1
|
Cao H, Xiong W, Zeng M, Hu L, Xu Y, Zhong W, Hu Y. Identification of potential characteristic genes in chronic skin infections through RNA sequencing and immunohistochemical analysis. Exp Ther Med 2024; 28:432. [PMID: 39347497 PMCID: PMC11425772 DOI: 10.3892/etm.2024.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
The objective of the present study was to perform RNA sequencing and immunohistochemical analysis on skin specimens obtained from healthy individuals and individuals afflicted with prolonged skin infections. Bioinformatics methodologies were used to scrutinize the RNA sequencing data with the intention of pinpointing distinctive gene signatures associated with chronic skin infections. Skin tissue samples were collected from 11 individuals (4 subjects healthy and 7 patients with chronic skin infections) at the Affiliated Hospital of Southwest Medical University (Luzhou, China). The iDEP tool identified differentially expressed genes (DEGs) with log2 (fold change) ≥2 and q-value ≤0.01. Functional enrichment analysis using Gene Ontology and KEGG databases via the oebiotech online tool was then performed to determine the biological functions and pathways related to these DEGs. A protein-protein interaction network of DEGs identified HIF1A as a potential key gene. Subsequent immunohistochemistry analyses were performed on the samples to assess any variations in HIF1A expression. A total of 900 DEGs, 365 upregulated and 535 downregulated, were observed between the normal and chronic infection groups. The identified DEGs were found to serve a role in various biological processes, including 'hypoxia adaptation', 'angiogenesis', 'cell adhesion' and 'regulation of positive cell migration'. Additionally, these genes were revealed to be involved in the 'TGF-β', 'PI3K-Akt' and 'IL-17' signaling pathways. HIF1A and nine other genes were identified as central nodes in the PPI network. HIF1A expression was higher in chronically infected skin samples than in healthy samples, indicating its potential as a novel research target.
Collapse
Affiliation(s)
- Hongying Cao
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Xiong
- Department of Emergency Medicine, Leshan People's Hospital, Leshan, Sichuan 614000, P.R. China
| | - Mei Zeng
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yan Xu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wu Zhong
- Department of Emergency Medicine, Sichuan Provincial Rehabilitation Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Pandian K, van Zonneveld AJ, Harms A, Hankemeier T. Metabolic alterations of endothelial cells under transient and persistent hypoxia: study using a 3D microvessels-on-chip model. Tissue Barriers 2024:2431416. [PMID: 39584359 DOI: 10.1080/21688370.2024.2431416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Numerous signaling pathways are activated during hypoxia to facilitate angiogenesis, promoting interactions among endothelial cells and initiating downstream signaling cascades. Although the pivotal role of the nitric oxide (NO) response pathway is well-established, the involvement of arginine-specific metabolism and bioactive lipid mechanisms in 3D flow-activated in vitro models remains less understood. In this study, we explored the levels of arginine-specific metabolites and bioactive lipids in human coronary artery endothelial cells (HCAECs) under both transient and persistent hypoxia. We compared targeted metabolite levels between a 2D static culture model and a 3D microvessels-on-chip model. Notably, we observed robust regulation of NO metabolites in both transient and persistent hypoxic conditions. In the 2D model under transient hypoxia, metabolic readouts of bioactive lipids revealed increased oxidative stress markers, a phenomenon not observed in the 3D microvessels. Furthermore, we made a novel discovery that the responses of bioactive lipids were regulated by hypoxia inducible factor-1α (HIF-1α) in the 2D cell culture model and partially by HIF-1α and flow-induced shear stress in the 3D microvessels. Immunostaining confirmed the HIF-1α-induced regulation under both hypoxic conditions. Real-time oxygen measurements in the 3D microvessels using an oxygen probe validated that oxygen levels were maintained in the 3D model. Overall, our findings underscore the critical regulatory roles of HIF-1α and shear stress in NO metabolites and bioactive lipids in both 2D and 3D cell culture models.
Collapse
Affiliation(s)
- Kanchana Pandian
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Amy Harms
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Wang X, Fan F, Hou Y, Meng X. Tile: Construction of a specific nanoprobe for scavenging ROS in hypobaric hypoxia induced brain injury of mice. Heliyon 2024; 10:e38958. [PMID: 39640698 PMCID: PMC11620081 DOI: 10.1016/j.heliyon.2024.e38958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
The prevention and treatment of hypobaric hypoxia brain injury (HHBI) remains an unprecedented challenge due to the complex oxidative stress response at the damage site. In this study, RuCO phthalocyanine compound (RuPc) and bovine serum albumin (BSA) were self-assembled to obtain RuPc-BSA nanoparticles for HHBI therapy. As a nanoprobe carrying and storing carbon monoxide (CO), RuPc-BSA delivers CO to pathologically damaged areas of the brain. CO specifically attaches itself to the heme functional groups on mitochondria and restricts the source of reactive oxygen species (ROS) generation. RuPc-BSA nanoparticles have been demonstrated in vitro to exhibit amazing stability as well as remarkable scavenging activity on hydroxyl radical, superoxide anion, and hydrogen peroxide. In vivo experiments showed that ROS levels in the brain of HHBI rats pretreated with RuPc-BSA decreased significantly, and neuronal function and oxidative stress levels were alleviated. Western blot and qRT-RCR results indicated that RuPc-BSA restricted the protein levels of Keap1, whereas enhanced the gene and protein levels of Nrf2. This study demonstrated that RuPc-BSA can ameliorate HHBI of mice by scavenging ROS partly via activating Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fuhan Fan
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| |
Collapse
|
4
|
Yuan Y, Zhao T, Gao W, Ye W, Chen Y, Sun D, Zhang Z. Reactive oxygen species derived from NADPH oxidase as signaling molecules regulate fatty acids and astaxanthin accumulation in Chromochloris zofingiensis. Front Microbiol 2024; 15:1387222. [PMID: 38741732 PMCID: PMC11089112 DOI: 10.3389/fmicb.2024.1387222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Abiotic stresses can increase the total fatty acid (TFA) and astaxanthin accumulation in microalgae. However, it remains unknown whether a unified signal transduction mechanism exists under different stresses. This study explored the link between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) and the accumulation of fatty acids and astaxanthin in Chromochloris zofingiensis under three abiotic stresses. Results showed significant increases in fatty acid, astaxanthin, and ROS levels under nitrogen deficiency, phosphorus deficiency, and high-salinity stress. The introduction of the NADPH oxidase inhibitor diphenyleneiodonium (DPI) decreased the content of these components. This underscores the pivotal role of NADPH oxidase-derived ROS in the accumulation of fatty acid and astaxanthin under abiotic stress. Analysis of transcriptomes across three conditions following DPI addition revealed 1,445 shared differentially expressed genes (DEGs). Enrichment analysis revealed that biotin, betalain, thiamine, and glucosinolate may be important in stress responses. The heatmap demonstrated that DPI notably suppressed gene expression in the fatty acid and carotenoid biosynthesis pathways. Our findings underscore the pivotal role of NADPH oxidase-derived ROS in the accumulation of fatty acid and astaxanthin under abiotic stresses.
Collapse
Affiliation(s)
- Yi Yuan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tiantian Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Weizheng Gao
- School of Life Sciences, Hebei University, Baoding, China
| | - Wenqi Ye
- School of Life Sciences, Hebei University, Baoding, China
| | - Yuling Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
5
|
Shah R, Ibis B, Kashyap M, Boussiotis VA. The role of ROS in tumor infiltrating immune cells and cancer immunotherapy. Metabolism 2024; 151:155747. [PMID: 38042522 PMCID: PMC10872310 DOI: 10.1016/j.metabol.2023.155747] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Reactive oxygen species (ROS) are a group of short-lived highly reactive molecules formed intracellularly from molecular oxygen. ROS can alter biochemical, transcriptional, and epigenetic programs and have an indispensable role in cellular function. In immune cells, ROS are mediators of specialized functions such as phagocytosis, antigen presentation, activation, cytolysis, and differentiation. ROS have a fundamental role in the tumor microenvironment (TME) where they are produced by immune cell-intrinsic and -extrinsic mechanisms. ROS can act as a double-edged sword with short exposures leading to activation in various innate and adaptative immune cells, and prolonged exposures, unopposed by redox balancing antioxidants leading to exhaustion, immunosuppression, and unresponsiveness to cancer immunotherapy. Due to its plasticity and impact on the anti-tumor function of immune cells, attempts are currently in process to harness ROS biology with the purpose to improve contemporary strategies of cancer immunotherapy. Here, we provide a short overview how ROS and various antioxidant systems impact on the function of innate and adaptive immune system cells with emphasis on the TME and immune-based therapies for cancer.
Collapse
Affiliation(s)
- Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Betul Ibis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Monisha Kashyap
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America.
| |
Collapse
|
6
|
Zhang L, Buonfiglio F, Fieß A, Pfeiffer N, Gericke A. Retinopathy of Prematurity-Targeting Hypoxic and Redox Signaling Pathways. Antioxidants (Basel) 2024; 13:148. [PMID: 38397746 PMCID: PMC10885953 DOI: 10.3390/antiox13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Retinopathy of prematurity (ROP) is a proliferative vascular ailment affecting the retina. It is the main risk factor for visual impairment and blindness in infants and young children worldwide. If left undiagnosed and untreated, it can progress to retinal detachment and severe visual impairment. Geographical variations in ROP epidemiology have emerged over recent decades, attributable to differing levels of care provided to preterm infants across countries and regions. Our understanding of the causes of ROP, screening, diagnosis, treatment, and associated risk factors continues to advance. This review article aims to present the pathophysiological mechanisms of ROP, including its treatment. Specifically, it delves into the latest cutting-edge treatment approaches targeting hypoxia and redox signaling pathways for this condition.
Collapse
Affiliation(s)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (L.Z.); (F.B.); (A.F.); (N.P.)
| |
Collapse
|
7
|
Vinkel J, Arenkiel B, Hyldegaard O. The Mechanisms of Action of Hyperbaric Oxygen in Restoring Host Homeostasis during Sepsis. Biomolecules 2023; 13:1228. [PMID: 37627293 PMCID: PMC10452474 DOI: 10.3390/biom13081228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The perception of sepsis has shifted over time; however, it remains a leading cause of death worldwide. Sepsis is now recognized as an imbalance in host cellular functions triggered by the invading pathogens, both related to immune cells, endothelial function, glucose and oxygen metabolism, tissue repair and restoration. Many of these key mechanisms in sepsis are also targets of hyperbaric oxygen (HBO2) treatment. HBO2 treatment has been shown to improve survival in clinical studies on patients with necrotizing soft tissue infections as well as experimental sepsis models. High tissue oxygen tension during HBO2 treatment may affect oxidative phosphorylation in mitochondria. Oxygen is converted to energy, and, as a natural byproduct, reactive oxygen species are produced. Reactive oxygen species can act as mediators, and both these and the HBO2-mediated increase in oxygen supply have the potential to influence the cellular processes involved in sepsis. The pathophysiology of sepsis can be explained comprehensively through resistance and tolerance to infection. We argue that HBO2 treatment may protect the host from collateral tissue damage during resistance by reducing neutrophil extracellular traps, inhibiting neutrophil adhesion to vascular endothelium, reducing proinflammatory cytokines, and halting the Warburg effect, while also assisting the host in tolerance to infection by reducing iron-mediated injury and upregulating anti-inflammatory measures. Finally, we show how inflammation and oxygen-sensing pathways are connected on the cellular level in a self-reinforcing and detrimental manner in inflammatory conditions, and with support from a substantial body of studies from the literature, we conclude by demonstrating that HBO2 treatment can intervene to maintain homeostasis.
Collapse
Affiliation(s)
- Julie Vinkel
- Department of Anesthesiology, Centre of Head and Orthopedics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bjoern Arenkiel
- Department of Anesthesiology, Centre of Head and Orthopedics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anesthesiology, Centre of Head and Orthopedics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv Ophthalmol 2023; 68:175-210. [PMID: 36427559 DOI: 10.1016/j.survophthal.2022.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading cause of visual impairment and childhood blindness worldwide. The disease is characterized by an early stage of retinal microvascular degeneration, followed by neovascularization that can lead to subsequent retinal detachment and permanent visual loss. Several factors play a key role during the different pathological stages of the disease. Oxidative and nitrosative stress and inflammatory processes are important contributors to the early stage of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion-induced neurovascular degeneration. Destructive neovascularization is driven by mediators of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced retinal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the revascularization of the avascular zone. This review focuses on current concepts about signaling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new potentially preventive and therapeutic modalities. A better understanding of the intricate molecular mechanisms underlying the pathogenesis of ROP should allow the development of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and facilitate physiological retinal vascular development.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal; Departamento de Oftalmologia, Hospital Cuf Descobertas, Lisboa, Portugal.
| | - Carlos Marques-Neves
- Centro de Estudos das Ci.¼ncias da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Hercília Guimarães
- Departamento de Ginecologia-Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal.
| |
Collapse
|
9
|
Quelhas P, Breton MC, Oliveira RC, Cipriano MA, Teixeira P, Cerski CT, Shivakumar P, Vieira SMG, Kieling CO, Verde I, Santos JLD. HIF-1alpha-pathway activation in cholangiocytes of patients with biliary atresia: An immunohistochemical/molecular exploratory study. J Pediatr Surg 2023; 58:587-594. [PMID: 36150932 DOI: 10.1016/j.jpedsurg.2022.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Biliary atresia is a neonatal disease characterized by choledochal obstruction and progressive cholangiopathy requiring liver transplantation in most patients. Hypoxia-ischemia affecting the biliary epithelium may lead to biliary obstruction. We hypothesized that ischemic cholangiopathy involving disruption of the peribiliary vascular plexus could act as a triggering event in biliary atresia pathogenesis. METHODS Liver and porta hepatis paraffin-embedded samples of patients with biliary atresia or intrahepatic neonatal cholestasis (controls) were immunohistochemically evaluated for HIF-1alpha-nuclear signals. Frozen histological samples were analyzed for gene expression in molecular profiles associated with hypoxia-ischemia. Prospective clinical-laboratory and histopathological data of biliary atresia patients and controls were reviewed. RESULTS Immunohistochemical HIF-1alpha signals localized to cholangiocytes were detected exclusively in liver specimens from biliary atresia patients. In 37.5% of liver specimens, HIF-1alpha signals were observed in biliary structures involving progenitor cell niches and peribiliary vascular plexus. HIF-1alpha signals were also detected in biliary remnants of 81.8% of porta hepatis specimens. Increased gene expression of molecules linked to REDOX status, biliary proliferation, and angiogenesis was identified in biliary atresia liver specimens. In addition, there was a trend towards decreased GSR expression levels in the HIF-1alpha-positive group compared to the HIF-1alpha-negative group. CONCLUSION Activation of the HIF-1alpha pathway may be associated with the pathogenesis of biliary atresia, and additional studies are necessary to confirm the significance of this finding. Ischemic cholangiopathy and REDOX status disturbance are putative explanations for HIF-1alpha activation. These findings may give rise to novel lines of clinical and therapeutic investigation in the BA field.
Collapse
Affiliation(s)
- Patrícia Quelhas
- Faculdade de Ciências da Saúde, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, Portugal
| | - Michele Claire Breton
- Faculdade de Ciências da Saúde, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, Portugal
| | - Rui Caetano Oliveira
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário, Universidade de Coimbra (SAP-CHUC), Portugal; Instituto de Biofísica, Faculdade de Medicina, Universidade de Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Portugal
| | - Maria Augusta Cipriano
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário, Universidade de Coimbra (SAP-CHUC), Portugal; Instituto de Biofísica, Faculdade de Medicina, Universidade de Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Portugal
| | - Paulo Teixeira
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário, Universidade de Coimbra (SAP-CHUC), Portugal; Instituto de Biofísica, Faculdade de Medicina, Universidade de Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Portugal
| | - Carlos Thadeu Cerski
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Pathology, Brazil
| | - Pranavkumar Shivakumar
- Divisions of Gastroenterology, Hepatology and Nutrition and The Liver Care Center at Cincinnati Children's Hospital Medical Center, Cincinnati, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Sandra Maria Gonçalves Vieira
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Pediatrics, Brazil; Unidade de Gastroenterologia e Hepatologia, Hospital de Clínicas de Porto Alegre (HCPA), Brazil; Programa de Transplante de Fígado Pediátrico, Hospital de Clínicas de Porto Alegre (HCPA), Brazil
| | - Carlos Oscar Kieling
- Unidade de Gastroenterologia e Hepatologia, Hospital de Clínicas de Porto Alegre (HCPA), Brazil
| | - Ignacio Verde
- Faculdade de Ciências da Saúde, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, Portugal
| | - Jorge Luiz Dos Santos
- Faculdade de Ciências da Saúde, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, Portugal.
| |
Collapse
|
10
|
Zhou Z, Wang Y, Hu P. Oxidation-Responsive Micelles for Drug Release Monitoring and Bioimaging of Inflammation Based on FRET Effect in vitro and in vivo. Int J Nanomedicine 2022; 17:2447-2457. [PMID: 35669000 PMCID: PMC9166312 DOI: 10.2147/ijn.s356202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose A new approach to monitor drug release and image inflammatory reactions in vitro and in vivo based on FRET mechanism was reported. Methods In this study, mixed micelles containing a synthesized fluorescent donor DAN-PPS-mPEG and its quencher DAB-PPS-mPEG were prepared. Their stabilities, self-assembling and oxidation-responsiveness towards oxidants were tested in vitro and in vivo. Results The conjugated polymers were synthesized and the morphological change and the fluorescent spectra of the prepared micellar system were measured. After incubating the DAN/DAB-PPS-mPEG mixed micelles with stimulated L929 fibroblast cells, the result of confocal laser microscopy showed fluorescence restoration of the micelles. Furthermore, an acute inflammatory injury mouse model was used to test the micelles in vivo. The micelles showed its ability to visualize the inflammatory site in the abdomen of the mice. Conclusion The results confirmed that DAN/DAB-PPS-mPEG mixed micelles can respond to oxidants and release encapsulated cargos with corresponding fluorescence restoration, and visualize the inflammatory cells in vitro and inflammatory reactions in vivo.
Collapse
Affiliation(s)
- Ziqiang Zhou
- College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Yanfang Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, People's Republic of China
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Martinvalet D, Walch M. Editorial: The Role of Reactive Oxygen Species in Protective Immunity. Front Immunol 2022; 12:832946. [PMID: 35145515 PMCID: PMC8821872 DOI: 10.3389/fimmu.2021.832946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/17/2023] Open
Affiliation(s)
- Denis Martinvalet
- Department of Biomedical Sciences, University of Padua, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- *Correspondence: Denis Martinvalet, ; Michael Walch,
| | - Michael Walch
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Denis Martinvalet, ; Michael Walch,
| |
Collapse
|
12
|
Bassoy EY, Walch M, Martinvalet D. Reactive Oxygen Species: Do They Play a Role in Adaptive Immunity? Front Immunol 2021; 12:755856. [PMID: 34899706 PMCID: PMC8653250 DOI: 10.3389/fimmu.2021.755856] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system protects the host from a plethora of microorganisms and toxins through its unique ability to distinguish self from non-self. To perform this delicate but essential task, the immune system relies on two lines of defense. The innate immune system, which is by nature fast acting, represents the first line of defense. It involves anatomical barriers, physiological factors as well as a subset of haematopoietically-derived cells generically call leukocytes. Activation of the innate immune response leads to a state of inflammation that serves to both warn about and combat the ongoing infection and delivers the antigenic information of the invading pathogens to initiate the slower but highly potent and specific second line of defense, the adaptive immune system. The adaptive immune response calls on T lymphocytes as well as the B lymphocytes essential for the elimination of pathogens and the establishment of the immunological memory. Reactive oxygen species (ROS) have been implicated in many aspects of the immune responses to pathogens, mostly in innate immune functions, such as the respiratory burst and inflammasome activation. Here in this mini review, we focus on the role of ROS in adaptive immunity. We examine how ROS contribute to T-cell biology and discuss whether this activity can be extrapolated to B cells.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- International Society of Liver Surgeons (ISLS), Cankaya Ankara, Turkey.,Departments of Immunology and Cancer Biology, College of Medicine and Science, Mayo Clinic, Scottsdale, AZ, United States
| | - Michael Walch
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, Fribourg, Switzerland
| | - Denis Martinvalet
- Department of Biomedical Sciences, University of Padua, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
13
|
Asgharian P, Tazehkand AP, Soofiyani SR, Hosseini K, Martorell M, Tarhriz V, Ahangari H, Cruz-Martins N, Sharifi-Rad J, Almarhoon ZM, Ydyrys A, Nurzhanyat A, Yessenbekova A, Cho WC. Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4393266. [PMID: 34777687 PMCID: PMC8580629 DOI: 10.1155/2021/4393266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is a lethal malignancy cancer, and its mortality rates have been increasing worldwide. Diagnosis of this cancer is complicated, as it does not often present symptoms, and most patients present an irremediable tumor having a 5-year survival rate after diagnosis. Regarding treatment, many concerns have also been raised, as most tumors are found at advanced stages. At present, anticancer compounds-rich foods have been utilized to control PC. Among such bioactive molecules, flavonoid compounds have shown excellent anticancer abilities, such as quercetin, which has been used as an adjunctive or alternative drug to PC treatment by inhibitory or stimulatory biological mechanisms including autophagy, apoptosis, cell growth reduction or inhibition, EMT, oxidative stress, and enhancing sensitivity to chemotherapy agents. The recognition that this natural product has beneficial effects on cancer treatment has boosted the researchers' interest towards more extensive studies to use herbal medicine for anticancer purposes. In addition, due to the expensive cost and high rate of side effects of anticancer drugs, attempts have been made to use quercetin but also other flavonoids for preventing and treating PC. Based on related studies, it has been found that the quercetin compound has significant effect on cancerous cell lines as well as animal models. Therefore, it can be used as a supplementary drug to treat a variety of cancers, particularly pancreatic cancer. This review is aimed at discussing the therapeutic effects of quercetin by targeting the molecular signaling pathway and identifying antigrowth, cell proliferation, antioxidative stress, EMT, induction of apoptotic, and autophagic features.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | | | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - Ablaikhanova Nurzhanyat
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
14
|
Wang K, Chen Q, Liu N, Zhang J, Pan X. Recent advances in, and challenges of, anti-angiogenesis agents for tumor chemotherapy based on vascular normalization. Drug Discov Today 2021; 26:2743-2753. [PMID: 34332098 DOI: 10.1016/j.drudis.2021.07.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022]
Abstract
A major problem associated with cancer treatment is resistance-prone chemotherapeutic drugs. An increasing number of studies have documented that the occurrence of resistance tends to be associated with abnormal blood vessels. In 2001, Jain proposed the vascular normalization theory, which was recently applied to the drug-resistant treatment of tumors in the clinic. Through the intervention of angiogenesis inhibitors, remodeling the structure and function of abnormal vessels can maximize the efficacy of chemotherapeutic drugs. In this review, we systematically describe the occurrence and progress of tumor angiogenesis, as well as the pathological characteristics of tumor blood vessels. Moreover, druggable targets for vascular normalization and the development of related inhibitors are also outlined.
Collapse
Affiliation(s)
- Kai Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Nanxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
15
|
Ullah K, Wu R. Hypoxia-Inducible Factor Regulates Endothelial Metabolism in Cardiovascular Disease. Front Physiol 2021; 12:670653. [PMID: 34290616 PMCID: PMC8287728 DOI: 10.3389/fphys.2021.670653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (ECs) form a physical barrier between the lumens and vascular walls of arteries, veins, capillaries, and lymph vessels; thus, they regulate the extravasation of nutrients and oxygen from the circulation into the perivascular space and participate in mechanisms that maintain cardiovascular homeostasis and promote tissue growth and repair. Notably, their role in tissue repair is facilitated, at least in part, by their dependence on glycolysis for energy production, which enables them to resist hypoxic damage and promote angiogenesis in ischemic regions. ECs are also equipped with a network of oxygen-sensitive molecules that collectively activate the response to hypoxic injury, and the master regulators of the hypoxia response pathway are hypoxia-inducible factors (HIFs). HIFs reinforce the glycolytic dependence of ECs under hypoxic conditions, but whether HIF activity attenuates or exacerbates the progression and severity of cardiovascular dysfunction varies depending on the disease setting. This review summarizes how HIF regulates the metabolic and angiogenic activity of ECs under both normal and hypoxic conditions and in a variety of diseases that are associated with cardiovascular complications.
Collapse
Affiliation(s)
- Karim Ullah
- Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rongxue Wu
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Mishra M, Panda M. Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic Res 2021; 55:671-687. [PMID: 33877010 DOI: 10.1080/10715762.2021.1914335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology is a rapidly developing technology in the twenty-first century. Nanomaterials are extensively used in numerous industries including cosmetics, food, medicines, industries, agriculture, etc. Along with its wide application toxicity is also reported from studies of various model organisms including Drosophila. The toxicity reflects cytotoxicity, genotoxicity, and teratogenicity. The current study correlates the toxicity as a consequence of reactive oxygen species (ROS) generated owing to the presence of nanoparticles with the living cell. ROS mainly includes hydroxyl ions, peroxide ions, superoxide anions, singlet oxygen, and hypochlorous acids. An elevated level of ROS can damage the cells by various means. To protect the body from excess ROS, living cells possess a set of antioxidant enzymes which includes peroxidase, glutathione peroxidase, and catalase. If the antioxidant enzymes cannot nullify the elevated ROS level than DNA damage, cell damage, cytotoxicity, apoptosis, and uncontrolled cell regulations occur resulting in abnormal physiological and genotoxic conditions. Herewith, we are reporting various morphological and physiological defects caused after nanoparticle treatment as a function of redox imbalance.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Mrutyunjaya Panda
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
17
|
Sharma S, Singh Y, Sandhir R, Singh S, Ganju L, Kumar B, Varshney R. Mitochondrial DNA mutations contribute to high altitude pulmonary edema via increased oxidative stress and metabolic reprogramming during hypobaric hypoxia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148431. [PMID: 33862004 DOI: 10.1016/j.bbabio.2021.148431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
High altitude pulmonary edema (HAPE) is experienced by non-acclimatized sea level individuals on exposure to high altitude hypoxic conditions. Available evidence suggests that genetic factors and perturbed mitochondrial redox status may play an important role in HAPE pathophysiology. However, the precise mechanism has not been fully understood. In the present study, sequencing of mitochondrial DNA (mtDNA) from HAPE subjects and acclimatized controls was performed to identify pathogenic mutations and to determine their role in HAPE. Hypobaric hypoxia induced oxidative stress and metabolic alterations were also assessed in HAPE subjects. mtDNA copy number, mitochondrial oxidative phosphorylation (mtOXPHOS) activity, mitochondrial biogenesis were measured to determine mitochondrial functions. The data revealed that the mutations in Complex I genes affects the secondary structure of protein in HAPE subjects. Further, increased oxidative stress during hypobaric hypoxia, reduced mitochondrial biogenesis and mtOXPHOS activity induced metabolic reprogramming appears to contribute to mitochondrial dysfunctions in HAPE individuals. Haplogroup analysis suggests that mtDNA haplogroup H2a2a1 has potential contribution in the pathobiology of HAPE in lowlanders. This study also suggests contribution of altered mitochondrial functions in HAPE susceptibility.
Collapse
Affiliation(s)
- Swati Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India; Department of Biochemistry, Basic Medical Sciences Block II, Panjab University, Chandigarh 160014, India
| | - Yamini Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India.
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block II, Panjab University, Chandigarh 160014, India
| | - Sayar Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Lilly Ganju
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
18
|
Kim H, Kwon S. Dual effects of hypoxia on proliferation and osteogenic differentiation of mouse clonal mesenchymal stem cells. Bioprocess Biosyst Eng 2021; 44:1831-1839. [PMID: 33821326 DOI: 10.1007/s00449-021-02563-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/28/2021] [Indexed: 11/30/2022]
Abstract
Mouse clonal mesenchymal stem cells (mc-MSCs) were cultured on a Cytodex 3 microcarrier in a spinner flask for a suspension culture under hypoxia condition to increase mass productivity. The hypoxia environment was established using 4.0 mM Na2SO3 with 10 μM or 100 µM CoCl2 for 24 h in a low glucose DMEM medium. As a result, the proliferation of mc-MSCs under hypoxic conditions was 1.56 times faster than the control group over 7 days. The gene expression of HIF-1a and VEGFA increased 4.62 fold and 2.07 fold, respectively. Furthermore, the gene expression of ALP, RUNX2, COL1A, and osteocalcin increased significantly by 9.55, 1.55, 2.29, and 2.53 times, respectively. In contrast, the expression of adipogenic differentiation markers, such as PPAR-γ and FABP4, decreased. These results show that the hypoxia environment produced by these chemicals in a suspension culture increases the proliferation of mc-MSCs and promotes the osteogenic differentiation of mc-MSCs.
Collapse
Affiliation(s)
- Hyoungki Kim
- Department of Biological Engineering, Inha University, Incheon, 22212, Korea.,Department of Biological Sciences and Biongineering, Inha University, Incheon, 22212, Korea
| | - Soonjo Kwon
- Department of Biological Engineering, Inha University, Incheon, 22212, Korea. .,Department of Biological Sciences and Biongineering, Inha University, Incheon, 22212, Korea.
| |
Collapse
|
19
|
Hosogi S, Marunaka Y, Ashihara E, Yamada T, Sumino A, Tanaka H, Puppulin L. Plasma membrane anchored nanosensor for quantifying endogenous production of H 2O 2 in living cells. Biosens Bioelectron 2021; 179:113077. [PMID: 33607416 DOI: 10.1016/j.bios.2021.113077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 12/31/2022]
Abstract
Hydrogen peroxide (H2O2) is one of the main second messengers involved in signaling pathways controlling cell metabolism. During tumorigenesis H2O2 is generated on the extracellular space by membrane-associated NADPH oxidases and superoxide dismutase to stimulate cell proliferation and preservation of the transformed state. Accordingly, a characteristic feature of malignant cells is overproduction of H2O2 in the extracellular milieu and the subsequent absorption in the cytosol. Since the most significant gradients of endogenous extracellular H2O2 can be observed only in a very shallow region of the fluid in contact with the plasma membrane, we show here the use of a newly designed nanosensor anchored to the outer cell surface and capable of quantifying H2O2 at nanometer distance from the membrane proteins responsible for its production. This biosensor is built upon gold nanoparticles functionalized with a H2O2-sensitive boronate compound that is probed using surface enhanced Raman spectroscopy (SERS). The highly localized information obtained on the cell surface by SERS analysis is combined with analytical methods of redox biology to estimate the associated levels of intracellular H2O2 responsible for cell signaling. The results obtained from A549 lung cancer cell line show localized spots on the cell surface at concentration up to 12 μM, associated to intracellular concentration up to 5.1 nM.
Collapse
Affiliation(s)
- Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan; Department of Molecular Cell Physiology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan; Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan; Research Institute for Clinical Physiology, Kyoto Industrial Health Association, 67 Kitatsuboi-cho, Nishino-kyo, Nakagyo-ku, Kyoto, 604-8472, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Ayumi Sumino
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan; Institute for Frontier Science Initiative, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan; Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan.
| |
Collapse
|
20
|
Calejo I, Costa-Almeida R, Reis RL, Gomes ME. In vitro temporal HIF-mediated deposition of osteochondrogenic matrix governed by hypoxia and osteogenic factors synergy. J Cell Physiol 2020; 236:3991-4007. [PMID: 33151579 DOI: 10.1002/jcp.30138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Musculoskeletal interfaces are naturally hypoxic. An understanding of key interactions occurring between different cell populations and their environment is critical for native tissue recapitulation. Here, an enthesis coculture model (preosteoblasts and tendon cells) was used to understand the influence of hypoxia (5% O2 ) and osteogenic medium (OM) supplementation in cells' phenotype modulation. In single cultures, preosteoblasts were found to undergo osteogenic impairment, while tendon cells underwent a maturation process through extracellular matrix (ECM) rescue. When in co-culture, hypoxia and osteoinduction promoted a temporal chondro/osteogenic pathway activation, as observed by an early deposition of cartilaginous ECM associated with HIF1A stabilization and RUNX2 activation, and later hypertrophic differentiation resulting from HIF2A translocation and SOX9 activation. Moreover, the presence of OM under hypoxia was shown to influence the extracellular ROS/HIF1A interplay. Overall, this study revealed a link between biochemical factors and cell-cell crosstalk, providing a molecular framework for hypoxic control and modulation of cells' fate toward enthesis-like phenotypes.
Collapse
Affiliation(s)
- Isabel Calejo
- 3B's Research Group (i3Bs)-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Barco Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group (i3Bs)-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Barco Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group (i3Bs)-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Barco Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group (i3Bs)-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Barco Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
21
|
Regulation of Vascular Calcification by Reactive Oxygen Species. Antioxidants (Basel) 2020; 9:antiox9100963. [PMID: 33049989 PMCID: PMC7599480 DOI: 10.3390/antiox9100963] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification is the deposition of hydroxyapatite crystals in the medial or intimal layers of arteries that is usually associated with other pathological conditions including but not limited to chronic kidney disease, atherosclerosis and diabetes. Calcification is an active, cell-regulated process involving the phenotype transition of vascular smooth muscle cells (VSMCs) from contractile to osteoblast/chondrocyte-like cells. Diverse triggers and signal transduction pathways have been identified behind vascular calcification. In this review, we focus on the role of reactive oxygen species (ROS) in the osteochondrogenic phenotype switch of VSMCs and subsequent calcification. Vascular calcification is associated with elevated ROS production. Excessive ROS contribute to the activation of certain osteochondrogenic signal transduction pathways, thereby accelerating osteochondrogenic transdifferentiation of VSMCs. Inhibition of ROS production and ROS scavengers and activation of endogenous protective mechanisms are promising therapeutic approaches in the prevention of osteochondrogenic transdifferentiation of VSMCs and subsequent vascular calcification. The present review discusses the formation and actions of excess ROS in different experimental models of calcification, and the potential of ROS-lowering strategies in the prevention of this deleterious condition.
Collapse
|
22
|
Tsamesidis I, Kazeli K, Lymperaki E, Pouroutzidou GK, Oikonomou IM, Komninou P, Zachariadis G, Reybier K, Pantaleo A, Kontonasaki E. Effect of Sintering Temperature of Bioactive Glass Nanoceramics on the Hemolytic Activity and Oxidative Stress Biomarkers in Erythrocytes. Cell Mol Bioeng 2020; 13:201-218. [PMID: 32426058 PMCID: PMC7225217 DOI: 10.1007/s12195-020-00614-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The nature of the surface is critical in determining the biological activity of silica powders. A novel correlation between toxicity and surface properties of bioactive glass ceramics (BGCs) synthesized via the sol-gel method was attempted in this study. METHODS The behavior of BGCs after their attachment to the surface of red blood cells (RBCs) was evaluated and their toxic effects were determined based on hemolysis, membrane injury via anti-phosphotyrosine immunoblot of Band 3, lipid peroxidation, potential to generate reactive oxygen species, and antioxidant enzyme production. In particular, three BGCs were synthesized and treated at three sintering temperatures (T1 = 835 °C, T2 = 1000 °C and T3 = 1100 °C) to investigate possible relation between surface charge or structure and hemolytic potential. RESULTS Their toxicity based on hemolysis was dose dependent, while BGC-T2 had the best hemocompatibility in compare with the other BGCs.No BGCs in dosages lower than 0.125 mg/mL could damage erythrocytes. On the other hand, all BGCs promoted the production of reactive oxygen species in certain concentrations, with the BGC-T2 producing the lowest ROS and increasing the glutathione levels in RBCs protecting their damage. CONCLUSIONS The results suggest that various factors such as size, a probable different proportion of surface silanols, a balanced mechanism between calcium and magnesium cellular uptake or the different crystalline nature may have contributed to this finding; however, future research is needed to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Present Address: Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, 31400 Toulouse, France
| | - Konstantina Kazeli
- Department of Biomedical Sciences, International Hellenic University, Thessaloníki, Greece
- Department of Medicine, Democritus University of Thrace, Alexandroupoli, Greece
| | - Evgenia Lymperaki
- Department of Biomedical Sciences, International Hellenic University, Thessaloníki, Greece
| | - Georgia K. Pouroutzidou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - Ilias M. Oikonomou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - Philomela Komninou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - George Zachariadis
- Department of Chemistry, Aristotle University, 54124 Thessaloníki, Greece
| | - Karine Reybier
- Present Address: Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, 31400 Toulouse, France
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| |
Collapse
|
23
|
Huang Y, Wang X, Lin H. The hypoxic microenvironment: a driving force for heterotopic ossification progression. Cell Commun Signal 2020; 18:20. [PMID: 32028956 PMCID: PMC7006203 DOI: 10.1186/s12964-020-0509-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
Heterotopic ossification (HO) refers to the formation of bone tissue outside the normal skeletal system. According to its pathogenesis, HO is divided into hereditary HO and acquired HO. There currently lack effective approaches for HO prevention or treatment. A deep understanding of its pathogenesis will provide promising strategies to prevent and treat HO. Studies have shown that the hypoxia-adaptive microenvironment generated after trauma is a potent stimulus of HO. The hypoxic microenvironment enhances the stability of hypoxia-inducible factor-1α (HIF-1α), which regulates a complex network including bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and neuropilin-1 (NRP-1), which are implicated in the formation of ectopic bone. In this review, we summarize the current understanding of the triggering role and underlying molecular mechanisms of the hypoxic microenvironment in the initiation and progression of HO, focusing mainly on HIF-1 and it's influenced genes BMP, VEGF, and NRP-1. A better understanding of the role of hypoxia in HO unveils novel therapeutic targets for HO that reduce the local hypoxic microenvironment and inhibit HIF-1α activity. Video Abstract. (MP4 52403 kb)
Collapse
Affiliation(s)
- Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xinyi Wang
- First Clinical Medical School, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 461 BaYi Avenue, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
24
|
Balogh E, Tóth A, Méhes G, Trencsényi G, Paragh G, Jeney V. Hypoxia Triggers Osteochondrogenic Differentiation of Vascular Smooth Muscle Cells in an HIF-1 (Hypoxia-Inducible Factor 1)-Dependent and Reactive Oxygen Species-Dependent Manner. Arterioscler Thromb Vasc Biol 2020; 39:1088-1099. [PMID: 31070451 DOI: 10.1161/atvbaha.119.312509] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective- Vascular calcification is associated with high risk of cardiovascular events and mortality. Osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) is the major cellular mechanism underlying vascular calcification. Because tissue hypoxia is a common denominator in vascular calcification, we investigated whether hypoxia per se triggers osteochondrogenic differentiation of VSMCs. Approach and Results- We studied osteochondrogenic differentiation of human aorta VSMCs cultured under normoxic (21% O2) and hypoxic (5% O2) conditions. Hypoxia increased protein expression of HIF (hypoxia-inducible factor)-1α and its target genes GLUT1 (glucose transporter 1) and VEGFA (vascular endothelial growth factor A) and induced mRNA and protein expressions of osteochondrogenic markers, that is, RUNX2 (runt-related transcription factor 2), SOX9 (Sry-related HMG box-9), OCN (osteocalcin) and ALP (alkaline phosphatase), and induced a time-dependent calcification of the extracellular matrix of VSMCs. HIF-1 inhibition by chetomin abrogated the effect of hypoxia on osteochondrogenic markers and abolished extracellular matrix calcification. Hypoxia triggered the production of reactive oxygen species, which was inhibited by chetomin. Scavenging reactive oxygen species by N-acetyl cysteine attenuated hypoxia-mediated upregulation of HIF-1α, RUNX2, and OCN protein expressions and inhibited extracellular matrix calcification, which effect was mimicked by a specific hydrogen peroxide scavenger sodium pyruvate and a mitochondrial reactive oxygen species inhibitor rotenone. Ex vivo culture of mice aorta under hypoxic conditions triggered calcification which was inhibited by chetomin and N-acetyl cysteine. In vivo hypoxia exposure (10% O2) increased RUNX2 mRNA levels in mice lung and the aorta. Conclusions- Hypoxia contributes to vascular calcification through the induction of osteochondrogenic differentiation of VSMCs in an HIF-1-dependent and mitochondria-derived reactive oxygen species-dependent manner.
Collapse
Affiliation(s)
- Enikő Balogh
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| | - Andrea Tóth
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology (G.M.), Faculty of Medicine, University of Debrecen, Hungary
| | - György Trencsényi
- Department of Nuclear Medicine (G.T.), Faculty of Medicine, University of Debrecen, Hungary
| | - György Paragh
- Department of Internal Medicine (G.P.), Faculty of Medicine, University of Debrecen, Hungary
| | - Viktória Jeney
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
25
|
Kobliakov VA. The Mechanisms of Regulation of Aerobic Glycolysis (Warburg Effect) by Oncoproteins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:1117-1128. [DOI: 10.1134/s0006297919100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Dalisson B, Barralet J. Bioinorganics and Wound Healing. Adv Healthc Mater 2019; 8:e1900764. [PMID: 31402608 DOI: 10.1002/adhm.201900764] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Wound dressings and the healing enhancement (increasing healing speed and quality) are two components of wound care that lead to a proper healing. Wound care today consists mostly of providing an optimal environment by removing waste and necrotic tissues from a wound, preventing infections, and keeping the wounds adequately moist. This is however often not enough to re-establish the healing process in chronic wounds; with the local disruption of vascularization, the local environment is lacking oxygen, nutrients, and has a modified ionic and molecular concentration which limits the healing process. This disruption may affect cellular ionic pumps, energy production, chemotaxis, etc., and will affect the healing process. Biomaterials for wound healing range from simple absorbents to sophisticated bioactive delivery vehicles. Often placing a material in or on a wound can change multiple parameters such as pH, ionic concentration, and osmolarity, and it can be challenging to pinpoint key mechanism of action. This article reviews the literature of several inorganic ions and molecules and their potential effects on the different wound healing phases and their use in new wound dressings.
Collapse
Affiliation(s)
| | - Jake Barralet
- Faculty of DentistryMcGill University Montreal H3A 1G1 QC Canada
- Division of OrthopaedicsDepartment of SurgeryFaculty of MedicineMcGill University Montreal H4A 0A9 QC Canada
| |
Collapse
|
27
|
Fan Z, Xu H. Recent Progress in the Biological Applications of Reactive Oxygen Species-Responsive Polymers. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1641515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhiyuan Fan
- Department of Chemistry, Tsinghua University, Key Lab of Organic Optoelectronics and Molecular Engineering, Beijing, P. R. China
| | - Huaping Xu
- Department of Chemistry, Tsinghua University, Key Lab of Organic Optoelectronics and Molecular Engineering, Beijing, P. R. China
| |
Collapse
|
28
|
Mitochondrial Entry of Cytotoxic Proteases: A New Insight into the Granzyme B Cell Death Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9165214. [PMID: 31249651 PMCID: PMC6556269 DOI: 10.1155/2019/9165214] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/08/2019] [Indexed: 02/03/2023]
Abstract
The mitochondria represent an integration and amplification hub for various death pathways including that mediated by granzyme B (GB), a granule enzyme expressed by cytotoxic lymphocytes. GB activates the proapoptotic B cell CLL/lymphoma 2 (Bcl-2) family member BH3-interacting domain death agonist (BID) to switch on the intrinsic mitochondrial death pathway, leading to Bcl-2-associated X protein (Bax)/Bcl-2 homologous antagonist/killer- (Bak-) dependent mitochondrial outer membrane permeabilization (MOMP), the dissipation of mitochondrial transmembrane potential (ΔΨm), and the production of reactive oxygen species (ROS). GB can also induce mitochondrial damage in the absence of BID, Bax, and Bak, critical for MOMP, indicating that GB targets the mitochondria in other ways. Interestingly, granzyme A (GA), GB, and caspase 3 can all directly target the mitochondrial respiratory chain complex I for ROS-dependent cell death. Studies of ROS biogenesis have revealed that GB must enter the mitochondria for ROS production, making the mitochondrial entry of cytotoxic proteases (MECP) an unexpected critical step in the granzyme death pathway. MECP requires an intact ΔΨm and is mediated though Sam50 and Tim22 channels in a mtHSP70-dependent manner. Preventing MECP severely compromises GB cytotoxicity. In this review, we provide a brief overview of the canonical mitochondrial death pathway in order to put into perspective this new insight into the GB action on the mitochondria to trigger ROS-dependent cell death.
Collapse
|
29
|
Abstract
Immune cell populations determine the balance between ongoing damage and repair following tissue injury. Cells responding to a tissue-damaged environment have significant bioenergetic and biosynthetic needs. In addition to supporting these needs, metabolic pathways govern the function of pro-repair immune cells, including regulatory T cells and tissue macrophages. In this Review, we explore how specific features of the tissue-damaged environment such as hypoxia, oxidative stress, and nutrient depletion serve as metabolic cues to promote or impair the reparative functions of immune cell populations. Hypoxia, mitochondrial DNA stress, and altered redox balance each contribute to mechanisms regulating the response to tissue damage. For example, hypoxia induces changes in regulatory T cell and macrophage metabolic profiles, including generation of 2-hydroxyglutarate, which inhibits demethylase reactions to modulate cell fate and function. Reactive oxygen species abundant in oxidative environments cause damage to mitochondrial DNA, initiating signaling pathways that likewise control pro-repair cell function. Nutrient depletion following tissue damage also affects pro-repair cell function through metabolic signaling pathways, specifically those sensitive to the redox state of the cell. The study of immunometabolism as an immediate sensor and regulator of the tissue-damaged environment provides opportunities to consider mechanisms that facilitate healthy repair of tissue injury.
Collapse
|
30
|
Sarsanti PAN, Sadikin M, Jusman SWA. Efforts to overcome hypoxia condition in Balb/c mouse macrophages after intraperitoneal SRBC immunization. MEDICAL JOURNAL OF INDONESIA 2019. [DOI: 10.13181/mji.v28i1.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Activated macrophages require increased oxygen to destroy foreign bodies, leading to an increase in the levels of reactive oxygen species (ROS). Therefore, macrophages would experience hypoxic and oxidative stress conditions at the same time. Thus, this study was aimed to evaluate the mechanism of the activated macrophages to overcoming this dual condition.METHODS The activated macrophages were harvested from the intraperitoneal cavities of 18 BALB/c mice immunized with 2% sheep red blood cells (SRBCs). The macrophage suspension was divided into four groups: control, 24, 48, and 72 hours after-immunization groups. The expressions of hypoxia-inducible factor (HIF)-1α, HIF-2α, and cytoglobin (Cygb), as markers for hypoxic condition, were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), whereas peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) protein as a marker for mitochondrial biogenesis and aerobic metabolism was measured with ELISA. The analysis of oxidative stress was conducted with the water-soluble tetrazolium salt test.RESULTS The HIF-1α mRNA expression was the highest at 24 hours, whereas the HIF-2α mRNA showed no increased expression during the observation. The Cygb mRNA decreased after 24 hours. The highest expressions of HIF-1α and HIF-2α proteins were detected at 72 hours, whereas the Cygb protein expression increased since 24 hours. The PGC-1α protein expression increased at 72 hours. The WST test showed the highest ROS level at 24 hours.CONCLUSIONS The macrophages were activated by SRBCs underwent dual hypoxia and oxidative stress condition simultaneously to overcome the foreign bodies. The macrophages overcame these stress conditions by increasing their aerobic metabolism.
Collapse
|
31
|
Mello T, Simeone I, Galli A. Mito-Nuclear Communication in Hepatocellular Carcinoma Metabolic Rewiring. Cells 2019; 8:cells8050417. [PMID: 31060333 PMCID: PMC6562577 DOI: 10.3390/cells8050417] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/24/2022] Open
Abstract
As the main metabolic and detoxification organ, the liver constantly adapts its activity to fulfill the energy requirements of the whole body. Despite the remarkable adaptive capacity of the liver, prolonged exposure to noxious stimuli such as alcohol, viruses and metabolic disorders results in the development of chronic liver disease that can progress to hepatocellular carcinoma (HCC), which is currently the second leading cause of cancer-related death worldwide. Metabolic rewiring is a common feature of cancers, including HCC. Altered mito-nuclear communication is emerging as a driving force in the metabolic reprogramming of cancer cells, affecting all aspects of cancer biology from neoplastic transformation to acquired drug resistance. Here, we explore relevant aspects (and discuss recent findings) of mito-nuclear crosstalk in the metabolic reprogramming of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tommaso Mello
- Clinical Gastroenterology Unit, Department of Biomedical Clinical and Experimental Sciences "Mario Serio", University of Florence, V.le Pieraccini 6, Florence 50129, Italy.
| | - Irene Simeone
- Clinical Gastroenterology Unit, Department of Biomedical Clinical and Experimental Sciences "Mario Serio", University of Florence, V.le Pieraccini 6, Florence 50129, Italy.
- University of Siena, 53100 Siena, Italy.
| | - Andrea Galli
- Clinical Gastroenterology Unit, Department of Biomedical Clinical and Experimental Sciences "Mario Serio", University of Florence, V.le Pieraccini 6, Florence 50129, Italy.
| |
Collapse
|
32
|
Sadiku P, Walmsley SR. Hypoxia and the regulation of myeloid cell metabolic imprinting: consequences for the inflammatory response. EMBO Rep 2019; 20:embr.201847388. [PMID: 30872317 PMCID: PMC6500960 DOI: 10.15252/embr.201847388] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/21/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Inflamed and infected tissue sites are characterised by oxygen and nutrient deprivation. The cellular adaptations to insufficient oxygenation, hypoxia, are mainly regulated by a family of transcription factors known as hypoxia-inducible factors (HIFs). The protein members of the HIF signalling pathway are critical regulators of both the innate and adaptive immune responses, and there is an increasing body of evidence to suggest that the elicited changes occur through cellular metabolic reprogramming. Here, we review the literature on innate immunometabolism to date and discuss the role of hypoxia in innate cell metabolic reprogramming, and how this determines immune responses.
Collapse
Affiliation(s)
- Pranvera Sadiku
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah R Walmsley
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
33
|
Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med 2019; 131:282-298. [PMID: 30572012 DOI: 10.1016/j.freeradbiomed.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
The chromatin structure of the mammalian genome must facilitate both precisely-controlled DNA replication together with tightly-regulated gene transcription. This necessarily involves complex mechanisms and processes which remain poorly understood. It has long been recognised that the epigenetic landscape becomes established during embryonic development and acts to specify and determine cell fate. In addition, the chromatin structure is highly dynamic and allows for both cellular reprogramming and homeostatic modulation of cell function. In this respect, the functions of epigenetic "erasers", which act to remove covalently-linked epigenetic modifications from DNA and histones are critical. The enzymatic activities of the TET and JmjC protein families have been identified as demethylases which act to remove methyl groups from DNA and histones, respectively. Further, they are characterised as members of the Fe(II)- and 2-oxoglutarate-dependent dioxygenase superfamily. This provides the intriguing possibility that their enzymatic activities may be modulated by cellular metabolism, oxygen availability and redox-based mechanisms, all of which are likely to display dynamic cell- and tissue-specific patterns of flux. Here we discuss the current evidence for such [O2]- and redox-dependent regulation of the TET and Jmjc demethylases and the potential physiological and pathophysiological functional consequences of such regulation.
Collapse
Affiliation(s)
- Nermina Lamadema
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Simon Burr
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom.
| |
Collapse
|
34
|
Huang YT, Liu CH, Yang YC, Aneja R, Wen SY, Huang CY, Kuo WW. ROS- and HIF1α-dependent IGFBP3 upregulation blocks IGF1 survival signaling and thereby mediates high-glucose-induced cardiomyocyte apoptosis. J Cell Physiol 2019; 234:13557-13570. [PMID: 30659610 DOI: 10.1002/jcp.28034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
Abstract
The prevalence of chronic hyperglycemia and its complications, imposing a critical burden on the worldwide economy and the global healthcare system, is a pressing issue. Mounting evidence indicates that oxidative stress and hypoxia, two noticeable features of hyperglycemia, play a joint crucial role in mediating cellular apoptosis. However, the underlying detailed molecular mechanism remains elusive. Triggered by the observation that insulin-like growth factor (IGF1)-binding protein 3 (IGFBP3) can mediate, in renal cells, high-glucose-induced apoptosis by elevating oxidative stress, we wish to, in this study, know whether or not the similar scenario holds in cardiac cells and, if so, to find its relevant molecular key players, thereby dissecting the underlying molecular pathway. Specifically, we used a combination of three different cellular sources (H9c2 cells, diabetic rats, and neonatal rat ventricular cardiomyocytes) as our model systems of study. We made use of Co-IP assay and western blot analysis in conjunction with loss-of-function reasoning, gain-of-function logic, and inhibitor treatment as our main analytical tools. As a result, briefly, our main findings are that hyperglycemia can induce cardiac IGFBP3 overexpression and secretion, that high levels of IGFBP3 can sequester IGF1 from IGF1 survival pathway, leading to apoptosis, and that IGFBP3 gene upregulation is hypoxia-inducible factor (HIF)1α-dependent and reactive oxygen species dependent. Piecing these findings together allows us to propose the improved molecular regulatory mechanism. In conclusion, we have established the molecular roles of IGFBP3, HIF1, and prolyl hydroxylase domain in connecting oxidative stress with hypoxia and in cellular apoptosis under hyperglycemia.
Collapse
Affiliation(s)
- Yao-Te Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chung-Hung Liu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yao-Chih Yang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Su-Ying Wen
- Division of Dermatology, Taipei City Hospital, Taipei, Taiwan
- Center for General Education, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
35
|
Grahovac J, Srdić-Rajić T, Francisco Santibañez J, Pavlović M, Čavić M, Radulović S. Telmisartan induces melanoma cell apoptosis and synergizes with vemurafenib in vitro by altering cell bioenergetics. Cancer Biol Med 2019; 16:247-263. [PMID: 31516746 PMCID: PMC6713633 DOI: 10.20892/j.issn.2095-3941.2018.0375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Despite recent advancements in targeted therapy and immunotherapies, prognosis for metastatic melanoma patients remains extremely poor. Development of resistance to previously effective treatments presents a serious challenge and new approaches for melanoma treatment are urgently needed. The objective of this study was to examine the effects of telmisartan, an AGTR1 inhibitor and a partial agonist of PPARγ, on melanoma cells as a potential agent for repurposing in melanoma treatment. Methods Expression of AGTR1 and PPARγ mRNA in melanoma patient tumor samples was examined in publicly available datasets and confirmed in melanoma cell lines by qRT-PCR. A panel of melanoma cell lines was tested in viability, apoptosis and metabolic assays in presence of telmisartan by flow cytometry and immunocytochemistry. A cytotoxic effect of combinations of telmisartan and targeted therapy vemurafenib was examined using the Chou-Talalay combination index method. Results Both AGTR1 and PPARγ mRNA were expressed in melanoma patient tumor samples and decreased compared to the expression in the healthy skin. In vitro, we found that telmisartan decreased melanoma cell viability by inducing cell apoptosis. Increased glucose uptake, but not utilization, in the presence of telmisartan caused the fission of mitochondria and release of reactive oxygen species. Telmisartan altered the cell bioenergetics, thereby synergizing with vemurafenib in vitro, and even sensitized vemurafenib-resistant cells to the treatment. Conclusions Given that the effective doses of telmisartan examined in our study can be administered to patients and that telmisartan is a widely used and safe antihypertensive drug, our findings provide the scientific rationale for testing its efficacy in treatment of melanoma progression.
Collapse
Affiliation(s)
- Jelena Grahovac
- Laboratory for Experimental Pharmacology, Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| | - Tatjana Srdić-Rajić
- Laboratory for Experimental Pharmacology, Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| | - Juan Francisco Santibañez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade 11000, Serbia.,Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago 8370854, Chile
| | - Marijana Pavlović
- Laboratory for Experimental Pharmacology, Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| | - Milena Čavić
- Laboratory for Experimental Pharmacology, Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| | - Siniša Radulović
- Laboratory for Experimental Pharmacology, Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| |
Collapse
|
36
|
Bonnitcha P, Grieve S, Figtree G. Clinical imaging of hypoxia: Current status and future directions. Free Radic Biol Med 2018; 126:296-312. [PMID: 30130569 DOI: 10.1016/j.freeradbiomed.2018.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
Abstract
Tissue hypoxia is a key feature of many important causes of morbidity and mortality. In pathologies such as stroke, peripheral vascular disease and ischaemic heart disease, hypoxia is largely a consequence of low blood flow induced ischaemia, hence perfusion imaging is often used as a surrogate for hypoxia to guide clinical diagnosis and treatment. Importantly, ischaemia and hypoxia are not synonymous conditions as it is not universally true that well perfused tissues are normoxic or that poorly perfused tissues are hypoxic. In pathologies such as cancer, for instance, perfusion imaging and oxygen concentration are less well correlated, and oxygen concentration is independently correlated to radiotherapy response and overall treatment outcomes. In addition, the progression of many diseases is intricately related to maladaptive responses to the hypoxia itself. Thus there is potentially great clinical and scientific utility in direct measurements of tissue oxygenation. Despite this, imaging assessment of hypoxia in patients is rarely performed in clinical settings. This review summarises some of the current methods used to clinically evaluate hypoxia, the barriers to the routine use of these methods and the newer agents and techniques being explored for the assessment of hypoxia in pathological processes.
Collapse
Affiliation(s)
- Paul Bonnitcha
- Northern and Central Clinical Schools, Faculty of Medicine, Sydney University, Sydney, NSW 2006, Australia; Chemical Pathology Department, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia.
| | - Stuart Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre and Sydney Medical School, University of Sydney, NSW 2050, Australia
| | - Gemma Figtree
- Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia; Cardiology Department, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
37
|
|
38
|
Fratantonio D, Cimino F, Speciale A, Virgili F. Need (more than) two to Tango: Multiple tools to adapt to changes in oxygen availability. Biofactors 2018; 44:207-218. [PMID: 29485192 DOI: 10.1002/biof.1419] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/11/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
Oxygen is a fundamental element for the life of a large number of living organisms allowing an efficient energetic utilization of substrates. Organisms relying on oxygen evolved complex structures for oxygen delivery and biochemical machineries dealing with its safe utilization and the ability to overcome the potentially harmful consequences of changes in oxygen availability. On fact, cells composing complex Eukaryotic organisms are set to live within an optimum narrow range of oxygen, quite specific for each cell type. Minute modifications of oxygen availability, either positive or negative, induce the expression of specific genes, the major actors of this responses being the transcription factors HIF and Nrf2 that control the attempt to cope with low oxygen (hypoxia) or to either high oxygen or to an oxygen "overflow," respectively. This review describes the interaction between these two transcription factors and their interaction with the transcription factor NF-κB acting as a pivotal determinant of final cell response. © 2018 BioFactors, 44(3):207-218, 2018.
Collapse
Affiliation(s)
- Deborah Fratantonio
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Fabio Virgili
- Council for Agricultural Research and Economics-Food and Nutrition Research Centre (CREA-AN), Rome, Italy
| |
Collapse
|
39
|
Abstract
Kidney cell death plays a key role in the progression of life-threatening renal diseases, such as acute kidney injury and chronic kidney disease. Injured and dying epithelial and endothelial cells take part in complex communication with the innate immune system, which drives the progression of cell death and the decrease in renal function. To improve our understanding of kidney cell death dynamics and its impact on renal disease, a study approach is needed that facilitates the visualization of renal function and morphology in real time. Intravital multiphoton microscopy of the kidney has been used for more than a decade and made substantial contributions to our understanding of kidney physiology and pathophysiology. It is a unique tool that relates renal structure and function in a time- and spatial-dependent manner. Basic renal function, such as microvascular blood flow regulation and glomerular filtration, can be determined in real time and homeostatic alterations, which are linked inevitably to cell death and can be depicted down to the subcellular level. This review provides an overview of the available techniques to study kidney dysfunction and inflammation in terms of cell death in vivo, and addresses how this novel approach can be used to improve our understanding of cell death dynamics in renal disease.
Collapse
|
40
|
Xiao Y, Li C, Gu M, Wang H, Chen W, Luo G, Yang G, Zhang Z, Zhang Y, Xian G, Li Z, Sheng P. Protein Disulfide Isomerase Silence Inhibits Inflammatory Functions of Macrophages by Suppressing Reactive Oxygen Species and NF-κB Pathway. Inflammation 2018; 41:614-625. [DOI: 10.1007/s10753-017-0717-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Barben M, Samardzija M, Grimm C. The Role of Hypoxia, Hypoxia-Inducible Factor (HIF), and VEGF in Retinal Angiomatous Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:177-183. [PMID: 29721942 DOI: 10.1007/978-3-319-75402-4_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In industrialized countries, age-related macular degeneration (AMD) is the leading cause of blindness in elderly people. Hallmarks of the non-neovascular (dry) form of AMD are the formation of drusen and geographic atrophy, whereas the exudative (wet) form of the disease is characterized by invading blood vessels. In retinal angiomatous proliferation (RAP), a special form of wet AMD, intraretinal vessels grow from the deep plexus into the subretinal space. Little is known about the mechanisms leading to intraretinal neovascularization, but age-related changes such as reduction of choroidal blood flow, accumulation of drusen, and thickening of the Bruch's membrane may lead to reduced oxygen availability in photoreceptors. Such a chronic hypoxic situation may induce several cellular response pathways including the stabilization of hypoxia-inducible factors (HIFs) and the production of angiogenic factors, such as vascular endothelial growth factor (VEGF). Here, we discuss the potential contribution of hypoxia and HIFs in RAP disease pathology and in some mouse models for subretinal neovascularization.
Collapse
Affiliation(s)
- Maya Barben
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistr. 14, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistr. 14, 8952, Schlieren, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistr. 14, 8952, Schlieren, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Fan J, Zheng L. Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation. J Biosci Bioeng 2017; 124:302-308. [DOI: 10.1016/j.jbiosc.2017.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/10/2017] [Indexed: 01/19/2023]
|
43
|
Low temperature plasma induces angiogenic growth factor via up-regulating hypoxia-inducible factor 1α in human dermal fibroblasts. Arch Biochem Biophys 2017; 630:9-17. [PMID: 28750820 DOI: 10.1016/j.abb.2017.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023]
Abstract
Numerous studies on the application of low temperature plasma (LTP) have produced impressive results, including antimicrobial, antitumor, and wound healing effects. Although LTP research has branched out to include medical applications, the detailed effects and working mechanisms of LTP on wound healing have not been fully investigated. Here, we investigated the potential effect of inducing growth factor after exposure to LTP and demonstrated the increased expression of angiogenic growth factor mediated by LTP-induced HIF1α expression in primary cultured human dermal fibroblasts. In cell viability assays, fibroblast viability was reduced 6 h and 24 h after LTP treatment for only 5 min, and pre-treating with NAC, a ROS scavenger, prevented cell loss. Fibroblast migration significantly increased at 6 h and 24 h in scratch wound healing assays, the expression of cytokines significantly changed, and regulatory growth factors were induced at 6 h and 24 h after exposure to LTP in RT-PCR or ELISAs. Specifically, LTP treatment significantly induced the expression of HIF1α, an upstream regulator of angiogenesis. Pre-treatment with the inhibitor CAY10585 abolished HIF1α expression and prevented LTP-induced angiogenic growth factor production according to immunoblotting, immunocytochemistry, and ELISA results. Taken together, our results provide information on the molecular mechanism by which LTP application may promote angiogenesis and will aid in developing methods to improve wound healing.
Collapse
|
44
|
Janocha AJ, Comhair SAA, Basnyat B, Neupane M, Gebremedhin A, Khan A, Ricci KS, Zhang R, Erzurum SC, Beall CM. Antioxidant defense and oxidative damage vary widely among high-altitude residents. Am J Hum Biol 2017; 29. [PMID: 28726295 DOI: 10.1002/ajhb.23039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/13/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES People living at high altitude experience unavoidable low oxygen levels (hypoxia). While acute hypoxia causes an increase in oxidative stress and damage despite higher antioxidant activity, the consequences of chronic hypoxia are poorly understood. The aim of the present study is to assess antioxidant activity and oxidative damage in high-altitude natives and upward migrants. METHODS Individuals from two indigenous high-altitude populations (Amhara, n = 39), (Sherpa, n = 34), one multigenerational high-altitude population (Oromo, n = 42), one upward migrant population (Nepali, n = 12), and two low-altitude reference populations (Amhara, n = 29; Oromo, n = 18) provided plasma for measurement of superoxide dismutase (SOD) activity as a marker of antioxidant capacity, and urine for measurement of 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a marker of DNA oxidative damage. RESULTS High-altitude Amhara and Sherpa had the highest SOD activity, while highland Oromo and Nepalis had the lowest among high-altitude populations. High-altitude Amhara had the lowest DNA damage, Sherpa intermediate levels, and high-altitude Oromo had the highest. CONCLUSIONS High-altitude residence alone does not associate with high antioxidant defenses; residence length appears to be influential. The single-generation upward migrant sample had the lowest defense and nearly the highest DNA damage. The two high-altitude resident samples with millennia of residence had higher defenses than the two with multiple or single generations of residence.
Collapse
Affiliation(s)
- Allison J Janocha
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195
| | - Suzy A A Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195
| | - Buddha Basnyat
- Oxford University Clinical Research Unit-Nepal, Kathmandu, Nepal
| | | | - Amha Gebremedhin
- Department of Internal Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Anam Khan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195
| | - Kristin S Ricci
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195
| | - Renliang Zhang
- Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195
| | - Serpil C Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195.,Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, 44195
| | - Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, Ohio, 44106
| |
Collapse
|
45
|
Protective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12) Cells. Molecules 2017; 22:molecules22071122. [PMID: 28684704 PMCID: PMC6152301 DOI: 10.3390/molecules22071122] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson’s disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated the antioxidative effect and underlying molecular mechanisms of quercetin on PC-12 cells. We found that PC-12 cells pretreated with quercetin exhibited an increased cell viability and reduced lactate dehydrogenase (LDH) release when exposed to hydrogen peroxide (H2O2). The significantly-alleviated intracellular reactive oxygen species (ROS), malondialdehyde (MDA), and lipoperoxidation of the cell membrane of PC-12 cells induced by H2O2 were observed in the quercetin pretreated group. Furthermore, quercetin pretreatment markedly reduced the apoptosis of PC-12 cells and hippocampal neurons. The inductions of antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in PC-12 cells exposed to H2O2 were significantly reduced by preatment with quercetin. In addition, quercetin pretreatment significantly increased Bcl-2 expression, and reduced Bax, cleaved caspase-3 and p53 expressions. In conclusion, this study demonstrated that quercetin exhibited a protective effect against oxidative stress-induced apoptosis in PC-12 cells. Our findings suggested that quercetin may be developed as a novel therapeutic agent for neurodegenerative diseases induced by oxidative stress.
Collapse
|
46
|
Chen N, Wu M, Tang GP, Wang HJ, Huang CX, Wu XJ, He Y, Zhang B, Huang CH, Liu H, Wang WM, Wang HL. Effects of Acute Hypoxia and Reoxygenation on Physiological and Immune Responses and Redox Balance of Wuchang Bream ( Megalobrama amblycephala Yih, 1955). Front Physiol 2017. [PMID: 28642716 PMCID: PMC5462904 DOI: 10.3389/fphys.2017.00375] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To study Megalobrama amblycephala adaption to water hypoxia, the changes in physiological levels, innate immune responses, redox balance of M.amblycephala during hypoxia were investigated in the present study. When M. amblycephala were exposed to different dissolved oxygen (DO) including control (DO: 5.5 mg/L) and acute hypoxia (DO: 3.5 and 1.0 mg/L, respectively), hemoglobin (Hb), methemoglobin (MetHb), glucose, Na+, succinatedehydrogenase (SDH), lactate, interferon alpha (IFNα), and lysozyme (LYZ), except hepatic glycogen and albumin gradually increased with the decrease of DO level. When M. amblycephala were exposed to different hypoxia time including 0.5 and 6 h (DO: 3.5 mg/L), and then reoxygenation for 24 h after 6 h hypoxia, Hb, MetHb, glucose, lactate, and IFNα, except Na+, SDH, hepatic glycogen, albumin, and LYZ increased with the extension of hypoxia time, while the above investigated indexes (except albumin, IFNα, and LYZ) decreased after reoxygenation. On the other hand, the liver SOD, CAT, hydrogen peroxide (H2O2), and total ROS were all remained at lower levels under hypoxia stress. Finally, Hif-1α protein in the liver, spleen, and gill were increased with the decrease of oxygen concentration and prolongation of hypoxia time. Interestingly, one Hsp70 isoforms mediated by internal ribozyme entry site (IRES) named junior Hsp70 was only detected in liver, spleen and gill. Taken together, these results suggest that hypoxia affects M. amblycephala physiology and reduces liver oxidative stress. Hypoxia-reoxygenation stimulates M. amblycephala immune parameter expressions, while Hsp70 response to hypoxia is tissue-specific.
Collapse
Affiliation(s)
- Nan Chen
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Meng Wu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Guo-Pan Tang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China.,Laboratory of Freshwater Animal Breeding, College of Animal Science and Technology, Henan University of Animal Husbandry and EconomyZhengzhou, China
| | - Hui-Juan Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Chun-Xiao Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Xin-Jie Wu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Yan He
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Bao Zhang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Cui-Hong Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Wei-Min Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| |
Collapse
|
47
|
Affiliation(s)
- Claude A. Piantadosi
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Hagir B. Suliman
- Departments of Anesthesiology and Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
48
|
Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9208489. [PMID: 28194256 PMCID: PMC5286467 DOI: 10.1155/2017/9208489] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress.
Collapse
|
49
|
Cheong HI, Asosingh K, Stephens OR, Queisser KA, Xu W, Willard B, Hu B, Dermawan JKT, Stark GR, Naga Prasad SV, Erzurum SC. Hypoxia sensing through β-adrenergic receptors. JCI Insight 2016; 1:e90240. [PMID: 28018974 DOI: 10.1172/jci.insight.90240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Life-sustaining responses to low oxygen, or hypoxia, depend on signal transduction by HIFs, but the underlying mechanisms by which cells sense hypoxia are not completely understood. Based on prior studies suggesting a link between the β-adrenergic receptor (β-AR) and hypoxia responses, we hypothesized that the β-AR mediates hypoxia sensing and is necessary for HIF-1α accumulation. Beta blocker treatment of mice suppressed hypoxia induction of renal HIF-1α accumulation, erythropoietin production, and erythropoiesis in vivo. Likewise, beta blocker treatment of primary human endothelial cells in vitro decreased hypoxia-mediated HIF-1α accumulation and binding to target genes and the downstream hypoxia-inducible gene expression. In mechanistic studies, cAMP-activated PKA and/or GPCR kinases (GRK), which both participate in β-AR signal transduction, were investigated. Direct activation of cAMP/PKA pathways did not induce HIF-1α accumulation, and inhibition of PKA did not blunt HIF-1α induction by hypoxia. In contrast, pharmacological inhibition of GRK, or expression of a GRK phosphorylation-deficient β-AR mutant in cells, blocked hypoxia-mediated HIF-1α accumulation. Mass spectrometry-based quantitative analyses revealed a hypoxia-mediated β-AR phosphorylation barcode that was different from the classical agonist phosphorylation barcode. These findings indicate that the β-AR is fundamental to the molecular and physiological responses to hypoxia.
Collapse
Affiliation(s)
- Hoi I Cheong
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kewal Asosingh
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Olivia R Stephens
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kimberly A Queisser
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Weiling Xu
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Belinda Willard
- Proteomics and Metabolomics Laboratory, Lerner Research Institute
| | - Bo Hu
- Department of Quantitative Health Sciences
| | | | | | | | - Serpil C Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
50
|
Zhao B, Guan H, Liu JQ, Zheng Z, Zhou Q, Zhang J, Su LL, Hu DH. Hypoxia drives the transition of human dermal fibroblasts to a myofibroblast-like phenotype via the TGF-β1/Smad3 pathway. Int J Mol Med 2016; 39:153-159. [PMID: 27909731 PMCID: PMC5179176 DOI: 10.3892/ijmm.2016.2816] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 11/23/2016] [Indexed: 12/21/2022] Open
Abstract
Keloids, partially considered as benign tumors, are characterized by the overgrowth of fibrosis beyond the boundaries of the wound and are regulated mainly by transforming growth factor (TGF)-β1, which induces the transition of fibroblasts to myofibroblasts. Hypoxia is an important driving force in the development of lung and liver fibrosis by activating hypoxia inducible factor-1α and stimulating epithelial-mesenchymal transition. However, it is unknown whether and hypoxia can influence human dermal scarring. The aim of this study was to investigate whether hypoxia drives the transition of dermal fibroblasts to myofibroblasts and to clarify the potential transduction mechanisms involved. First, we observed that keloids are a relatively hypoxic tissue. Second, we found that hypoxia drives the transition of normal dermal fibroblasts to a myofibroblast-like phenotype [high expression of α-smooth muscle actin (α-SMA) and collagen I and III]. Finally, hypoxia effectively facilitated the nuclear import of the Smad2 and Smad3 complex, while blockade with the Smad3 inhibitor, SIS3, significantly impaired the expression of hypoxia-induced fibrosis-related molecules. Taken together, to the best of our knowledge, this study demonstrates for the first time that hypoxia facilitates the transition of dermal fibroblasts to myofibroblasts through the activation of the TGF-β1/Smad3 signaling pathway and our findings may provide a potential target for the treatment of keloids.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jia-Qi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin-Lin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Da-Hai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|