a one-pot reductive trimethylsilyl derivatization. J Chromatogr A 2016; 1459:89-100. [DOI: 10.1016/j.chroma.2016.06.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
|
20
|
Tapia A, Salgado MS, Martín MP, Lapuerta M, Rodríguez-Fernández J, Rossi MJ, Cabañas B. Molecular Characterization of the Gas-Particle Interface of Soot Sampled from a Diesel Engine Using a Titration Method. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2946-2955. [PMID: 26886850 DOI: 10.1021/acs.est.5b05531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface functional groups of two different types of combustion aerosols, a conventional diesel (EN 590) and a hydrotreated vegetable oil (HVO) soot, have been investigated using heterogeneous chemistry (i.e., gas-particle surface reactions). A commercial sample of amorphous carbon (Printex XE2-B) was analyzed as a reference substrate. A Knudsen flow reactor was used to carry out the experiments under molecular flow conditions. The selected gases for the titration experiments were: N(CH3)3 for the identification of acidic sites, NH2OH for the presence of carbonyl groups, CF3COOH and HCl for basic sites of different strength, and O3 and NO2 for reducing groups. Reactivity with N(CH3)3 indicates a lower density of acidic functionalities for Printex XE2-B in relation to diesel and HVO soot. Results for NH2OH experiments indicates that commercial amorphous carbon exhibits a lower abundance of available carbonyl groups at the interface compared to the results from diesel and HVO soot, the latter being the one with the largest abundance of carbonyl functions. Reactions with acids indicate the presence of weak basic oxides on the particle surface that preferentially interact with the strong acid CF3COOH. Finally, reactions with O3 and NO2 reveal that diesel and especially HVO have a significantly higher reactivity with both oxidizers compared to that of Printex XE2-B because they have more reducing sites by roughly a factor of 10 and 30, respectively. The kinetics of titration reactions have also been investigated.
Collapse
Affiliation(s)
- A Tapia
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha , Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - M S Salgado
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha , Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - María Pilar Martín
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha , Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - M Lapuerta
- Grupo de Combustibles y Motores, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla la Mancha , Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - J Rodríguez-Fernández
- Grupo de Combustibles y Motores, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla la Mancha , Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - M J Rossi
- Labor für Atmosphärenchemie (LAC), Paul Scherrer Institute (PSI) , OBBA006, CH-5232 Villigen PSI, Switzerland
| | - B Cabañas
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha , Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
21
|
Abiko Y, Yoshida E, Ishii I, Fukuto JM, Akaike T, Kumagai Y. Involvement of reactive persulfides in biological bismethylmercury sulfide formation. Chem Res Toxicol 2015; 28:1301-6. [PMID: 25874357 DOI: 10.1021/acs.chemrestox.5b00101] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bismethylmercury sulfide (MeHg)2S has been found to be a detoxified metabolite of methylmercury (MeHg) that is produced by SH-SY5Y cells and in livers of rats exposed to MeHg. (MeHg)2S could be formed through the interactions between MeHg and sulfur species such as hydrogen sulfide (H2S or HS(-)), but the origin of its sulfur has not been fully identified. We herein examined the formation of (MeHg)2S through interactions between MeHg and persulfides, polysulfides, and protein preparations. Investigations using HPLC/atomic absorption spectrophotometry and EI-MS revealed that NaHS and Na2S4 react readily with MeHg to give (MeHg)2S, and similar results were found using GSH persulfide (GSSH) formed endogenously or generated enzymatically in vitro. (MeHg)2S was also formed by incubation of MeHg with liver and heart cytosolic fractions prepared from wild-type mice but not with those from mice lacking cystathionine γ-lyase (CSE) that catalyzes the formation of cysteine persulfide. Consistent with this, (MeHg)2S was detected in a variety of tissues taken from wild-type mice intraperitoneally injected with MeHg in vivo but not in those from MeHg-injected CSE knockout mice. By separating liver fractions by column chromatography, we found numerous proteins that contain persulfides: one of the proteins was identified as being glutathione S-transferase pi 1. These results indicate that the formation of (MeHg)2S can be attributed to interactions between MeHg and endogenous free persulfide species, as well as protein-bound cysteine persulfide.
Collapse
Affiliation(s)
| | | | - Isao Ishii
- §Department of Biochemistry, Keio University School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Jon M Fukuto
- ∥Department of Chemistry, Sonoma State University, Rohnert Park, California 94928, United States
| | - Takaaki Akaike
- ⊥Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | |
Collapse
|
22
|
Shinkai Y, Abiko Y, Ida T, Miura T, Kakehashi H, Ishii I, Nishida M, Sawa T, Akaike T, Kumagai Y. Reactive Sulfur Species-Mediated Activation of the Keap1-Nrf2 Pathway by 1,2-Naphthoquinone through Sulfenic Acids Formation under Oxidative Stress. Chem Res Toxicol 2015; 28:838-47. [PMID: 25807370 DOI: 10.1021/tx500416y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sulfhydration by a hydrogen sulfide anion and electrophile thiolation by reactive sulfur species (RSS) such as persulfides/polysulfides (e.g., R-S-SH/R-S-Sn-H(R)) are unique reactions in electrophilic signaling. Using 1,2-dihydroxynaphthalene-4-thioacetate (1,2-NQH2-SAc) as a precursor to 1,2-dihydroxynaphthalene-4-thiol (1,2-NQH2-SH) and a generator of reactive oxygen species (ROS), we demonstrate that protein thiols can be modified by a reactive sulfenic acid to form disulfide adducts that undergo rapid cleavage in the presence of glutathione (GSH). As expected, 1,2-NQH2-SAc is rapidly hydrolyzed and partially oxidized to yield 1,2-NQ-SH, resulting in a redox cycling reaction that produces ROS through a chemical disproportionation reaction. The sulfenic acid forms of 1,2-NQ-SH and 1,2-NQH2-SH were detected by derivatization experiments with dimedone. 1,2-NQH2-SOH modified Keap1 at Cys171 to produce a Keap1-S-S-1,2-NQH2 adduct. Subsequent exposure of A431 cells to 1,2-NQ or 1,2-NQH2-SAc caused an extensive chemical modification of cellular proteins in both cases. Protein adduction by 1,2-NQ through a thio ether (C-S-C) bond slowly declined through a GSH-dependent S-transarylation reaction, whereas that originating from 1,2-NQH2-SAc through a disulfide (C-S-S-C) bond was rapidly restored to the free protein thiol in the cells. Under these conditions, 1,2-NQH2-SAc activated Nrf2 and upregulated its target genes, which were enhanced by pretreatment with buthionine sulfoximine (BSO), to deplete cellular GSH. Pretreatment of catalase conjugated with poly(ethylene glycol) suppressed Nrf2 activation by 1,2-NQH2-SAc. These results suggest that RSS-mediated reversible electrophilic signaling takes place through sulfenic acids formation under oxidative stress.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- †Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,¶Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumi Abiko
- †Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,¶Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tomoaki Ida
- ‡Laboratory of Environmental Health Sciences, Tohoku University School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Takashi Miura
- †Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hidenao Kakehashi
- †Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Isao Ishii
- §Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Motohiro Nishida
- ∥Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Tomohiro Sawa
- ⊥Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Takaaki Akaike
- ‡Laboratory of Environmental Health Sciences, Tohoku University School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Yoshito Kumagai
- †Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,¶Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
23
|
Luna–López A, González-Puertos VY, López-Diazguerrero NE, Königsberg M. New considerations on hormetic response against oxidative stress. J Cell Commun Signal 2014; 8:323-31. [PMID: 25284448 PMCID: PMC4390794 DOI: 10.1007/s12079-014-0248-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/30/2014] [Indexed: 01/06/2023] Open
Abstract
In order to survive living organisms have developed multiple mechanisms to deal with tough environmental conditions. Hormesis is defined as a process in which exposure to a low dose of a chemical agent or environmental factor that is damaging at higher doses induces an adaptive beneficial effect on the cell or organism. In this paper, we examine several ideas that might be taken into consideration before using hormesis as a therapeutic tool to improve health and life span, and hopefully will open the discussion for new and interesting debates regard hormesis. The first one is to understand that the same stressor or inductor can activate different pathways in a parallel or dual response, which might lead to diverse outcomes. Another idea is related to the mechanisms involved in activating Nrf2, which might be different and have diverse hormetic effects.Last, we discuss mild oxidative stress in association to low-grade chronic inflammation as a stimulating avenue to be explored and the unexpected effects proposed by the obesity paradox theory. All the previous might help to clarify the reasons why centenarians are able to reach the extreme limits of human life span, which could probably be related to the way they deal with homeostasis maintenance, providing an opportunity for hormesis to intervene significantly.
Collapse
Affiliation(s)
| | - Viridiana Y. González-Puertos
- />Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340 México, D.F Mexico
| | - Norma E. López-Diazguerrero
- />Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340 México, D.F Mexico
| | - Mina Königsberg
- />Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340 México, D.F Mexico
| |
Collapse
|
24
|
Matsunaga T, Morikawa Y, Haga M, Endo S, Soda M, Yamamura K, El-Kabbani O, Tajima K, Ikari A, Hara A. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10. Toxicol Appl Pharmacol 2014; 278:180-9. [PMID: 24813866 DOI: 10.1016/j.taap.2014.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/21/2014] [Accepted: 04/26/2014] [Indexed: 01/13/2023]
Abstract
Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-l-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mariko Haga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Midori Soda
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Keiko Yamamura
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Ossama El-Kabbani
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Kazuo Tajima
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
25
|
Huang M, Zhang L, Mesaros C, Zhang S, Blaha MA, Blair IA, Penning TM. Metabolism of a representative oxygenated polycyclic aromatic hydrocarbon (PAH) phenanthrene-9,10-quinone in human hepatoma (HepG2) cells. Chem Res Toxicol 2014; 27:852-63. [PMID: 24646012 PMCID: PMC4028327 DOI: 10.1021/tx500031p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Exposure
to polycyclic aromatic hydrocarbons (PAHs) in the food
chain is the major human health hazard associated with the Deepwater
Horizon oil spill. Phenanthrene is a representative PAH present in
crude oil, and it undergoes biological transformation, photooxidation,
and chemical oxidation to produce its signature oxygenated derivative,
phenanthrene-9,10-quinone. We report the downstream metabolic fate
of phenanthrene-9,10-quinone in HepG2 cells. The structures of the
metabolites were identified by HPLC–UV–fluorescence
detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol
was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol,
was discovered for the first time, and evidence for both of its precursor
mono conjugates was obtained. The identities of these four metabolites
were unequivocally validated by comparison to authentic enzymatically
synthesized standards. Evidence was also obtained for a minor metabolic
pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed
by O-mono-sulfonation. The identification of 9,10-catechol
conjugates supports metabolic detoxification of phenanthrene-9,10-quinone
through interception of redox cycling by UGT, COMT, and SULT isozymes
and indicates the possible use of phenanthrene-9,10-catechol conjugates
as biomarkers of human exposure to oxygenated PAH.
Collapse
Affiliation(s)
- Meng Huang
- Center of Excellence in Environmental Toxicology and ‡Center for Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6160, United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Asahi M, Kawai M, Toyama T, Kumagai Y, Chuesaard T, Tang N, Kameda T, Hayakawa K, Toriba A. Identification and Quantification of in Vivo Metabolites of 9,10-Phenanthrenequinone in Human Urine Associated with Producing Reactive Oxygen Species. Chem Res Toxicol 2014; 27:76-85. [DOI: 10.1021/tx400338t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Miki Asahi
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Mio Kawai
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takashi Toyama
- Graduate
School of Comprehensive Human Sciences, University of Tukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshito Kumagai
- Graduate
School of Comprehensive Human Sciences, University of Tukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Thanyarat Chuesaard
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ning Tang
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takayuki Kameda
- Graduate
School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuichi Hayakawa
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Akira Toriba
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
27
|
Afrasiabi Z, Stovall P, Finley K, Choudhury A, Barnes C, Ahmad A, Sarkar F, Vyas A, Padhye S. Targeting triple negative breast cancer cells by N3-substituted 9,10-phenanthrenequinone thiosemicarbazones and their metal complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 114:114-119. [PMID: 23770498 DOI: 10.1016/j.saa.2013.04.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
Novel N(3)-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their copper, nickel and palladium complexes are structurally characterized and reported along with the single crystal X-ray structures of three ligands and one nickel complex. All compounds were evaluated for their antiproliferative potential against Triple Negative Breast Cancer (TNBC) cells which have poor prognosis and no effective drugs to treat with. All compounds exhibited antiproliferative activity against these cells. Among the metal complexes evaluated, redox active copper complexes were found to be more potent. The possible mechanism for such enhanced activity can be attributed to the generation of oxidative stress, which was amenable for targeting through metal complexation.
Collapse
Affiliation(s)
- Zahra Afrasiabi
- Department of Life & Physical Sciences, Lincoln University, Jefferson City, MO 65101, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kanaly RA, Hamamura N. 9,10-Phenanthrenedione biodegradation by a soil bacterium and identification of transformation products by LC/ESI-MS/MS. CHEMOSPHERE 2013; 92:1442-1449. [PMID: 23611246 DOI: 10.1016/j.chemosphere.2013.03.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Transformation of 9,10-phenanthrenedione, a cytotoxic derivative of phenanthrene, was shown to occur by a soil bacterium belonging to the genus Sphingobium. Phenanthrene-grown cells of this strain were exposed to 50mgL(-1) 9,10-phenanthrenedione in liquid cultures, extracted, and extracts were analyzed by liquid chromatography electrospray ionization mass spectrometry in negative ionization mode. Full scan analyses of exposed cells over the range from m/z 50 to m/z 500 were compared to abiotic and biotic controls. Product and precursor ion scan mode analyses indicated that at least three aromatic ring-cleavage transformation products of 9,10-phenanthrenedione were present and structures for these products, corresponding to [M-H](-)=271, [M-H](-)=241, and [M-H](-)=339 were proposed to be 4-(1-hydroxy-3,4-dioxo-2-naphthyl)-2-oxo-but-3-enoic acid, 2,2'-diphenic acid and 2-[(6-carboxy-2,3-dihydroxy-phenyl)-hydroxy-methyl]-5-oxo-hex-3-enedioic acid. The identity of 2,2'-diphenic acid was confirmed by comparison to an authentic standard and when the strain was exposed to 50mgL(-1) 2,2'-diphenic acid in separate assays, a transformation product with a similar mass spectrum as 9,10-phenanthrenedione-derived [M-H](-)=339 was revealed. Based upon these results, pathways for the transformation of 9,10-phenanthrenedione by strain KK22 were proposed. Strain KK22 appeared unable to use 9,10-phenanthrenedione as a growth substrate under these conditions. This is the first report of potential biotransformation pathways of 9,10-phenanthrenedione by a bacterium.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Genome System Science, Faculty of Bionanosciences, Yokohama City University, Yokohama 236-0027, Japan.
| | | |
Collapse
|
29
|
Gurbani D, Bharti SK, Kumar A, Pandey AK, Ana GR, Verma A, Khan AH, Patel DK, Mudiam M, Jain SK, Roy R, Dhawan A. Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells. Int J Hyg Environ Health 2013; 216:553-65. [DOI: 10.1016/j.ijheh.2013.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
|
30
|
Fang G, Gao J, Dionysiou DD, Liu C, Zhou D. Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4605-4611. [PMID: 23586773 DOI: 10.1021/es400262n] [Citation(s) in RCA: 351] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There has been considerable interest in the use of persulfate for in situ chemical oxidation of organic contaminants in soils, sediments, and groundwater. Since humic acid (HA) exists ubiquitously in these environmental compartments, its redox active functional moieties, such as quinones, may play an important role in the oxidation processes of persulfate treatments. Understanding the effects of HA, especially the quinone functional groups on the degradation of pollutants by persulfate and the production of sulfate radicals (SO4(•-)) from persulfate, is beneficial for devising effective and economically feasible remediation strategies. In this study, the effects of model quinone compounds and HA on the degradation of 2,4,4'-trichlorobiphenyl (PCB28) by persulfate and the production of SO4(•-) from persulfate were investigated. It was found that quinones and HA can efficiently activate persulfate for the degradation of PCB28. The mechanism of persulfate activation was elucidated by quenching and electron paramagnetic resonance (EPR) studies. The results indicated that production of SO4(•-) from persulfate and quinones was semiquinone radical-dependent. The effects of quinone concentrations were also studied. The findings of this study elucidated a new pathway of persulfate activation, which could degrade environmental contaminants efficiently and provide useful information for the remediation of contaminated soil and water by persulfate.
Collapse
Affiliation(s)
- Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | | | | | | | | |
Collapse
|
31
|
Koizumi R, Taguchi K, Hisamori M, Kumagai Y. Interaction of 9,10-phenanthraquinone with dithiol causes oxidative modification of Cu,Zn-superoxide dismutase (SOD) through redox cycling. J Toxicol Sci 2013; 38:317-24. [DOI: 10.2131/jts.38.317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Rie Koizumi
- Master’s Program in Environmental Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Keiko Taguchi
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Miwa Hisamori
- Master’s Program in Environmental Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| |
Collapse
|
32
|
Toyooka T, Shinmen T, Aarts JMMJG, Ibuki Y. Dual effects of N-acetyl-L-cysteine dependent on NQO1 activity: suppressive or promotive of 9,10-phenanthrenequinone-induced toxicity. Toxicol Appl Pharmacol 2012; 264:404-12. [PMID: 22925602 DOI: 10.1016/j.taap.2012.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/13/2012] [Accepted: 08/18/2012] [Indexed: 01/10/2023]
Abstract
A typical antioxidant, N-acetyl-L-cysteine (NAC) generally protects cells from oxidative damage induced by reactive oxygen species (ROS). 9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, produces ROS in redox cycling following two-electron reduction by NAD(P)H:quinone oxidoreductase 1 (NQO1), which has been considered as a cause of its cyto- and genotoxicity. In this study, we show that NAC unexpectedly augments the toxicity of 9,10-PQ in cells with low NQO1 activity. In four human skin cell lines, the expression and the activity of NQO1 were lower than in human adenocarcinoma cell lines, A549 and MCF7. In the skin cells, the cytotoxicity of 9,10-PQ was significantly enhanced by addition of NAC. The formation of DNA double strand breaks accompanying phosphorylation of histone H2AX, was also remarkably augmented. On the other hand, the cyto- and genotoxicity were suppressed by addition of NAC in the adenocarcinoma cells. Two contrasting experiments: overexpression of NQO1 in CHO-K1 cells which originally expressed low NQO1 levels, and knock-down of NQO1 in the adenocarcinoma cell line A549 by transfection of RNAi, also showed that NAC suppressed 9,10-PQ-induced toxicity in cell lines expressing high NQO1 activity and enhanced it in cell lines with low NQO1 activity. The results suggested that dual effects of NAC on the cyto- and genotoxicity of 9,10-PQ were dependent on tissue-specific NQO1 activity.
Collapse
Affiliation(s)
- Tatsushi Toyooka
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | |
Collapse
|
33
|
Shinkai Y, Iwamoto N, Miura T, Ishii T, Cho AK, Kumagai Y. Redox cycling of 1,2-naphthoquinone by thioredoxin1 through Cys32 and Cys35 causes inhibition of its catalytic activity and activation of ASK1/p38 signaling. Chem Res Toxicol 2012; 25:1222-30. [PMID: 22587396 DOI: 10.1021/tx300069r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,2-Naphthoquinone (1,2-NQ) is an atmospheric chemical capable of (1) redox cycling with electron donors and (2) covalent modification of nucleophilic groups on proteins. In the present study, we investigated its interaction with the redox protein, thioredoxin1 (Trx1), which led to oxidative stress-dependent cell damage. In experiments with purified wild-type Trx1 and its double mutant (32S/35S Trx1), we found that incubation of Trx1 with 1,2-NQ resulted in a redox cycling reaction, generating superoxide and hydrogen peroxide involving Cys32 and Cys35 and an arylation reaction resulting in covalent modification of Lys85 together with a loss of Trx activity. A significant fraction of the lost Trx1 activity following interaction with 1,2-NQ was restored by dithiothreitol. Exposure of RAW264.7 cells to 1,2-NQ generated reactive oxygen species (ROS) and caused a decrease in Trx activity. Trx is a negative regulator of apoptosis signal-regulating kinase 1 (ASK1), and under the conditions of the experiment, 1,2-NQ activated ASK1 and p38, leading to PARP cleavage and apoptotic cell death that were blocked by pretreatment with polyethylene glycol-catalase. These results suggest that Trx1 readily undergoes oxidative modification by 1,2-NQ through the proximal thiols Cys32 and Cys35. It seems likely that ROS production concomitant with decline in cellular Trx activity plays a role in the activation of ASK1/p38 signaling to promote apoptotic cell death cause by 1,2-NQ exposure.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- Environmental Medicine Section, Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Shang Y, Chen C, Li Y, Zhao J, Zhu T. Hydroxyl radical generation mechanism during the redox cycling process of 1,4-naphthoquinone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2935-2942. [PMID: 22288565 DOI: 10.1021/es203032v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Airborne quinones contribute to adverse health effects of ambient particles probably because of their ability to generate hydroxyl radicals (·OH) via redox cycling, but the mechanisms remain unclear. We examined the chemical mechanisms through which 1,4-naphthoquinone (1,4-NQ) induced ·OH, and the redox interactions between 1,4-NQ and ascorbate acid (AscH(2)). First, ·OH formation by 1,4-NQ was observed in cellular and acellular systems, and was enhanced by AscH(2). AscH(2) also exacerbated the cytotoxicity of 1,4-NQ in Ana-1 macrophages, at least partially due to enhanced ·OH generation. The detailed mechanism was studied in an AscH(2)/H(2)O(2) physiological system. The existence of a cyclic 1,4-NQ process was shown by detecting the corresponding semiquinone radical (NSQ·-) and hydroquinone (NQH(2)). 1,4-NQ was reduced primarily to NSQ·- by O2·- (which was from AscH(2) reacting with H(2)O(2)), not by AscH(2) as normally thought. At lower doses, 1,4-NQ consumed O2·- to suppress ·OH; however, at higher doses, 1,4-NQ presented a positive association with ·OH. The reaction of NSQ·- with H(2)O(2) to release ·OH was another important channel for OH radical formation except for Haber-Weiss reaction. As a reaction precursor for O2·-, the enhanced ·OH response to 1,4-NQ by AscH(2) was indirect. Reducing substrates were necessary to sustain the redox cycling of 1,4-NQ, leading to more ·OH and a deleterious end point.
Collapse
Affiliation(s)
- Yu Shang
- State Key Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
35
|
Surya Prakash Rao H, Vijjapu S. Chemistry of 9,10-phenanthrenequinone revisited: iron(iii) chloride catalyzed reactions of 9,10-phenanthrenequinone with acyclic and cyclic ketones provide furan annulated products. RSC Adv 2012. [DOI: 10.1039/c2ra20499a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
36
|
Selective accurate-mass-based analysis of 11 oxy-PAHs on atmospheric particulate matter by pressurized liquid extraction followed by high-performance liquid chromatography and magnetic sector mass spectrometry. Anal Bioanal Chem 2011; 402:1697-711. [DOI: 10.1007/s00216-011-5568-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/18/2011] [Accepted: 11/09/2011] [Indexed: 10/14/2022]
|
37
|
Miura T, Shinkai Y, Hirose R, Iwamoto N, Cho AK, Kumagai Y. Glyceraldehyde-3-phosphate dehydrogenase as a quinone reductase in the suppression of 1,2-naphthoquinone protein adduct formation. Free Radic Biol Med 2011; 51:2082-9. [PMID: 21963991 DOI: 10.1016/j.freeradbiomed.2011.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/16/2022]
Abstract
1,2-Naphthoquinone (1,2-NQ) is electrophilic, and forms covalent bonds with protein thiols, but its two-electron reduction product 1,2-dihydroxynaphthalene (1,2-NQH(2)) is not, so enzymes catalyzing the reduction with reduced pyridine nucleotides as cofactors could protect cells from electrophile-based chemical insults. To assess this possibility, we examined proteins isolated from the 9000g supernatant from mouse liver for 1,2-NQ reductase activity using an HPLC assay procedure for the hydroquinone of 1,2-NQ and Cibacron Blue 3GA column chromatography and Western blot analysis with specific antibody to determine 1,2-NQ-bound proteins. Among the proteins with high affinities for pyridine nucleotides that also inhibited 1,2-NQ-protein adduct formation in the presence of NADH, a 37-kDa protein was found and identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Using recombinant human GAPDH, we found that this glycolytic enzyme indeed catalyzes the two-electron reduction of 1,2-NQ accompanied by extensive NADH consumption under 20% oxygen conditions. When either 1,2-NQH(2) or 1,2-NQ was incubated with GAPDH in the presence of NADH, minimal covalent bonding to the enzyme occurred compared to that in its absence. These results indicate that GAPDH can inhibit 1,2-NQ-based electrophilic protein modification by conversion to the nonelectrophilic 1,2-NQH(2) via an NADH-dependent process.
Collapse
Affiliation(s)
- Takashi Miura
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Kumagai Y, Shinkai Y, Miura T, Cho AK. The chemical biology of naphthoquinones and its environmental implications. Annu Rev Pharmacol Toxicol 2011; 52:221-47. [PMID: 21942631 DOI: 10.1146/annurev-pharmtox-010611-134517] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quinones are a group of highly reactive organic chemical species that interact with biological systems to promote inflammatory, anti-inflammatory, and anticancer actions and to induce toxicities. This review describes the chemistry, biochemistry, and cellular effects of 1,2- and 1,4-naphthoquinones and their derivatives. The naphthoquinones are of particular interest because of their prevalence as natural products and as environmental chemicals, present in the atmosphere as products of fuel and tobacco combustion. 1,2- and 1,4-naphthoquinones are also toxic metabolites of naphthalene, the major polynuclear aromatic hydrocarbon present in ambient air. Quinones exert their actions through two reactions: as prooxidants, reducing oxygen to reactive oxygen species; and as electrophiles, forming covalent bonds with tissue nucleophiles. The targets for these reactions include regulatory proteins such as protein tyrosine phosphatases; Kelch-like ECH-associated protein 1, the regulatory protein for NF-E2-related factor 2; and the glycolysis enzyme glyceraldehyde-3-phosphate dehydrogenase. Through their actions on regulatory proteins, quinones affect various cell signaling pathways that promote and protect against inflammatory responses and cell damage. These actions vary with the specific quinone and its concentration. Effects of exposure to naphthoquinones as environmental chemicals can vary with the physical state, i.e., whether the quinone is particle bound or is in the vapor state. The exacerbation of pulmonary diseases by air pollutants can, in part, be attributed to quinone action.
Collapse
Affiliation(s)
- Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | |
Collapse
|
39
|
Abiko Y, Miura T, Phuc BH, Shinkai Y, Kumagai Y. Participation of covalent modification of Keap1 in the activation of Nrf2 by tert-butylbenzoquinone, an electrophilic metabolite of butylated hydroxyanisole. Toxicol Appl Pharmacol 2011; 255:32-9. [DOI: 10.1016/j.taap.2011.05.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/01/2022]
|
40
|
Matsunaga T, Shinoda Y, Inoue Y, Shimizu Y, Haga M, Endo S, El-Kabbani O, Hara A. Aldo-keto reductase 1C15 as a quinone reductase in rat endothelial cell: its involvement in redox cycling of 9,10-phenanthrenequinone. Free Radic Res 2011; 45:848-57. [PMID: 21623689 DOI: 10.3109/10715762.2011.585648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
9,10-Phenanthrenequinone (9,10-PQ), a redox-active quinone in diesel exhausts, triggers cellular apoptosis via reactive oxygen species (ROS) generation in its redox cycling. This study found that induction of CCAAT/enhancer-binding protein-homologous protein (CHOP), a pro-apoptotic factor derived from endoplasmic reticulum stress, participates in the mechanism of rat endothelial cell damage. The 9,10-PQ-mediated CHOP induction was strengthened by a proteasome inhibitor (MG132) and the MG132-induced cell sensitization to the 9,10-PQ toxicity was abolished by a ROS inhibitor, suggesting that ROS generation and consequent proteasomal dysfunction are responsible for the CHOP up-regulation caused by 9,10-PQ. Aldo-keto reductase (AKR) 1C15 expressed in rat endothelial cells reduced 9,10-PQ into 9,10-dihydroxyphenanthrene concomitantly with superoxide anion formation, implying its participation in evoking the 9,10-PQ-redox cycling. The 9,10-PQ-induced damage was augmented by AKR1C15 over-expression. 9,10-PQ also provoked the AKR1C15 up-regulation, which sensitized against the quinone toxicity. These results suggest the presence of a negative feedback loop exacerbating the quinone toxicity in rat endothelial cells.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Endo A, Sumi D, Iwamoto N, Kumagai Y. Inhibition of DNA binding activity of cAMP response element-binding protein by 1,2-naphthoquinone through chemical modification of Cys-286. Chem Biol Interact 2011; 192:272-7. [PMID: 21530497 DOI: 10.1016/j.cbi.2011.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/10/2011] [Accepted: 04/13/2011] [Indexed: 11/27/2022]
Abstract
1,2-Naphthoquinone (1,2-NQ) is an atmospheric electrophile that reacts covalently with protein thiols. Our previous study revealed that exposure of bovine aortic endothelial cells to 1,2-NQ causes covalent modification of cAMP response element-binding protein (CREB), thereby inhibiting its DNA binding activity and substantial gene expression of B-cell lymphoma-2 (Bcl-2) that is regulated by this transcription factor. In this study, we identified the modification sites of CREB that are associated with the decreased transcriptional activity. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis indicated that three amino acids (Cys-286, Lys-290, and Lys-319) were irreversibly modified by 1,2-NQ. Mutational analysis revealed that electrophilic modification of Cys-286, but not the other two amino acids, at the DNA binding domain is essential for the reduced CREB activity. Substitution of Cys-286 with tryptophan (C286W), which mimics CREB modification by 1,2-NQ, supported this notion. These results suggest that the covalent interaction of CREB with 1,2-NQ through Cys-286 blocks the DNA binding activity of CREB, resulting in the repression of CREB-regulated genes.
Collapse
Affiliation(s)
- Akiko Endo
- Doctoral Programs in Medical Sciences, Graduate School of Comprehensive Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
42
|
Miura T, Shinkai Y, Jiang HY, Iwamoto N, Sumi D, Taguchi K, Yamamoto M, Jinno H, Tanaka-Kagawa T, Cho AK, Kumagai Y. Initial Response and Cellular Protection through the Keap1/Nrf2 System during the Exposure of Primary Mouse Hepatocytes to 1,2-Naphthoquinone. Chem Res Toxicol 2011; 24:559-67. [DOI: 10.1021/tx100427p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | | | | | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hideto Jinno
- Division of Environmental Chemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Toshiko Tanaka-Kagawa
- Division of Environmental Chemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Arthur K. Cho
- Southern California Particle Center, University of California, Los Angeles, California 90095, United States
| | - Yoshito Kumagai
- Southern California Particle Center, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
43
|
Identification, cloning and characterization of an aldo-keto reductase from Trypanosoma cruzi with quinone oxido-reductase activity. Mol Biochem Parasitol 2010; 173:132-41. [PMID: 20595031 DOI: 10.1016/j.molbiopara.2010.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 01/08/2023]
Abstract
Drugs currently used for treatment of Trypanosoma cruzi infection, the ethiological agent of Chagas' disease, have shown side effects and variable efficiency. With the aim to describe parasite enzymes involved in the mechanisms of action of trypanocidal drugs and since it has been reported that reductases are crucial in their metabolism, we attempted to identify novel NADPH-dependent oxido-reductases from T. cruzi. The percolation of a soluble fraction of epimastigote lysates through a Cibacron Blue-Sepharose column followed by elution by NADPH yielded a predominant protein with an apparent molecular weight of 32 kDa. This protein was identified by MALDI-TOF as an aldo-keto reductase (AKR) and hence denominated TcAKR. TcAKR was mainly localized in the cytosol and was also present in trypomastigote and amastigote lysates. The recombinant TcAKR (recTcAKR) showed NADPH-dependent reductase activity with the AKR substrates 4-nitrobenzaldehyde and 2-dihydroxyacetone. The saturation curves for both substrates were consistent with the Michaelis-Menten model. We also tested whether recTcAKR may reduce naphthoquinones (NQ), since many of these compounds have displayed important trypanocidal activity. recTcAKR reduced o-NQ (1,2-naphthoquinone, 9,10-phenanthrenquinone and beta-lapachone) with concomitant generation of free radicals but did not exhibit affinity for p-NQ (5-hydroxy-1,4-naphthoquinone, 2-hydroxy-1,4-naphthoquinone, alpha-lapachone and menadione). The substrate saturation curve with o-NQ fitted to a sigmoidal curve, suggesting that recTcAKR presents a cooperative behavior. In addition, three peaks assigned to monomers, dimers and tetramers were obtained when recTcAKR was submitted to a Superose 12 gel chromatography column. TcAKR is the first member of the AKR family described in T. cruzi. Our results indicate that this enzyme may participate in the mechanisms of action of trypanocidal drugs.
Collapse
|
44
|
Nitric oxide mitigates apoptosis in human endothelial cells induced by 9,10-phenanthrenequinone: Role of proteasomal function. Toxicology 2010; 268:191-7. [DOI: 10.1016/j.tox.2009.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/11/2009] [Accepted: 12/11/2009] [Indexed: 11/19/2022]
|
45
|
Milko P, Roithová J. Redox Processes in the Iron(III)/9,10-Phenanthraquinone System. Inorg Chem 2009; 48:11734-42. [PMID: 19928842 DOI: 10.1021/ic901789h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Petr Milko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Praha 6, Czech Republic
| | - Jana Roithová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Praha 6, Czech Republic
- Department of Organic Chemistry, Faculty of Sciences, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|
46
|
Øpstad CL, Melø TB, Sliwka HR, Partali V. Formation of DMSO and DMF radicals with minute amounts of base. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.06.109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Matsunaga T, Arakaki M, Kamiya T, Endo S, El-Kabbani O, Hara A. Involvement of an aldo-keto reductase (AKR1C3) in redox cycling of 9,10-phenanthrenequinone leading to apoptosis in human endothelial cells. Chem Biol Interact 2009; 181:52-60. [PMID: 19442656 DOI: 10.1016/j.cbi.2009.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/01/2009] [Accepted: 05/01/2009] [Indexed: 11/28/2022]
Abstract
9,10-Phenanthrenequinone (9,10-PQ), a major quinone found in diesel exhaust particles, is considered to generate reactive oxygen species (ROS) through its redox cycling. Here, we show that 9,10-PQ evokes apoptosis in human aortic endothelial cells (HAECs) and its apoptotic signaling includes ROS generation and caspase activation. The 9,10-PQ-induced cytotoxicity was inhibited by ROS scavengers, indicating that intracellular ROS generation is responsible for the 9,10-PQ-induced apoptosis. Comparison of mRNA expression levels and kinetic constants in the 9,10-PQ reduction among 10 human reductases suggests that aldo-keto reductase 1C3 (AKR1C3) is a 9,10-PQ reductase in HAECs. In in vitro 9,10-PQ reduction by AKR1C3, the reduced product 9,10-dihydroxyphenanthrene and superoxide anions were formed, suggesting the enzymatic two-electron reduction of 9,10-PQ that thereby causes oxidative stress through its redox cycling. In addition, the participation of AKR1C3 in 9,10-PQ-redox cycling was confirmed by the data that AKR1C3 overexpression in endothelial cells augmented the ROS generation and cytotoxicity by 9,10-PQ, and the ROS scavengers inhibited the toxic effects. Pretreatment of the overexpressing cells with AKR1C3 inhibitors, flufenamic acid and indomethacin, suppressed the 9,10-PQ-induced GSH depletion. These results suggest that AKR1C3 is a key enzyme in the initial step of 9,10-PQ-induced cytotoxicity in HAECs.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Kumagai Y. Polycyclic Aromatic Hydrocarbon Quinones as Redox and Electrophilic Chemicals Contaminated in the Atmosphere. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshito Kumagai
- Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| |
Collapse
|
49
|
Chemiluminescence assay for quinones based on generation of reactive oxygen species through the redox cycle of quinone. Anal Bioanal Chem 2008; 393:1337-43. [DOI: 10.1007/s00216-008-2541-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/18/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
|
50
|
Imamura Y. [Structure and function of peroxisomal tetrameric carbonyl reductase]. YAKUGAKU ZASSHI 2008; 128:1665-72. [PMID: 18981702 DOI: 10.1248/yakushi.128.1665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this paper, the structure and function of a new tetrameric carbonyl reductase (TCR) is reviewed. TCRs were purified from rabbit and pig heart, using 4-benzoylpyridine as a substrate. Partial peptide sequencing and cDNA cloning of rabbit and pig TCRs revealed that both enzymes belonged to the short-chain dehydrogenase/reductase family and that their subunits consisted of 260 amino acid residues. Rabbit and pig TCRs catalyzed the reduction of alkyl phenyl ketones, alpha-dicarbonyl compounds, quinones and retinals. Both enzymes were potently inhibited by flavonoids and fatty acids. 9,10-Phenanthrenequinone, which is efficiently reduced by rabbit and pig TCRs, mediated the formation of superoxide radical through its redox cycling in pig heart. The C-terminal sequences of rabbit and pig TCRs comprised a type 1 peroxisomal targeting signal (PTS1) Ser-Arg-Leu, suggesting that the enzymes are localized in the peroxisome. In fact, pig TCR was targeted into the peroxisomal matrix, in the case of transfection of HeLa cells with vectors expressing the enzyme. However, when the recombinant pig TCR was directly introduced into HeLa cells, the enzyme was not targeted into the peroxisomal matrix. The crystal structure of recombinant pig TCR demonstrated that the C-terminal PTS1 of each subunit of the enzyme was buried in the interior of the tetrameric molecule. These findings indicate that pig TCR is imported into the peroxisome as a monomer and then forms an active tetramer within this organelle.
Collapse
Affiliation(s)
- Yorishige Imamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Japan.
| |
Collapse
|