1
|
Tang J, Alford A, Leung G, Tully M, Shi R. Neuroprotection by acrolein sequestration through exogenously applied scavengers and endogenous enzymatic enabling strategies in mouse EAE model. Sci Rep 2024; 14:6027. [PMID: 38472318 PMCID: PMC10933361 DOI: 10.1038/s41598-024-56035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
We have previously shown that the pro-oxidative aldehyde acrolein is a critical factor in MS pathology. In this study, we found that the acrolein scavenger hydralazine (HZ), when applied from the day of induction, can suppress acrolein and alleviate motor and sensory deficits in a mouse experimental autoimmune encephalomyelitis (EAE) model. Furthermore, we also demonstrated that HZ can alleviate motor deficits when applied after the emergence of MS symptoms, making potential anti-acrolein treatment a more clinically relevant strategy. In addition, HZ can reduce both acrolein and MPO, suggesting a connection between acrolein and inflammation. We also found that in addition to HZ, phenelzine (PZ), a structurally distinct acrolein scavenger, can mitigate motor deficits in EAE when applied from the day of induction. This suggests that the likely chief factor of neuroprotection offered by these two structurally distinct acrolein scavengers in EAE is their common feature of acrolein neutralization. Finally, up-and-down regulation of the function of aldehyde dehydrogenase 2 (ALDH2) in EAE mice using either a pharmacological or genetic strategy led to correspondent motor and sensory changes. This data indicates a potential key role of ALDH2 in influencing acrolein levels, oxidative stress, inflammation, and behavior in EAE. These findings further consolidate the critical role of aldehydes in the pathology of EAE and its mechanisms of regulation. This is expected to reinforce and expand the possible therapeutic targets of anti-aldehyde treatment to achieve neuroprotection through both endogenous and exogenous manners.
Collapse
Affiliation(s)
- Jonathan Tang
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Anna Alford
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Gary Leung
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Melissa Tully
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
- MSTP Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Nègre-Salvayre A, Salvayre R. Reactive Carbonyl Species and Protein Lipoxidation in Atherogenesis. Antioxidants (Basel) 2024; 13:232. [PMID: 38397830 PMCID: PMC10886358 DOI: 10.3390/antiox13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis is a multifactorial disease of medium and large arteries, characterized by the presence of lipid-rich plaques lining the intima over time. It is the main cause of cardiovascular diseases and death worldwide. Redox imbalance and lipid peroxidation could play key roles in atherosclerosis by promoting a bundle of responses, including endothelial activation, inflammation, and foam cell formation. The oxidation of polyunsaturated fatty acids generates various lipid oxidation products such as reactive carbonyl species (RCS), including 4-hydroxy alkenals, malondialdehyde, and acrolein. RCS covalently bind to nucleophilic groups of nucleic acids, phospholipids, and proteins, modifying their structure and activity and leading to their progressive dysfunction. Protein lipoxidation is the non-enzymatic post-translational modification of proteins by RCS. Low-density lipoprotein (LDL) oxidation and apolipoprotein B (apoB) modification by RCS play a major role in foam cell formation. Moreover, oxidized LDLs are a source of RCS, which form adducts on a huge number of proteins, depending on oxidative stress intensity, the nature of targets, and the availability of detoxifying systems. Many systems are affected by lipoxidation, including extracellular matrix components, membranes, cytoplasmic and cytoskeletal proteins, transcription factors, and other components. The mechanisms involved in lipoxidation-induced vascular dysfunction are not fully elucidated. In this review, we focus on protein lipoxidation during atherogenesis.
Collapse
Affiliation(s)
- Anne Nègre-Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| | - Robert Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| |
Collapse
|
3
|
Lankin VZ, Sharapov MG, Tikhaze AK, Goncharov RG, Antonova OA, Konovalova GG, Novoselov VI. Dicarbonyl-Modified Low-Density Lipoproteins Are Key Inducers of LOX-1 and NOX1 Gene Expression in the Cultured Human Umbilical Vein Endotheliocytes. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2125-2136. [PMID: 38462455 DOI: 10.1134/s0006297923120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 03/12/2024]
Abstract
Expression of LOX-1 and NOX1 genes in the human umbilical vein endotheliocytes (HUVECs) cultured in the presence of low-density lipoproteins (LDL) modified with various natural dicarbonyls was investigated for the first time. It was found that among the investigated dicarbonyl-modified LDLs (malondialdehyde (MDA)-modified LDLs, glyoxal-modified LDLs, and methylglyoxal-modified LDLs), the MDA-modified LDLs caused the greatest induction of the LOX-1 and NOX1 genes, as well as of the genes of antioxidant enzymes and genes of proapoptotic factors in HUVECs. Key role of the dicarbonyl-modified LDLs in the molecular mechanisms of vascular wall damage and endothelial dysfunction is discussed.
Collapse
Affiliation(s)
- Vadim Z Lankin
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Alla K Tikhaze
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Ruslan G Goncharov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Antonova
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Galina G Konovalova
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Vladimir I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
4
|
Zhang C, Zhai T, Zhu J, Wei D, Ren S, Yang Y, Gao F, Zhao L. Research Progress of Antioxidants in Oxidative Stress Therapy after Spinal Cord Injury. Neurochem Res 2023; 48:3473-3484. [PMID: 37526867 DOI: 10.1007/s11064-023-03993-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
Spinal cord injury (SCI) is a serious problem in the central nervous system resulting in high disability and mortality with complex pathophysiological mechanisms. Oxidative stress is one of the main secondary reactions of SCI, and its main pathophysiological marker is the production of excess reactive oxygen species. The overproduction of reactive oxygen species and insufficient antioxidant capacity lead to the occurrence of oxidative stress and neuroinflammation, and the dysregulation of oxidative stress and neuroinflammation leads to further aggravation of damage. Oxidative stress can initiate a variety of inflammatory and apoptotic pathways, and targeted antioxidant therapy can greatly reduce oxidative stress and reduce neuroinflammation, which has a certain positive effect on rehabilitation and prognosis in SCI. This article reviewed the research on different types of antioxidants and related treatments in SCI, focusing on the mechanisms of oxidative stress.
Collapse
Affiliation(s)
- Can Zhang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Jinghui Zhu
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Dongmin Wei
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Shuting Ren
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Yanling Yang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Feng Gao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Lin Zhao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
5
|
Koike S, Saito Y, Ogasawara Y. Novel Fluorometric Assay of Antiglycation Activity Based on Methylglyoxal-Induced Protein Carbonylation. Antioxidants (Basel) 2023; 12:2030. [PMID: 38136150 PMCID: PMC10740428 DOI: 10.3390/antiox12122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced glycation end products (AGEs), which can have multiple structures, are formed at the sites where the carbonyl groups of reducing sugars bind to the free amino groups of proteins through the Maillard reaction. Some AGE structures exhibit fluorescence, and this fluorescence has been used to measure the formation and quantitative changes in carbonylated proteins. Recently, fluorescent AGEs have also been used as an index for the evaluation of compounds that inhibit protein glycation. However, the systems used to generate fluorescent AGEs from the reaction of reducing sugars and proteins used for the evaluation of antiglycation activity have not been determined through appropriate research; thus, problems remain regarding sensitivity, quantification, and precision. In the present study, using methylglyoxal (MGO), a reactive carbonyl compound to induce glycation, a comparative analysis of the mechanisms of formation of fluorescent substances from several types of proteins was conducted. The analysis identified hen egg lysozyme (HEL) as a protein that produces stronger fluorescent AGEs faster in the Maillard reaction with MGO. It was also found that the AGE structure produced in MGO-induced in HEL was argpyrimidine. By optimizing the reaction system, we developed a new evaluation method for compounds with antiglycation activity and established an efficient evaluation method (HEL-MGO assay) with greater sensitivity and accuracy than the conventional method, which requires high concentrations of bovine serum albumin and glucose. Furthermore, when compounds known to inhibit glycation were evaluated using this method, their antiglycation activities were clearly and significantly measured, demonstrating the practicality of this method.
Collapse
Affiliation(s)
| | | | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (S.K.); (Y.S.)
| |
Collapse
|
6
|
Wang Y, Sargisson O, Nguyen DT, Parker K, Pyke SJR, Alramahi A, Thihlum L, Fang Y, Wallace ME, Berzins SP, Oqueli E, Magliano DJ, Golledge J. Effect of Hydralazine on Angiotensin II-Induced Abdominal Aortic Aneurysm in Apolipoprotein E-Deficient Mice. Int J Mol Sci 2023; 24:15955. [PMID: 37958938 PMCID: PMC10650676 DOI: 10.3390/ijms242115955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The rupture of an abdominal aortic aneurysm (AAA) causes about 200,000 deaths worldwide each year. However, there are currently no effective drug therapies to prevent AAA formation or, when present, to decrease progression and rupture, highlighting an urgent need for more research in this field. Increased vascular inflammation and enhanced apoptosis of vascular smooth muscle cells (VSMCs) are implicated in AAA formation. Here, we investigated whether hydralazine, which has anti-inflammatory and anti-apoptotic properties, inhibited AAA formation and pathological hallmarks. In cultured VSMCs, hydralazine (100 μM) inhibited the increase in inflammatory gene expression and apoptosis induced by acrolein and hydrogen peroxide, two oxidants that may play a role in AAA pathogenesis. The anti-apoptotic effect of hydralazine was associated with a decrease in caspase 8 gene expression. In a mouse model of AAA induced by subcutaneous angiotensin II infusion (1 µg/kg body weight/min) for 28 days in apolipoprotein E-deficient mice, hydralazine treatment (24 mg/kg/day) significantly decreased AAA incidence from 80% to 20% and suprarenal aortic diameter by 32% from 2.26 mm to 1.53 mm. Hydralazine treatment also significantly increased the survival rate from 60% to 100%. In conclusion, hydralazine inhibited AAA formation and rupture in a mouse model, which was associated with its anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Owen Sargisson
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Dinh Tam Nguyen
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Ketura Parker
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Stephan J. R. Pyke
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Ahmed Alramahi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Liam Thihlum
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Yan Fang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Morgan E. Wallace
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Stuart P. Berzins
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Ernesto Oqueli
- Cardiology Department, Grampians Health Ballarat, Ballarat, VIC 3350, Australia;
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3220, Australia
| | - Dianna J. Magliano
- Diabetes and Population Health, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
- Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, QLD 4811, Australia
| |
Collapse
|
7
|
Lankin VZ, Tikhaze AK, Konovalova GG. Differences in Structural Changes and Pathophysiological Effects of Low-Density Lipoprotein Particles upon Accumulation of Acylhydroperoxy Derivatives in Their Outer Phospholipid Monolayer or upon Modification of Apoprotein B-100 by Natural Dicarbonyls. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1910-1919. [PMID: 38105208 DOI: 10.1134/s0006297923110196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Nanoparticles of the lipid-transporting system of the organism, low-density lipoproteins (LDL) of blood plasma, are prone to free radical peroxidation with formation of their main modified forms - oxidized LDL itself (containing hydroperoxy-acyls in phospholipids of the outer layer of particles) and dicarbonyl-modified LDL (apoprotein B-100 in which chemically modified via the Maillard reaction). Based on the study of free radical oxidation kinetics of LDLs, it was found that the existing in the literature designation of "oxidized lipoproteins" is incorrect because it does not reveal the nature of oxidative modification of LDLs. It was shown in this study that the "atherogenic" LDLs (particles of which are actively captured by the cultured macrophages) are not the oxidized LDL (in which LOOH-derivatives of phospholipids are formed by enzymatic oxidation by C-15 lipoxygenase of rabbit reticulocytes), but dicarbonyl-modified LDLs. Important role of the dicarbonyl-modified LDLs in the molecular mechanisms of atherogenesis and endothelial dysfunction is discussed.
Collapse
Affiliation(s)
- Vadim Z Lankin
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.
| | - Alla K Tikhaze
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Galina G Konovalova
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| |
Collapse
|
8
|
Chang TT, Chen JW. Potential Impacts of Hydralazine as a Novel Antioxidant on Cardiovascular and Renal Disease-Beyond Vasodilation and Blood Pressure Lowering. Antioxidants (Basel) 2022; 11:2224. [PMID: 36421409 PMCID: PMC9686999 DOI: 10.3390/antiox11112224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 10/04/2023] Open
Abstract
Hydralazine is a traditional antihypertensive drug that was developed several decades ago. Its most well-known effect is blood pressure lowering by arterial vasodilation. While mainly used an adjunct treatment for clinical hypertension or chronic heart failure, this old drug has also shown potential as a repurposing drug for the atherosclerosis vascular disease and various kidney diseases. Recent experimental studies suggest that hydralazine exerts antioxidative, anti-apoptotic, and HIF-1α stabilization effects for angiogenesis and vascular protection. Hydralazine also exerts reno-protective effects via its antioxidation, DNA demethylation, and anti-inflammation abilities. The above evidence provides advanced rationales for new applications of this drug beyond blood pressure lowering and arterial vasodilation. Here, we summarized the recent experimental advances in the use of hydralazine for either a vascular disease or kidney diseases, or both. Given the wide populations of people with cardiovascular and/or kidney diseases, future studies are worth validating the potential impacts of hydralazine on the clinical outcomes in selected patients.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Healthcare and Services Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
9
|
Viswanathan V, Cao H, Saiki J, Jiang D, Mattingly A, Nambiar D, Bloomstein J, Li Y, Jiang S, Chamoli M, Sirjani D, Kaplan M, Holsinger FC, Liang R, Von Eyben R, Jiang H, Guan L, Lagory E, Feng Z, Nolan G, Ye J, Denko N, Knox S, Rosen DM, Le QT. Aldehyde dehydrogenase 3A1 deficiency leads to mitochondrial dysfunction and impacts salivary gland stem cell phenotype. PNAS NEXUS 2022; 1:pgac056. [PMID: 35707206 PMCID: PMC9186046 DOI: 10.1093/pnasnexus/pgac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/10/2022] [Indexed: 01/29/2023]
Abstract
Adult salivary stem/progenitor cells (SSPC) have an intrinsic property to self-renew in order to maintain tissue architecture and homeostasis. Adult salivary glands have been documented to harbor SSPC, which have been shown to play a vital role in the regeneration of the glandular structures postradiation damage. We have previously demonstrated that activation of aldehyde dehydrogenase 3A1 (ALDH3A1) after radiation reduced aldehyde accumulation in SSPC, leading to less apoptosis and improved salivary function. We subsequently found that sustained pharmacological ALDH3A1 activation is critical to enhance regeneration of murine submandibular gland after radiation damage. Further investigation shows that ALDH3A1 function is crucial for SSPC self-renewal and survival even in the absence of radiation stress. Salivary glands from Aldh3a1 -/- mice have fewer acinar structures than wildtype mice. ALDH3A1 deletion or pharmacological inhibition in SSPC leads to a decrease in mitochondrial DNA copy number, lower expression of mitochondrial specific genes and proteins, structural abnormalities, lower membrane potential, and reduced cellular respiration. Loss or inhibition of ALDH3A1 also elevates ROS levels, depletes glutathione pool, and accumulates ALDH3A1 substrate 4-hydroxynonenal (4-HNE, a lipid peroxidation product), leading to decreased survival of murine SSPC that can be rescued by treatment with 4-HNE specific carbonyl scavengers. Our data indicate that ALDH3A1 activity protects mitochondrial function and is important for the regeneration activity of SSPC. This knowledge will help to guide our translational strategy of applying ALDH3A1 activators in the clinic to prevent radiation-related hyposalivation in head and neck cancer patients.
Collapse
Affiliation(s)
- Vignesh Viswanathan
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Hongbin Cao
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Julie Saiki
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aaron Mattingly
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Dhanya Nambiar
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Joshua Bloomstein
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Yang Li
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Sizun Jiang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manish Chamoli
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Davud Sirjani
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Kaplan
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - F Christopher Holsinger
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel Liang
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Rie Von Eyben
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Haowen Jiang
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Li Guan
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Edward Lagory
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Denko
- The Ohio State University Wexner Medical Center and OSU Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daria-Mochly Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Carpéné C, Boulet N, Grolleau JL, Morin N. High doses of catecholamines activate glucose transport in human adipocytes independently from adrenoceptor stimulation or vanadium addition. World J Diabetes 2022; 13:37-53. [PMID: 35070058 PMCID: PMC8771263 DOI: 10.4239/wjd.v13.i1.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/26/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND When combined with vanadium salts, catecholamines strongly activate glucose uptake in rat and mouse adipocytes.
AIM To test whether catecholamines activate glucose transport in human adipocytes.
METHODS The uptake of 2-deoxyglucose (2-DG) was measured in adipocytes isolated from pieces of abdominal subcutaneous tissue removed from women undergoing reconstructive surgery. Pharmacological approaches with amine oxidase inhibitors, adrenoreceptor agonists and antioxidants were performed to unravel the mechanisms of action of noradrenaline or adrenaline (also named epinephrine).
RESULTS In human adipocytes, 45-min incubation with 100 µmol/L adrenaline or noradrenaline activated 2-DG uptake up to more than one-third of the maximal response to insulin. This stimulation was not reproduced with millimolar doses of dopamine or serotonin and was not enhanced by addition of vanadate to the incubation medium. Among various natural amines and adrenergic agonists tested, no other molecule was more efficient than adrenaline and noradrenaline in stimulating 2-DG uptake. The effect of the catecholamines was not impaired by pargyline and semicarbazide, contrarily to that of benzylamine or methylamine, which are recognized substrates of semicarbazide-sensitive amine oxidase. Hydrogen peroxide at 1 mmol/L activated hexose uptake but not pyrocatechol or benzoquinone, and only the former was potentiated by vanadate. Catalase and the phosphoinositide 3-kinase inhibitor wortmannin inhibited adrenaline-induced activation of 2-DG uptake.
CONCLUSION High doses of catecholamines exert insulin-like actions on glucose transport in human adipocytes. At submillimolar doses, vanadium did not enhance this catecholamine activation of glucose transport. Consequently, this dismantles our previous suggestion to combine the metal ion with catecholamines to improve the benefit/risk ratio of vanadium-based antidiabetic approaches.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse 31432, France
| | - Nathalie Boulet
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, Toulouse 31432, France
| | | | - Nathalie Morin
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, Paris 75006, France
| |
Collapse
|
11
|
Pandya CD, Vekaria H, Joseph B, Slone SA, Gensel JC, Sullivan PG, Miller BA. Hemoglobin induces oxidative stress and mitochondrial dysfunction in oligodendrocyte progenitor cells. Transl Res 2021; 231:13-23. [PMID: 33460824 PMCID: PMC8016702 DOI: 10.1016/j.trsl.2021.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) in the infant brain give rise to mature oligodendrocytes that myelinate CNS axons. OPCs are particularly vulnerable to oxidative stress that occurs in many forms of brain injury. One common cause of infant brain injury is neonatal intraventricular hemorrhage (IVH), which releases blood into the CSF and brain parenchyma of preterm infants. Although blood contains the powerful oxidant hemoglobin, the direct effects of hemoglobin on OPCs have not been studied. We utilized a cell culture system to test if hemoglobin induced free radical production and mitochondrial dysfunction in OPCs. We also tested if phenelzine (PLZ), an FDA-approved antioxidant drug, could protect OPCs from hemoglobin-induced oxidative stress. OPCs were isolated from Sprague Dawley rat pups and exposed to hemoglobin with and without PLZ. Outcomes assessed included intracellular reactive oxygen species levels using 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) fluorescent dye, oxygen consumption using the XFe96 Seahorse assay, and proliferation measured by BrdU incorporation assay. Hemoglobin induced oxidative stress and impaired mitochondrial function in OPCs. PLZ treatment reduced hemoglobin-induced oxidative stress and improved OPC mitochondrial bioenergetics. The effects of hemoglobin and PLZ on OPC proliferation were not statistically significant, but showed trends towards hemoglobin reducing OPC proliferation and PLZ increasing OPC proliferation (P=0.06 for both effects). Collectively, our results indicate that hemoglobin induces mitochondrial dysfunction in OPCs and that antioxidant therapy reduces these effects. Therefore, antioxidant therapy may hold promise for white matter diseases in which hemoglobin plays a role, such as neonatal IVH.
Collapse
Affiliation(s)
- Chirayu D Pandya
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Binoy Joseph
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Stacey A Slone
- Department of Statistics, University of Kentucky, Lexington, Kentucky
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Neuroscience, University of Kentucky, Lexington, Kentucky; Lexington VA Health Care System, Lexington, Kentucky
| | - Brandon A Miller
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
12
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
13
|
Huang HC, Hsiao TS, Liao MH, Tsao CM, Shih CC, Wu CC. Low-dose hydralazine improves endotoxin-induced coagulopathy and multiple organ dysfunction via its anti-inflammatory and anti-oxidative/nitrosative properties. Eur J Pharmacol 2020; 882:173279. [PMID: 32561290 DOI: 10.1016/j.ejphar.2020.173279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
Coagulopathy is the major cause of organ injury as well as a strong predictor of mortality in septic patients. Systemic inflammatory response and redox imbalance are regarded as the major causes of sepsis-induced coagulopathy. There is growing evidence that a vasodilator hydralazine has beneficial effects on heart failure, hypertension, and ischemia/reperfusion injury via its antioxidant and anti-inflammatory properties. However, the effects of hydralazine on sepsis have not been examined. Therefore, we evaluated the effects of low-dose hydralazine on coagulopathy and multiple organ dysfunction in septic rats induced by endotoxin. Sepsis-induced coagulopathy was established by intravenous injection of rats with lipopolysaccharide (LPS). The changes of blood pressure, heart rate, blood glucose, hemostatic variables, prothrombin time, organ function indices, interleukin-6 (IL-6) concentration, and nitric oxide (NO) level were assessed during the experimental period. In addition, the aortas, lungs, livers, and kidneys were dissected to analyze superoxide levels and protein expressions. LPS induced (i) coagulopathy, multiple organ dysfunction, and circulatory failure successfully, and (ii) excessive superoxide, NO, and IL-6 production, accompanied by the overexpression of iNOS and Wnt5a in animals. Treatment of LPS-induced septic rats with low-dose hydralazine not only improved coagulopathy but also ameliorated multiple organ dysfunction. These could be due to attenuation of the overproduction of superoxide, NO, and IL-6, which were attributed to reduction of the overexpression of iNOS and Wnt5a. Thus, these findings indicate that low-dose hydralazine could be a potential therapy for sepsis-induced coagulopathy and multiple organ dysfunction via its anti-inflammatory and anti-oxidative/nitrosative properties.
Collapse
Affiliation(s)
- Hsieh-Chou Huang
- Department of Anesthesiology and Pain Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Tsan-Seng Hsiao
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Mei-Hui Liao
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chin Shih
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan.
| | - Chin-Chen Wu
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Zhang XY, Yang YS, Wang W, Jiao QC, Zhu HL. Fluorescent sensors for the detection of hydrazine in environmental and biological systems: Recent advances and future prospects. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213367] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Caimi G, Hopps E, Montana M, Carollo C, Calandrino V, Gallà E, Canino B, Lo Presti R. Behaviour of carbonyl groups in several clinical conditions: Analysis of our survey. Clin Hemorheol Microcirc 2020; 74:299-313. [PMID: 31683469 DOI: 10.3233/ch-190689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein carbonylation is a marker of oxidative protein damage, that is likely involved in the pathogenesis of several diseases. The aim of this study was to evaluate the protein carbonyl (PC) groups in different clinical conditions. It included different groups of subjects: 81 trained subjects; 23 subjects with mild essential hypertension; 31 middle-aged subjects with metabolic syndrome (MS); 106 subjects with MS not selected for age (subdivided into two subgroups, with and without diabetes mellitus); 91 obese adults subdivided in two subgroups (BMI 30-35 Kg/m2 and BMI > 35 kg/m2); 48 subjects with obstructive sleep apnea syndrome (OSAS) subdivided in accordance with the apnea/hypopnea index (AHI); 27 subjects with chronic kidney disease (CKD) on conservative therapy; 31 subjects with CKD on haemodialysis treatment; and 50 subjects with juvenile myocardial infarction. PC groups were reduced in trained subjects in comparison with sedentary controls, while no variation was observed in mild essential hypertension. PC groups were increased in MS subjects and in adult obese subjects. In MS subjects the PC groups were not influenced by the presence of diabetes mellitus and in adult obese subjects were not influenced by the obesity degree. In OSAS subjects only those with AHI > 30 showed an increase of PC groups. PC groups increased in CKD subjects undergoing conservative treatment and haemodialysis therapy. In dialyzed subjects, after a standard dialysis session, there was a marked increase in PC groups. In juvenile myocardial infarction PC groups were higher than in controls; there was no difference between STEMI and NSTEMI and their concentration was unaffected by the number of cardiovascular risk factors or stenosed coronary vessels.
Collapse
Affiliation(s)
- Gregorio Caimi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Eugenia Hopps
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Maria Montana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Caterina Carollo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Vincenzo Calandrino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Eleonora Gallà
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Baldassare Canino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Rosalia Lo Presti
- Department of Psychology, Educational Science and Human Movement, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
16
|
Bein K, Birru RL, Wells H, Larkin TP, Cantrell PS, Fagerburg MV, Zeng X, Leikauf GD. Albumin Protects Lung Cells against Acrolein Cytotoxicity and Acrolein-Adducted Albumin Increases Heme Oxygenase 1 Transcripts. Chem Res Toxicol 2020; 33:1969-1979. [PMID: 32530271 DOI: 10.1021/acs.chemrestox.0c00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Albumin is an abundant protein in the lung lining fluid that forms an interface between lung epithelial cells and the external environment. In the lung, albumin can be targeted for adduction by inhaled acrolein. Acrolein, an α,β-unsaturated aldehyde, reacts with biomolecules via Michael addition at the β-carbon or Schiff base formation at the carbonyl carbon. To gain insight into acrolein's mode of action, we investigated in vitro albumin-acrolein reactivity and the consequence of albumin adduction by acrolein on cytotoxicity and transcript changes in NCI-H441 and human airway epithelial cells (HAEC). Albumin protected NCI-H441 cells from acrolein toxicity. In addition, albumin inhibited acrolein-induced increase of transcripts associated with cellular stress response, activating transcription factor 3 (ATF3), and antioxidant response, heme oxygenase 1 (HMOX1) in HAEC cells. Acrolein-adducted albumin itself increased HMOX1 transcripts but not ATF3 transcripts. The HMOX1 transcript increase was inhibited by hydralazine, a carbonyl scavenger, suggesting that the carbonyl group of acrolein-adducted albumin mediated HMOX1 transcript increase. In acutely exposed C57BL/6J mice, bronchoalveolar lavage protein carbonylation increased. Acrolein-adducted albumin Cys34 was identified by nLC-MS/MS. These findings indicate that adduction of albumin by acrolein confers a cytoprotective function by scavenging free acrolein, decreasing a cellular stress response, and inducing an antioxidant gene response. Further, these results suggest that β-carbon reactivity may be required for acrolein's cytotoxicity and ATF3 transcript increase, and the carbonyl group of acrolein-adducted albumin can induce HMOX1 transcript increase.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Rahel L Birru
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Heather Wells
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Theodore P Larkin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Pamela S Cantrell
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Matthew V Fagerburg
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
17
|
Mercader J, Sabater AG, Le Gonidec S, Decaunes P, Chaplin A, Gómez-Zorita S, Milagro FI, Carpéné C. Oral Phenelzine Treatment Mitigates Metabolic Disturbances in Mice Fed a High-Fat Diet. J Pharmacol Exp Ther 2019; 371:555-566. [PMID: 31270215 DOI: 10.1124/jpet.119.259895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Novel mechanisms and health benefits have been recently suggested for the antidepressant drug phenelzine (PHE), known as a nonselective monoamine oxidase inhibitor. They include an antilipogenic action that could have an impact on excessive fat accumulation and obesity-related metabolic alterations. We evaluated the metabolic effects of an oral PHE treatment on mice fed a high-fat diet (HFD). Eleven-week-old male C57BL/6 mice were fed a HFD and either a 0.028% PHE solution (HFD + PHE) or water to drink for 11 weeks. PHE attenuated the increase in body weight and adiposity without affecting food consumption. Energy efficiency was lower in HFD + PHE mice. Lipid content was reduced in subcutaneous fat pads, liver, and skeletal muscle. In white adipose tissue (WAT), PHE reduced sterol regulatory element-binding protein-1c and phosphoenolpyruvate carboxykinase mRNA levels, inhibited amine-induced lipogenesis, and did not increase lipolysis. Moreover, HFD + PHE mice presented diminished levels of hydrogen peroxide release in subcutaneous WAT and reduced expression of leukocyte transmigration markers and proinflammatory cytokines in visceral WAT and liver. PHE reduced the circulating levels of glycerol, triacylglycerols, high-density lipoprotein cholesterol, and insulin. Insulin resistance was reduced, without affecting glucose levels and glucose tolerance. In contrast, PHE increased rectal temperature and slightly increased energy expenditure. The mitigation of HFD-induced metabolic disturbances points toward a promising role for PHE in obesity treatment and encourages further research on its mechanisms of action. SIGNIFICANCE STATEMENT: Phenelzine reduces body fat, markers of oxidative stress, inflammation, and insulin resistance in high-fat diet mice. Semicarbazide-sensitive amine oxidase, monoamine oxidase, phosphoenolpyruvate carboxykinase, and sterol regulatory element-binding protein-1c are involved in the metabolic effects of phenelzine. Phenelzine could be potentially used for the treatment of obesity-related complications.
Collapse
Affiliation(s)
- Josep Mercader
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Agustín G Sabater
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Sophie Le Gonidec
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Pauline Decaunes
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Alice Chaplin
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Saioa Gómez-Zorita
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Fermín I Milagro
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Christian Carpéné
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| |
Collapse
|
18
|
Xiao HM, Wang X, Yang X, Zheng F, Feng YQ. Hydralazine derivative of aldehyde: A new type of [M - H] + ion formed in electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:239-249. [PMID: 30650224 DOI: 10.1002/jms.4330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Hydralazine has been widely employed in the development of drugs, derivatization reagents, and ligands. In the present work, we reported a new type of dehydrogenated ion [M - H]+ that was produced from the hydralazine derivative of hexanal in electrospray ionization mass spectrometry (ESI-MS). The formation of [M - H]+ ions in the ESI-MS was found to be independent on the mobile phase composition of the liquid chromatography and ESI source parameters. A series of hydralazine derivatives of aldehyde were investigated to confirm this phenomenon. The results showed that hydralazine derivatives of aldehydes that contained an sp3 hybridization carbon with a hydrogen at the α-position of aldehydes could form the unexpected [M - H]+ ions, whereas hydralazine derivative of acetone could only generate [M + H]+ ion in the ESI-MS. We proposed the possible formation mechanism of [M - H]+ ion for the hydralazine derivatives of aldehydes: the [M - H]+ ion was possibly formed by the loss a hydrogen molecule (H2 ) from the protonated ion [M + H]+ . The results obtained from density functional theory (DFT) calculations supported this proposed formation mechanism of [M - H]+ ion.
Collapse
Affiliation(s)
- Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xian Wang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, People's Republic of China
| | - Xing Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Feng Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| |
Collapse
|
19
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
20
|
Mustafa AG, Al-Shboul O, Alfaqih MA, Al-Qudah MA, Al-Dwairi AN. Phenelzine reduces the oxidative damage induced by peroxynitrite in plasma lipids and proteins. Arch Physiol Biochem 2018; 124:418-423. [PMID: 29256275 DOI: 10.1080/13813455.2017.1415939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Peroxynitrite is a reactive nitrogen species produced in the intravascular compartment from superoxide anion and nitric oxide. Peroxynitrite destroys blood plasma proteins and membranes of red blood cells and of platelets. This explains why excessive production of peroxynitrite contributes to diseases and to ageing. Therapeutics that antagonize peroxynitrite may delay ageing and the progression of disease. We developed an in vitro assay that allows the investigation of the oxidative damage caused by peroxynitrite in the intravascular compartment. This assay correlates the damage with the rate of formation of protein carbonyl groups, 3-nitrotyrosine (3-NT) and thiobarbituric acid reactive substances. Using this assay, we evaluated the ability of phenelzine, a scavenger of reactive aldehydes, to antagonize the effects of peroxynitrite. Herein, we showed that phenelzine significantly decreased the lipid peroxidative damage caused by peroxynitirite in blood plasma and platelets. Moreover, it inhibited carbonyl group and 3-NT formation in blood plasma and platelet proteins.
Collapse
Affiliation(s)
- Ayman G Mustafa
- a School of Medicine , Jordan University of Science and Technology , Irbid , Jordan
| | - Othman Al-Shboul
- a School of Medicine , Jordan University of Science and Technology , Irbid , Jordan
| | - Mahmoud A Alfaqih
- b Department of Physiology and Biochemistry, Faculty of Medicine , Jordan University of Science and Technology , Irbid , Jordan
| | - Mohammad A Al-Qudah
- a School of Medicine , Jordan University of Science and Technology , Irbid , Jordan
| | - Ahmed N Al-Dwairi
- a School of Medicine , Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
21
|
Metabolic Effects of Oral Phenelzine Treatment on High-Sucrose-Drinking Mice. Int J Mol Sci 2018; 19:ijms19102904. [PMID: 30257452 PMCID: PMC6213466 DOI: 10.3390/ijms19102904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 01/01/2023] Open
Abstract
Phenelzine has been suggested to have an antiobesity effect by inhibiting de novo lipogenesis, which led us to investigate the metabolic effects of oral chronic phenelzine treatment in high-sucrose-drinking mice. Sucrose-drinking mice presented higher body weight gain and adiposity versus controls. Phenelzine addition did not decrease such parameters, even though fat pad lipid content and weights were not different from controls. In visceral adipocytes, phenelzine did not impair insulin-stimulated de novo lipogenesis and had no effect on lipolysis. However, phenelzine reduced the mRNA levels of glucose transporters 1 and 4 and phosphoenolpyruvate carboxykinase in inguinal white adipose tissue (iWAT), and altered circulating levels of free fatty acids (FFA) and glycerol. Interestingly, glycemia was restored in phenelzine-treated mice, which also had higher insulinaemia. Phenelzine-treated mice presented higher rectal temperature, which was associated to reduced mRNA levels of uncoupling protein 1 in brown adipose tissue. Furthermore, unlike sucrose-drinking mice, hepatic malondialdehyde levels were not altered. In conclusion, although de novo lipogenesis was not inhibited by phenelzine, the data suggest that the ability to re-esterify FFA is impaired in iWAT. Moreover, the effects on glucose homeostasis and oxidative stress suggest that phenelzine could alleviate obesity-related alterations and deserves further investigation in obesity models.
Collapse
|
22
|
Newer pharmacological approaches for antioxidant neuroprotection in traumatic brain injury. Neuropharmacology 2018; 145:247-258. [PMID: 30086292 DOI: 10.1016/j.neuropharm.2018.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species-induced oxidative damage remains an extensively validated secondary injury mechanism in traumatic brain injury (TBI) as demonstrated by the efficacy of various pharmacological antioxidants agents in decreasing post-traumatic free radical-induced lipid peroxidation (LP) and protein oxidative damage in preclinical TBI models. Based upon strong preclinical efficacy results, two antioxidant agents, the superoxide radical scavenger polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) and the 21-aminosteroid LP inhibitor tirilazad, which inhibits lipid peroxidation, (LP) were evaluated in large phase III trials in moderately- and severely-injured TBI patients. Both failed to improve 6 month survival and neurological recovery. However, in the case of tirilazad, a post hoc analysis revealed that the drug significantly improved survival of male TBI patients who exhibited traumatic subarachnoid hemorrhage (tSAH) that occurs in half of severe TBIs. In addition to reviewing the clinical trial results with PEG-SOD and tirilazad, newer antioxidant approaches which appear to improve neuroprotective efficacy and provide a longer therapeutic window in rodent TBI models will be presented. The first approach involves pharmacological enhancement of the multi-mechanistic Nrf2-antioxidant response element (ARE) pathway. The second involves scavenging of the neurotoxic LP-derived carbonyl compounds 4-hydroxynonenal (4-HNE) and acrolein which are highly damaging to neural protein and stimulate additional free radical generation. A third approach combines mechanistically complimentary antioxidants to interrupt post-TBI oxidative neurodegeneration at multiple points in the secondary injury cascade. These newer strategies appear to decrease variability in the neuroprotective effect which should improve the feasibility of achieving successful translation of antioxidant therapy to TBI patients.
Collapse
|
23
|
Tully M, Tang J, Zheng L, Acosta G, Tian R, Hayward L, Race N, Mattson D, Shi R. Systemic Acrolein Elevations in Mice With Experimental Autoimmune Encephalomyelitis and Patients With Multiple Sclerosis. Front Neurol 2018; 9:420. [PMID: 29963001 PMCID: PMC6013577 DOI: 10.3389/fneur.2018.00420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/22/2018] [Indexed: 01/27/2023] Open
Abstract
Demyelination and axonal injury are the key pathological processes in multiple sclerosis (MS), driven by inflammation and oxidative stress. Acrolein, a byproduct and instigator of oxidative stress, has been demonstrated as a neurotoxin in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, due to the invasive nature of acrolein detection using immunoblotting techniques, the investigation of acrolein in MS has been limited to animal models. Recently, detection of a specific acrolein-glutathione metabolite, 3-HPMA, has been demonstrated in urine, enabling the noninvasive quantification of acrolein for the first time in humans with neurological disorders. In this study, we have demonstrated similar elevated levels of acrolein in both urine (3-HPMA) and in spinal cord tissue (acrolein-lysine adduct) in mice with EAE, which can be reduced through systemic application of acrolein scavenger hydralazine. Furthermore, using this approach we have demonstrated an increase of 3-HPMA in both the urine and serum of MS patients relative to controls. It is expected that this noninvasive acrolein detection could facilitate the investigation of the role of acrolein in the pathology of MS in human. It may also be used to monitor putative therapies aimed at suppressing acrolein levels, reducing severity of symptoms, and slowing progression as previously demonstrated in animal studies.
Collapse
Affiliation(s)
- Melissa Tully
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan Tang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Lingxing Zheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Glen Acosta
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Ran Tian
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Lee Hayward
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nicholas Race
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David Mattson
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
24
|
Kulbe JR, Singh IN, Wang JA, Cebak JE, Hall ED. Continuous Infusion of Phenelzine, Cyclosporine A, or Their Combination: Evaluation of Mitochondrial Bioenergetics, Oxidative Damage, and Cytoskeletal Degradation following Severe Controlled Cortical Impact Traumatic Brain Injury in Rats. J Neurotrauma 2018; 35:1280-1293. [PMID: 29336204 PMCID: PMC5962911 DOI: 10.1089/neu.2017.5353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To date, all monotherapy clinical traumatic brain injury (TBI) trials have failed, and there are currently no Food and Drug Administration (FDA)-approved pharmacotherapies for the acute treatment of severe TBI. Due to the complex secondary injury cascade following injury, there is a need to develop multi-mechanistic combinational neuroprotective approaches for the treatment of acute TBI. As central mediators of the TBI secondary injury cascade, both mitochondria and lipid peroxidation-derived aldehydes make promising therapeutic targets. Cyclosporine A (CsA), an FDA-approved immunosuppressant capable of inhibiting the mitochondrial permeability transition pore, and phenelzine (PZ), an FDA-approved monoamine oxidase inhibitor capable of scavenging neurotoxic lipid peroxidation-derived aldehydes, have both been shown to be partially neuroprotective following experimental TBI. Therefore, it follows that the combination of PZ and CsA may enhance neuroprotection over either agent alone through the combining of distinct but complementary mechanisms of action. Additionally, as the first 72 h represents a critical time period following injury, it follows that continuous drug infusion over the first 72 h following injury may also lead to optimal neuroprotective effects. This is the first study to examine the effects of a 72 h subcutaneous continuous infusion of PZ, CsA, and the combination of these two agents on mitochondrial respiration, mitochondrial bound 4-hydroxynonenal (4-HNE), and acrolein, and α-spectrin degradation 72 h following a severe controlled cortical impact injury in rats. Our results indicate that individually, both CsA and PZ are able to attenuate mitochondrial 4-HNE and acrolein, PZ is able to maintain mitochondrial respiratory control ratio and cytoskeletal integrity but together, PZ and CsA are unable to maintain neuroprotective effects.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord and Brain Injury Research Center and Department of Neuroscience, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Indrapal N Singh
- Spinal Cord and Brain Injury Research Center and Department of Neuroscience, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Juan A Wang
- Spinal Cord and Brain Injury Research Center and Department of Neuroscience, University of Kentucky College of Medicine , Lexington, Kentucky
| | - John E Cebak
- Spinal Cord and Brain Injury Research Center and Department of Neuroscience, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Edward D Hall
- Spinal Cord and Brain Injury Research Center and Department of Neuroscience, University of Kentucky College of Medicine , Lexington, Kentucky
| |
Collapse
|
25
|
Carpéné C, Mercader J, Le Gonidec S, Schaak S, Mialet‐Perez J, Zakaroff‐Girard A, Galitzky J. Body fat reduction without cardiovascular changes in mice after oral treatment with the MAO inhibitor phenelzine. Br J Pharmacol 2018; 175:2428-2440. [PMID: 29582416 PMCID: PMC5980542 DOI: 10.1111/bph.14211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Phenelzine is an antidepressant drug known to increase the risk of hypertensive crisis when dietary tyramine is not restricted. However, this MAO inhibitor inhibits other enzymes not limited to the nervous system. Here we investigated if its antiadipogenic and antilipogenic effects in cultured adipocytes could contribute to decreased body fat in vivo, without unwanted hypertensive or cardiovascular effects. EXPERIMENTAL APPROACH Mice were fed a standard chow and given 0.028% phenelzine in drinking water for 12 weeks. Body composition was determined by NMR. Cardiovascular dysfunction was assessed by heart rate variability analyses and by evaluation of cardiac oxidative stress markers. MAO activity, hydrogen peroxide release and triacylglycerol turnover were assayed in white adipose tissue (WAT), alongside determination of glucose and lipid circulating levels. KEY RESULTS Phenelzine-treated mice exhibited lower body fat content, subcutaneous WAT mass and lipid content in skeletal muscles than control, without decreased body weight gain or food consumption. A modest alteration of cardiac sympathovagal balance occurred without depressed aconitase activity. In WAT, phenelzine impaired the lipogenic but not the antilipolytic actions of insulin, MAO activity and hydrogen peroxide release. Phenelzine treatment lowered non-fasting blood glucose and phosphoenolpyruvate carboxykinase expression. In vitro, high doses of phenelzine decreased both lipolytic and lipogenic responses in mouse adipocytes. CONCLUSION AND IMPLICATIONS As phenelzine reduced body fat content without affecting cardiovascular function in mice, it may be of benefit in the treatment of obesity-associated complications, with the precautions of use recommended for antidepressant therapy.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Josep Mercader
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Sophie Le Gonidec
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Stéphane Schaak
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Jeanne Mialet‐Perez
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Alexia Zakaroff‐Girard
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Jean Galitzky
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| |
Collapse
|
26
|
Wang L, Teng Q, Sun X, Chen Y, Wang Y, Wang H, Zhang Y. Facile synthesis of metal-organic frameworks/ordered mesoporous carbon composites with enhanced electrocatalytic ability for hydrazine. J Colloid Interface Sci 2018; 512:127-133. [DOI: 10.1016/j.jcis.2017.10.050] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 11/27/2022]
|
27
|
Nègre-Salvayre A, Garoby-Salom S, Swiader A, Rouahi M, Pucelle M, Salvayre R. Proatherogenic effects of 4-hydroxynonenal. Free Radic Biol Med 2017; 111:127-139. [PMID: 28040472 DOI: 10.1016/j.freeradbiomed.2016.12.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/08/2023]
Abstract
4-hydroxy-2-nonenal (HNE) is a α,β-unsaturated hydroxyalkenal generated by peroxidation of n-6 polyunsaturated fatty acid. This reactive carbonyl compound exhibits a huge number of biological properties that result mainly from the formation of HNE-adducts on free amino groups and thiol groups in proteins. In the vascular system, HNE adduct accumulation progressively leads to cellular dysfunction and tissue damages that are involved in the progression of atherosclerosis and related diseases. HNE contributes to the atherogenicity of oxidized LDL, by forming HNE-apoB adducts that deviate the LDL metabolism to the scavenger receptor pathway of macrophagic cells, and lead to the formation of foam cells. HNE activates transcription factors (Nrf2, NF-kappaB) that (dys)regulate various cellular responses ranging from hormetic and survival signaling at very low concentrations, to inflammatory and apoptotic effects at higher concentrations. Among a variety of cellular targets, HNE can modify signaling proteins involved in atherosclerotic plaque remodeling, particularly growth factor receptors (PDGFR, EGFR), cell cycle proteins, mitochondrial and endoplasmic reticulum components or extracellular matrix proteins, which progressively alters smooth muscle cell proliferation, angiogenesis and induces apoptosis. HNE adducts accumulate in the lipidic necrotic core of advanced atherosclerotic lesions, and may locally contribute to macrophage and smooth muscle cell apoptosis, which may induce plaque destabilization and rupture, thereby increasing the risk of athero-thrombotic events.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| |
Collapse
|
28
|
Nelson MAM, Baba SP, Anderson EJ. Biogenic Aldehydes as Therapeutic Targets for Cardiovascular Disease. Curr Opin Pharmacol 2017; 33:56-63. [PMID: 28528297 DOI: 10.1016/j.coph.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/28/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
Aldehydes are continuously formed in biological systems through enzyme-dependent and spontaneous oxidation of lipids, glucose, and primary amines. These highly reactive, biogenic electrophiles can become toxic via covalent modification of proteins, lipids and DNA. Thus, agents that scavenge aldehydes through conjugation have therapeutic value for a number of major cardiovascular diseases. Several commonly-prescribed drugs (e.g., hydralazine) have been shown to have potent aldehyde-conjugating properties which may contribute to their beneficial effects. Herein, we briefly describe the major sources and toxicities of biogenic aldehydes in cardiovascular system, and provide an overview of drugs that are known to have aldehyde-conjugating effects. Some compounds of phytochemical origin, and histidyl-dipeptides with emerging therapeutic value in this area are also discussed.
Collapse
Affiliation(s)
- Margaret-Ann M Nelson
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, USA
| | - Shahid P Baba
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Ethan J Anderson
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
29
|
Fusco FB, Gomes DJ, Bispo KCS, Toledo VP, Barbeiro DF, Capelozzi VL, Furukawa LNS, Velosa APP, Teodoro WR, Heimann JC, Quintao ECR, Passarelli M, Nakandakare ER, Catanozi S. Low-sodium diet induces atherogenesis regardless of lowering blood pressure in hypertensive hyperlipidemic mice. PLoS One 2017; 12:e0177086. [PMID: 28481921 PMCID: PMC5421755 DOI: 10.1371/journal.pone.0177086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
This study investigated the influence of sodium restriction and antihypertensive drugs on atherogenesis utilizing hypertensive (H) low-density lipoprotein-receptor knockout mice treated or not with losartan (Los) or hydralazine (Hyd) and fed low-sodium (LS) or normal-sodium (NS) chow. Despite reducing the blood pressure (BP) of H-LS mice, the LS diet caused arterial lipid infiltration due to increased plasma total cholesterol (TC) and triglycerides (TG). Los and Hyd reduced the BP of H-LS mice, and Los effectively prevented arterial injury, likely by reducing plasma TG and nonesterified fatty acids. Aortic lipid infiltration was lower in Los-treated H-LS mice (H-LS+Los) than in normotensive (N)-LS and H-LS mice. Aortic angiotensin II type 1 (AT1) receptor content was greater in H-NS than H-LS mice and in H-LS+Hyd than H-LS+Los mice. Carboxymethyl-lysine (CML) and receptor for advanced glycation end products (RAGE) immunostaining was greater in H-LS than H-NS mice. CML and RAGE levels were lower in LS animals treated with antihypertensive drugs, and Hyd enhanced the AT1 receptor level. Hyd also increased the gene expression of F4/80 but not tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-10, intercellular adhesion molecule-1 or cluster of differentiation 66. The novelty of the current study is that in a murine model of simultaneous hypertension and hyperlipidemia, the pleiotropic effect of chronic, severe sodium restriction elicited aortic damage even with reduced BP. These negative effects on the arterial wall were reduced by AT1 receptor antagonism, demonstrating the influence of angiotensin II in atherogenesis induced by a severely LS diet.
Collapse
Affiliation(s)
- Fernanda B. Fusco
- Lipids Laboratory (LIM-10) of Endocrinology Division of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Diego J. Gomes
- Lipids Laboratory (LIM-10) of Endocrinology Division of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Kely C. S. Bispo
- Department of Pathology of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Veronica P. Toledo
- Rheumatology Division (LIM-17) of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Denise F. Barbeiro
- Emergency Medicine Department (LIM-51) of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Vera L. Capelozzi
- Department of Pathology of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Luzia N. S. Furukawa
- Experimental Hypertension Laboratory (LIM-16) of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Ana P. P. Velosa
- Rheumatology Division (LIM-17) of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Walcy R. Teodoro
- Rheumatology Division (LIM-17) of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Joel C. Heimann
- Experimental Hypertension Laboratory (LIM-16) of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Eder C. R. Quintao
- Lipids Laboratory (LIM-10) of Endocrinology Division of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Marisa Passarelli
- Lipids Laboratory (LIM-10) of Endocrinology Division of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Edna R. Nakandakare
- Lipids Laboratory (LIM-10) of Endocrinology Division of the University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Sergio Catanozi
- Lipids Laboratory (LIM-10) of Endocrinology Division of the University of São Paulo Medical School, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
30
|
Tian R, Shi R. Dimercaprol is an acrolein scavenger that mitigates acrolein-mediated PC-12 cells toxicity and reduces acrolein in rat following spinal cord injury. J Neurochem 2017; 141:708-720. [PMID: 28301040 DOI: 10.1111/jnc.14025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 12/22/2022]
Abstract
Acrolein is one of the most toxic byproducts of lipid peroxidation, and it has been shown to be associated with multiple pathological processes in trauma and diseases, including spinal cord injury, multiple sclerosis, and Alzheimer's disease. Therefore, suppressing acrolein using acrolein scavengers has been suggested as a novel strategy of neuroprotection. In an effort to identify effective acrolein scavengers, we have confirmed that dimercaprol, which possesses thiol functional groups, could bind and trap acrolein. We demonstrated the reaction between acrolein and dimercaprol in an abiotic condition by nuclear magnetic resonance spectroscopy. Specifically, dimercaprol is able to bind to both the carbon double bond and aldehyde group of acrolein. Its acrolein scavenging capability was further demonstrated by in vitro results that showed that dimercaprol could significantly protect PC-12 cells from acrolein-mediated cell death in a dose-dependent manner. Furthermore, dimercaprol, when applied systemically through intraperitoneal injection, could significantly reduce acrolein contents in spinal cord tissue following a spinal cord contusion injury in rats, a condition known to have elevated acrolein concentration. Taken together, dimercaprol may be an effective acrolein scavenger and a viable candidate for acrolein detoxification.
Collapse
Affiliation(s)
- Ran Tian
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
31
|
4-Hydroxynonenal Contributes to Angiogenesis through a Redox-Dependent Sphingolipid Pathway: Prevention by Hydralazine Derivatives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9172741. [PMID: 28479957 PMCID: PMC5396448 DOI: 10.1155/2017/9172741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 12/23/2022]
Abstract
The neovascularization of atherosclerotic lesions is involved in plaque development and may contribute to intraplaque hemorrhage and plaque fragilization and rupture. Among the various proangiogenic agents involved in the neovascularization process, proatherogenic oxidized LDLs (oxLDLs) contribute to the formation of tubes via the generation of sphingosine 1-phosphate (S1P), a major mitogenic and proangiogenic sphingolipid mediator. In this study, we investigated whether 4-hydroxynonenal (4-HNE), an aldehydic lipid oxidation product abundantly present in oxLDLs, contributes to their proangiogenic properties. Immunofluorescence analysis of human atherosclerotic lesions from carotid endarterectomy showed the colocalization of HNE-adducts with CD31, a marker of endothelial cells, suggesting a close relationship between 4-HNE and neovessel formation. In vitro, low 4-HNE concentration (0.5-1 µM) elicited the formation of tubes by human microvascular endothelial cells (HMEC-1), whereas higher concentrations were not angiogenic. The formation of tubes by 4-HNE involved the generation of reactive oxygen species and the activation of the sphingolipid pathway, namely, the neutral type 2 sphingomyelinase and sphingosine kinase-1 (nSMase2/SK-1) pathway, indicating a role for S1P in the angiogenic signaling of 4-HNE. Carbonyl scavengers hydralazine and bisvanillyl-hydralazone inhibited the nSMase2/SK1 pathway activation and the formation of tubes on Matrigel® evoked by 4-HNE. Altogether, these results emphasize the role of 4-HNE in the angiogenic effect of oxLDLs and point out the potential interest of pharmacological carbonyl scavengers to prevent the neovascularization process.
Collapse
|
32
|
Abstract
Extensive evidence has demonstrated an important role of oxygen radical formation (i.e., oxidative stress) as a mediator of the secondary injury process that occurs following primary mechanical injury to the brain or spinal cord. The predominant form of oxygen radical-induced oxidative damage that occurs in injured nervous tissue is lipid peroxidation (LP). Much of the oxidative stress in injured nerve cells initially begins in mitochondria via the generation of the reactive nitrogen species peroxynitrite (PN) which then can generate multiple highly reactive free radicals including nitrogen dioxide (•NO2), hydroxyl radical (•OH) and carbonate radical (•CO3). Each can readily induce LP within the phospholipid membranes of the mitochondrion leading to respiratory dysfunction, calcium buffering impairment, mitochondrial permeability transition and cell death. Validation of the role of LP in central nervous system secondary injury has been provided by the mitochondrial and neuroprotective effects of multiple antioxidant agents which are briefly reviewed.
Collapse
|
33
|
Cebak JE, Singh IN, Hill RL, Wang JA, Hall ED. Phenelzine Protects Brain Mitochondrial Function In Vitro and In Vivo following Traumatic Brain Injury by Scavenging the Reactive Carbonyls 4-Hydroxynonenal and Acrolein Leading to Cortical Histological Neuroprotection. J Neurotrauma 2016; 34:1302-1317. [PMID: 27750484 DOI: 10.1089/neu.2016.4624] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Lipid peroxidation (LP) is a key contributor to the pathophysiology of traumatic brain injury (TBI). Traditional antioxidant therapies are intended to scavenge the free radicals responsible for either initiation or propagation of LP. A more recently explored approach involves scavenging the terminal LP breakdown products that are highly reactive and neurotoxic carbonyl compounds, 4-hydroxynonenal (4-HNE) and acrolein (ACR), to prevent their covalent modification and rendering of cellular proteins nonfunctional leading to loss of ionic homeostasis, mitochondrial failure, and subsequent neuronal death. Phenelzine (PZ) is a U.S. Food and Drug Administration-approved monoamine oxidase (MAO) inhibitor (MAO-I) used for treatment of refractory depression that possesses a hydrazine functional group recently discovered by other investigators to scavenge reactive carbonyls. We hypothesized that PZ will protect mitochondrial function and reduce markers of oxidative damage by scavenging LP-derived aldehydes. In a first set of in vitro studies, we found that exogenous application of 4-HNE or ACR significantly reduced respiratory function and increased markers of oxidative damage (p < 0.05) in isolated noninjured rat brain cortical mitochondria, whereas PZ pre-treatment significantly prevented mitochondrial dysfunction and oxidative modification of mitochondrial proteins in a concentration-related manner (p < 0.05). This effect was not shared by a structurally similar MAO-I, pargyline, which lacks the hydrazine group, confirming that the mitochondrial protective effects of PZ were related to its carbonyl scavenging and not to MAO inhibition. In subsequent in vivo studies, we documented that PZ treatment begun at 15 min after controlled cortical impact TBI significantly attenuated 72-h post-injury mitochondrial respiratory dysfunction. The cortical mitochondrial respiratory protection occurred together with a significant increase in cortical tissue sparing.
Collapse
Affiliation(s)
- John E Cebak
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Indrapal N Singh
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Rachel L Hill
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Juan A Wang
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Edward D Hall
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| |
Collapse
|
34
|
MacKenzie EM, Song MS, Dursun SM, Tomlinson S, Todd KG, Baker GB. Phenelzine: An Old Drug That May Hold Clues to The Development of New Neuroprotective Agents. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/10177833.2010.11790656] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Erin M. MacKenzie
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Mee-Sook Song
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Serdar M. Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Sara Tomlinson
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Kathryn G. Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Glen B. Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Synthesis and evaluation of antioxidant phenolic diaryl hydrazones as potent antiangiogenic agents in atherosclerosis. Bioorg Med Chem 2016; 24:3571-8. [DOI: 10.1016/j.bmc.2016.05.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 02/02/2023]
|
36
|
Abstract
Current understanding points to unrepairable chromosomal damage as the critical determinant of accelerated senescence in cancer cells treated with radiation or chemotherapy. Nonetheless, the potent senescence inducer etoposide not only targets topoisomerase II to induce DNA damage but also produces abundant free radicals, increasing cellular reactive oxygen species (ROS). Toward examining roles for DNA damage and oxidative stress in therapy-induced senescence, we developed a quantitative flow cytometric senescence assay and screened 36 redox-active agents as enhancers of an otherwise ineffective dose of radiation. While senescence failed to correlate with total ROS, the radiation enhancers, etoposide and the other effective topoisomerase inhibitors each produced high levels of lipid peroxidation. The reactive aldehyde 4-hydroxy-2-nonenal, a lipid peroxidation end product, was sufficient to induce senescence in irradiated cells. In turn, sequestering aldehydes with hydralazine blocked effects of etoposide and other senescence inducers. These results suggest that lipid peroxidation potentiates DNA damage from radiation and chemotherapy to drive therapy-induced senescence.
Collapse
Affiliation(s)
- A C Flor
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - A P Doshi
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - S J Kron
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
37
|
Chen Z, Park J, Butler B, Acosta G, Vega-Alvarez S, Zheng L, Tang J, McCain R, Zhang W, Ouyang Z, Cao P, Shi R. Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury. J Neurochem 2016; 138:328-38. [PMID: 27060873 DOI: 10.1111/jnc.13639] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 03/15/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Abstract
Currently there are no effective therapies available for the excruciating neuropathic pain that develops after spinal cord injuries (SCI). As such, a great deal of effort is being put into the investigation of novel therapeutic targets that can alleviate this pain. One such target is acrolein, a highly reactive aldehyde produced as a byproduct of oxidative stress and inflammation that is capable of activating the transient receptor potential ankyrin 1 (TRPA1) cation channel, known to be involved in the transmission and propagation of chronic neuropathic pain. One anti-acrolein agent, hydralazine, has already been shown to reduce neuropathic pain behaviors and offer neuroprotection after SCI. This study investigates another acrolein scavenger, phenelzine, for its possible role of alleviating sensory hypersensitivity through acrolein suppression. The results show that phenelzine is indeed capable of attenuating neuropathic pain behaviors in acute, delayed, and chronic administration schedules after injury in a rat model of SCI. In addition, upon the comparison of hydralazine to phenelzine, both acrolein scavengers displayed a dose-dependent response in the reduction of acrolein in vivo. Finally, phenelzine proved capable of providing locomotor function recovery and neuroprotection of spinal cord tissue when administered immediately after injury for 2 weeks. These results indicate that phenelzine may be an effective treatment for neuropathic pain after SCI and likely a viable alternative to hydralazine. We have shown that phenelzine can attenuate neuropathic pain behavior in acute, delayed, and chronic administration in post-SCI rats. This was accompanied by a dose-dependent reduction in an acrolein metabolite in urine and an acrolein adduct in spinal cord tissue, and the suppression of TRPA1 over-expression in central and peripheral locations post-trauma. Acrolein scavenging might be a novel therapeutic strategy to reduce post-SCI neuropathic pain.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Orthopedics, Rui-Jin Hospital, School of Medicine, Shanghai Jiao-tong University, Institute of Trauma and Orthopedics, Shanghai, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Rui-Jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai, China
| | - Jonghyuck Park
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Breanne Butler
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Glen Acosta
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Sasha Vega-Alvarez
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Lingxing Zheng
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jonathan Tang
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Robyn McCain
- Purdue Translational Pharmacology, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Wenpeng Zhang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Zheng Ouyang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Peng Cao
- Department of Orthopedics, Rui-Jin Hospital, School of Medicine, Shanghai Jiao-tong University, Institute of Trauma and Orthopedics, Shanghai, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Rui-Jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai, China
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
38
|
Lankin VZ, Konovalova GG, Tikhaze AK, Shumaev KB, Belova Kumskova EM, Grechnikova MA, Viigimaa M. Aldehyde inhibition of antioxidant enzymes in the blood of diabetic patients. J Diabetes 2016; 8:398-404. [PMID: 25990785 DOI: 10.1111/1753-0407.12309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/30/2015] [Accepted: 05/03/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The aim of the present study was to examine the effect of aldehyde modification on antioxidant enzyme activity in diabetic patients. METHODS The activity of commercially available antioxidant enzymes (catalase, glutathione peroxidase [GPx], and Cu,Zn-superoxide dismutase [SOD]) was determined in vitro prior to and after aldehyde modification. The activity of erythrocyte Cu,Zn-SOD was assayed in blood drawn from healthy donors, diabetic patients with decompensated carbohydrate metabolism, and diabetic patients after glucose-lowering therapy. RESULTS In vitro aldehyde modification had no effect on catalase activity, but diminished GPx and Cu,Zn-SOD activity. In diabetic patients with decompensated carbohydrate metabolism, glucose-lowering therapy significantly increased Cu,Zn-SOD activity, the effect being especially pronounced after administration of metformin. CONCLUSIONS It is likely that metformin antagonizes the aldehyde-induced inhibition of erythrocyte Cu,Zn-SOD in diabetic patients more effectively than sulfonylurea drugs.
Collapse
|
39
|
Marques L, Negre-Salvayre A, Costa L, Canonne-Hergaux F. Iron gene expression profile in atherogenic Mox macrophages. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1137-46. [PMID: 26972048 DOI: 10.1016/j.bbadis.2016.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE The role of macrophage iron in the physiopathology of atherosclerosis is an open question that needs to be clarified. In atherosclerotic lesions, recruited macrophages are submitted to cytokines and oxidized lipids which influence their phenotype. An important phenotypic population driven by oxidized phospholipids is the Mox macrophages which present unique biological properties but their iron phenotype is not well described. OBJECTIVE To investigate the effect of Mox polarization by oxidized LDL (oxLDL) on macrophage iron metabolism in the absence or presence of proinflammatory stimuli. METHODS Bone marrow-derived macrophages were treated with different sources of LDL and/or LPS/IFNγ (M1 activator). Expression of ferroportin (Slc40a1, alias Fpn), heme oxygenase-1 (Hmox1), H- and L-ferritin (Fth1 and Ftl1), hepcidin (Hamp), ceruloplasmin (Cp) and interleukine-6 (Il6) was followed by quantitative PCR. FPN and HMOX1 protein expression was analyzed by immunofluorescence and in-cell-Western blotting. RESULTS Mox macrophages expressed increased Hmox1 and Fth1 levels with basal FPN protein levels despite the significant increase of Fpn mRNA. Upregulation of Hmox1 and Fpn mRNA was specific to LDL oxidative modification and mediated by NRF2. The downregulation of both Cp isoforms and the upregulation of Hamp expression observed in Mox macrophages suggest that FPN mediated iron export could be compromised. Simultaneous exposure to oxLDL and LPS/IFNγ leads to a mixed Mox/M1 phenotype that is closer to M1. CONCLUSION A microenvironment rich in oxLDL and proinflammatory cytokines could promote macrophage iron retention and lipid accumulation profiles, a specific cell phenotype that likely contributes to lesion development and plaque instability in atherosclerosis.
Collapse
Affiliation(s)
- Liliana Marques
- INSERM UMR 1043, CNRS UMR 5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Departamento da Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | | | - Luciana Costa
- Departamento da Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal.
| | - François Canonne-Hergaux
- INSERM UMR 1043, CNRS UMR 5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, Toulouse, France.
| |
Collapse
|
40
|
Dietary cladode powder from wild type and domesticated Opuntia species reduces atherogenesis in apoE knock-out mice. J Physiol Biochem 2015; 72:59-70. [DOI: 10.1007/s13105-015-0461-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
41
|
Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, Zhang S, Bettigole SE, Gupta D, Holcomb K, Ellenson LH, Caputo T, Lee AH, Conejo-Garcia JR, Glimcher LH. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis. Cell 2015; 161:1527-38. [PMID: 26073941 DOI: 10.1016/j.cell.2015.05.025] [Citation(s) in RCA: 655] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/03/2015] [Accepted: 04/28/2015] [Indexed: 01/19/2023]
Abstract
Dendritic cells (DCs) are required to initiate and sustain T cell-dependent anti-cancer immunity. However, tumors often evade immune control by crippling normal DC function. The endoplasmic reticulum (ER) stress response factor XBP1 promotes intrinsic tumor growth directly, but whether it also regulates the host anti-tumor immune response is not known. Here we show that constitutive activation of XBP1 in tumor-associated DCs (tDCs) drives ovarian cancer (OvCa) progression by blunting anti-tumor immunity. XBP1 activation, fueled by lipid peroxidation byproducts, induced a triglyceride biosynthetic program in tDCs leading to abnormal lipid accumulation and subsequent inhibition of tDC capacity to support anti-tumor T cells. Accordingly, DC-specific XBP1 deletion or selective nanoparticle-mediated XBP1 silencing in tDCs restored their immunostimulatory activity in situ and extended survival by evoking protective type 1 anti-tumor responses. Targeting the ER stress response should concomitantly inhibit tumor growth and enhance anti-cancer immunity, thus offering a unique approach to cancer immunotherapy.
Collapse
Affiliation(s)
- Juan R Cubillos-Ruiz
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Pedro C Silberman
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Melanie R Rutkowski
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sahil Chopra
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Alfredo Perales-Puchalt
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Minkyung Song
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Sarah E Bettigole
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA; Harvard Graduate Program in Immunology, Harvard University, Boston, MA 02115, USA
| | - Divya Gupta
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Thomas Caputo
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jose R Conejo-Garcia
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Laurie H Glimcher
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
42
|
Antiatherogenic and antitumoral properties of Opuntia cladodes: inhibition of low density lipoprotein oxidation by vascular cells, and protection against the cytotoxicity of lipid oxidation product 4-hydroxynonenal in a colorectal cancer cellular model. J Physiol Biochem 2015; 71:577-87. [DOI: 10.1007/s13105-015-0408-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/25/2015] [Indexed: 02/02/2023]
|
43
|
The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes. Mol Cell Biochem 2014; 395:241-52. [PMID: 24997046 DOI: 10.1007/s11010-014-2131-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022]
Abstract
It was found that glucose in the range of concentrations 12.5-100 mM stimulated Cu(2+)-mediated free radical peroxidation of low-density lipoproteins (LDL) from human blood plasma. Considering the kinetic parameters of LDL peroxidation we proposed that intensification of this process may be caused by formation of free radical intermediates of glucose auto-oxidation. Addition of SOD to the medium inhibited LDL oxidation, indicating the formation of superoxide anion-radicals under autoxidation of glucose. Similarly, SOD inhibited free radical peroxidation of liposomes from egg lecithin in the presence of glucose that confirms the generation of superoxide radicals under co-oxidation of unsaturated lipids and glucose. Normalization of glucose level in the blood of patients with type 2 diabetes mellitus during therapy was accompanied by a significant decrease in LDL oxidation in vivo (the decrease in primary and secondary lipoperoxidation products). The formation of superoxide anion-radicals was observed during interaction of aminoacid L-lysine with a product of glucose oxidative metabolism-methylglyoxal, but not with a product of lipoperoxidation malonyldialdehyde. In accordance with the foregoing the administration of sugar-lowering drug metformin, which binds and utilizes methylglyoxal, caused a stronger inhibition of LDL peroxidation in the blood of patients with diabetes mellitus, probably due to decrease in methylglyoxal-dependent generation of superoxide anion-radicals. Based on the results we set out the hypothesis about autocatalytic mechanism of free radical reactions involving natural dicarbonyls and suppose the common molecular mechanism of vascular wall injury in atherosclerosis and diabetes.
Collapse
|
44
|
Vidal N, Cavaille J, Graziani F, Robin M, Ouari O, Pietri S, Stocker P. High throughput assay for evaluation of reactive carbonyl scavenging capacity. Redox Biol 2014; 2:590-8. [PMID: 24688895 PMCID: PMC3969608 DOI: 10.1016/j.redox.2014.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal. We describe a rapid method for assessment of reactive carbonyl scavengers. We evaluated the carbonyl scavenger activity of various pharmacophores. α-amino-β-mercaptoethane structure showed the highest degree of activity.
Collapse
Affiliation(s)
- N. Vidal
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - J.P. Cavaille
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - F. Graziani
- Aix Marseille Université, CNRS, ISM2 UMR 7313, 13397, Marseille, France
| | - M. Robin
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - O. Ouari
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - S. Pietri
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - P. Stocker
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
- Corresponding author. Tel.: +33 4 91 28 87 92; fax: +33 4 91 28 87 58.
| |
Collapse
|
45
|
Mali VR, Palaniyandi SS. Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res 2013; 48:251-63. [PMID: 24237196 DOI: 10.3109/10715762.2013.864761] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
4-Hydroxy-2-nonenal (4-HNE), a reactive aldehyde, is generated from polyunsaturated fatty acids (PUFAs) in biological membranes. Reactive oxygen species (ROS) generated during oxidative stress react with PUFAs to form aldehydes like 4-HNE, which inactivates proteins and DNA by forming hybrid covalent chemical addition compounds called adducts. The ensuing chain reaction results in cellular dysfunction and tissue damage. It includes a wide spectrum of events ranging from electron transport chain dysfunction to apoptosis. In addition, 4-HNE directly depresses contractile function, enhances ROS formation, modulates cell signaling pathways, and can contribute to many cardiovascular diseases, including atherosclerosis, myocardial ischemia-reperfusion injury, heart failure, and cardiomyopathy. Therefore, targeting 4-HNE could help reverse these pathologies. This review will focus on 4-HNE generation, the role of 4-HNE in cardiovascular diseases, cellular targets (especially mitochondria), processes and mechanisms for 4-HNE-induced toxicity, regulation of 4-HNE metabolism, and finally strategies for developing potential therapies for cardiovascular disease by attenuating 4-HNEinduced toxicity.
Collapse
Affiliation(s)
- V R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System , Detroit, MI , USA
| | | |
Collapse
|
46
|
Proteome wide reduction in AGE modification in streptozotocin induced diabetic mice by hydralazine mediated transglycation. Sci Rep 2013; 3:2941. [PMID: 24126953 PMCID: PMC3796742 DOI: 10.1038/srep02941] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 09/27/2013] [Indexed: 02/07/2023] Open
Abstract
The non-enzymatic reaction between glucose and protein can be chemically reversed by transglycation. Here we report the transglycation activity of hydralazine using a newly developed MALDI-TOF-MS based assay. Hydralazine mediated transglycation of HbA1c, plasma proteins and kidney proteins was demonstrated in streptozotocin (STZ) induced diabetic mice, as evidenced by decrease in protein glycation, as well as presence of hydralazine-glucose conjugate in urine of diabetic mice treated with hydralazine. Hydralazine down regulated the expression of Receptor for Advanced Glycation End products (RAGE), NADPH oxidase (NOX), and super oxide dismutase (SOD). These findings will provide a new dimension for developing intervention strategies for the treatment of glycation associated diseases such as diabetes complications, atherosclerosis, and aging.
Collapse
|
47
|
Song MS, Matveychuk D, MacKenzie EM, Duchcherer M, Mousseau DD, Baker GB. An update on amine oxidase inhibitors: multifaceted drugs. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:118-24. [PMID: 23410524 DOI: 10.1016/j.pnpbp.2013.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 02/08/2023]
Abstract
Although not used as extensively as other antidepressants for the treatment of depression, the monoamine oxidase (MAO) inhibitors continue to hold a niche in psychiatry and to have a relatively broad spectrum with regard to treatment of psychiatric and neurological disorders. Experimental and clinical research on MAO inhibitors has been expanding in the past few years, primarily because of exciting findings indicating that these drugs have neuroprotective properties (often independently of their ability to inhibit MAO). The non-selective and irreversible MAO inhibitors tranylcypromine (TCP) and phenelzine (PLZ) have demonstrated neuroprotective properties in numerous studies targeting elements of apoptotic cascades and neurogenesis. l-Deprenyl and rasagiline, both selective MAO-B inhibitors, are used in the management of Parkinson's disease, but these drugs may be useful in the treatment of other neurodegenerative disorders given that they demonstrate neuroprotective/neurorescue properties in a wide variety of models in vitro and in vivo. Although the focus of studies on the involvement of MAO inhibitors in neuroprotection has been on MAO-B inhibitors, there is a growing body of evidence demonstrating that MAO-A inhibitors may also have neuroprotective properties. In addition to MAO inhibition, PLZ also inhibits primary amine oxidase (PrAO), an enzyme implicated in the etiology of Alzheimer's disease, diabetes and cardiovascular disease. These multifaceted aspects of amine oxidase inhibitors and some of their metabolites are reviewed herein.
Collapse
Affiliation(s)
- Mee-Sook Song
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Monoamine oxidase inhibitors have been available for more than 50 years, initially developed as antidepressants but currently used in a variety of psychiatric and neurological conditions. There has been a recent surge of interest in monoamine oxidase inhibitors because of their reported neuroprotective and/or neurorescue properties. Interestingly, it seems that often these properties are independent of their ability to inhibit monoamine oxidase. This review article presents an overview of the neuroprotective/neurorescue properties of these multifaceted drugs and focuses on phenelzine, (-)-deprenyl, rasagiline, ladostigil, tranylcypromine, moclobemide, and clorgyline and their possible neuroprotective mechanisms.
Collapse
|
50
|
Singh IN, Gilmer LK, Miller DM, Cebak JE, Wang JA, Hall ED. Phenelzine mitochondrial functional preservation and neuroprotection after traumatic brain injury related to scavenging of the lipid peroxidation-derived aldehyde 4-hydroxy-2-nonenal. J Cereb Blood Flow Metab 2013; 33:593-9. [PMID: 23321786 PMCID: PMC3618398 DOI: 10.1038/jcbfm.2012.211] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phenelzine (PZ) is a scavenger of the lipid peroxidation (LP)-derived reactive aldehyde 4-hydroxynonenal (4-HNE) due to its hydrazine functional group, which can covalently react with 4-HNE. In this study, we first examined the ability of PZ to prevent the respiratory depressant effects of 4-HNE on normal isolated brain cortical mitochondria. Second, in rats subjected to controlled cortical impact traumatic brain injury (CCI-TBI), we evaluated PZ (10 mg/kg subcutaneously at 15 minutes after CCI-TBI) to attenuate 3-hour post-TBI mitochondrial respiratory dysfunction, and in separate animals, to improve cortical tissue sparing at 14 days. While 4-HNE exposure inhibited mitochondrial complex I and II respiration in a concentration-dependent manner, pretreatment with equimolar concentrations of PZ antagonized these effects. Western blot analysis demonstrated a PZ decrease in 4-HNE in mitochondrial proteins. Mitochondria isolated from peri-contusional brain tissue of CCI-TBI rats treated with vehicle at 15 minutes after injury showed a 37% decrease in the respiratory control ratio (RCR) relative to noninjured mitochondria. In PZ-treated rats, RCR suppression was prevented (P<0.05 versus vehicle). In another cohort, PZ administration increased spared cortical tissue from 86% to 97% (P<0.03). These results suggest that PZ's neuroprotective effect is due to mitochondrial protection by scavenging of LP-derived 4-HNE.
Collapse
Affiliation(s)
- Indrapal N Singh
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|