1
|
Zhao X, Liu X, Feng Y, Shi D, Lu F. Regulation of hypoxia-inducible factor 1α by optimal oxygen concentration enhances oocyte maturation and early embryonic development in buffalo. Theriogenology 2023; 206:50-59. [PMID: 37187055 DOI: 10.1016/j.theriogenology.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
Despite significant progress in vitro maturation (IVM) and in vitro culture (IVC) of oocytes and embryos, their developmental competence remains low. To address this issue, we used buffalo oocytes as a model system to investigate the effects and mechanisms of oxygen concentration on IVM and IVC. Our findings demonstrated that culturing buffalo oocytes with 5% oxygen significantly enhanced the efficiency of IVM and developmental competence of early embryos. Immunofluorescence results suggested that HIF1α played a critical role in these progresses. RT-qPCR results showed that maintaining a stable expression of HIF1α in cumulus cells with 5% oxygen concentration enhanced glycolysis, expansion, and proliferation abilities, up-regulated the expression of development-related genes, and suppressed apoptosis level. Consequently, it improved the maturation efficiency and quality of oocytes, leading to improve developmental capacity of buffalo early embryos. Similar outcomes were also observed when embryos were cultured with 5% oxygen. Collectively, our study provided insights into the role of oxygen regulation during oocytes maturation and early embryo development, and could potentially improve the efficiency of human assisted-reproduction technology.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, 75 Xiuling Road, Nanning, 530005, PR China; Center of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, PR China
| | - Xiaolin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, 75 Xiuling Road, Nanning, 530005, PR China; Chongqing Reproductive Medical Center, Chongqing Maternity Hospital, Jintang Street No. 64, Yuzhong District, Chongqing, 400013, PR China
| | - Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, 75 Xiuling Road, Nanning, 530005, PR China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, 75 Xiuling Road, Nanning, 530005, PR China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, 75 Xiuling Road, Nanning, 530005, PR China.
| |
Collapse
|
2
|
Butucel E, Balta I, Bundurus IA, Popescu CA, Iancu T, Venig A, Pet I, Stef D, McCleery D, Stef L, Corcionivoschi N. Natural Antimicrobials Promote the Anti-Oxidative Inhibition of COX-2 Mediated Inflammatory Response in Primary Oral Cells Infected with Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis. Antioxidants (Basel) 2023; 12:antiox12051017. [PMID: 37237883 DOI: 10.3390/antiox12051017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis can colonize the tooth root canals, adhere to dentin walls, and frequently cause periodontitis in dogs. Bacterial periodontal diseases are common in domesticated pets, causing severe oral cavity inflammation and a strong immune response. This study investigates the antioxidant effect of a natural antimicrobial mixture (Auraguard-Ag) on the ability of S. aureus, S. pyogenes and E. faecalis to infect primary canine oral epithelial cells as well as its impact on their virulence factors. Our data show that a concentration of 0.25% Ag is sufficient to inhibit the growth of all three pathogens, whereas a concentration of 0.5% will become bactericidal. The sub-inhibitory concentration of 0.125% Ag reveals that the antimicrobial mixture can significantly reduce biofilm formation and exopolysaccharide production. The impact on these virulence factors was further translated into a significantly reduced ability to infect primary canine oral epithelial cells and restore epithelial tight junctions, with no impact on the epithelial cell viability. The post-infection inflammatory cytokines (IL-1β and IL-8) and the COX-2 mediator were also reduced both in mRNA and protein expression levels. The oxidative burst, detected upon infection, was also decreased in the presence of Ag, as our results show a significant decrease in H2O2 released by the infected cells. We show that inhibition of either NADPH or ERK activity will result in a downregulation of COX-2 expression and lower levels of H2O2 in infected cells. Conclusively, our study shows that natural antimicrobials reduce pro-inflammatory events, post infection, through an antioxidative mechanism that involves the downregulation of the COX-2 mediator via the inactivation of ERK in the absence of H2O2. As a result, they significantly reduce the risk of secondary bacterial infections and host oxidative stress caused by Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis accumulation in biofilms in an in vitro canine oral infection model.
Collapse
Affiliation(s)
- Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Iulia Adelina Bundurus
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Tiberiu Iancu
- Faculty of Management and Rural Tourism, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Adelina Venig
- Faculty of Environmental Protection, University of Oradea, 410087 Oradea, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Ducu Stef
- Faculty of Food Engineering, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| |
Collapse
|
3
|
Krizanova O, Penesova A, Sokol J, Hokynkova A, Samadian A, Babula P. Signaling pathways in cutaneous wound healing. Front Physiol 2022; 13:1030851. [PMID: 36505088 PMCID: PMC9732733 DOI: 10.3389/fphys.2022.1030851] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Wound healing is a very complex process, where variety of different pathways is activated, depending on the phase of healing. Improper or interrupted healing might result in development of chronic wounds. Therefore, novel approaches based on detailed knowledge of signalling pathways that are activated during acute or chronic cutaneous wound healing enables quicker and more effective healing. This review outlined new possibilities of cutaneous wound healing by modulation of some signalling molecules, e.g., gasotransmitters, or calcium. Special focus is given to gasotransmitters, since these bioactive signalling molecules that can freely diffuse into the cell and exert antioxidative effects. Calcium is an important booster of immune system and it can significantly contribute to healing process. Special interest is given to chronic wounds caused by diabetes mellitus and overcoming problems with the inflammation.
Collapse
Affiliation(s)
- Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center SAS, Bratislava, Slovakia,Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia,Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Adela Penesova
- Institute of Clinical and Translational Research, Biomedical Research Center SAS, Bratislava, Slovakia
| | - Jozef Sokol
- Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia
| | - Alica Hokynkova
- Department of Burns and Plastic Surgery, Faculty of Medicine, Masaryk University and University Hospital, Brno, Czechia
| | - Amir Samadian
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia,*Correspondence: Petr Babula,
| |
Collapse
|
4
|
Rai S, Gupta TP, Shaki O, Kale A. Hydrogen Peroxide: Its Use in an Extensive Acute Wound to Promote Wound Granulation and Infection Control - Is it Better Than Normal Saline? INT J LOW EXTR WOUND 2021:15347346211032555. [PMID: 34338578 DOI: 10.1177/15347346211032555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Hydrogen peroxide (H2O2) is used as a topical antiseptic in contaminated wounds caused by road traffic accidents. It kills bacteria by producing oxidation through local, nascent, free oxygen radicals. It also removes dirt from the wound due to its frothing action. H2O2 is synthesized by various cells as an active biochemical agent that affects cell biological behavior through complex chemical reactions. H2O2 has also been used as a wound cleaning agent, removing debris, preventing infection, and causing hemostasis due to its exothermic reaction with blood. Despite its widespread use, there is scanty literature on its use to promote granulation tissue formation. Objective: In the orthopaedics literature, studies on H2O2 use are very limited and its potential is underestimated. In the present study, we would like to report our protocol of use of H2O2 for its tremendous potential for stimulating granulation and early wound healing. Material and Methods: A total of 53 patients with large acute extensive lower limb contaminated wounds reported to the emergency department have been included with and without lower limb fracture. In group A (43 patients) wound management was done using 7% H2O2 and group B (10 patients) was treated by only saline dressing as a control group. Results: In the present study, daily dressing by 7% H2O2 solution and provide solution gives excellent results compared to the Saline group. Granulation tissue appeared much earlier with a mean SD 6.3 ± 6.8 days in the hydrogen peroxide group as compared to the Saline group where granulation tissue appeared in 9.3 ± 8.4 days. Conclusion: Spontaneous wound healing is a controlled balance between destructive and healing processes. It is mandatory to remove damaged tissue to promote healing by secondary intention and minimize infection. The dynamic effect of H2O2 promotes faster healing, stimulates granulation, and minimizes infection by oxidative stress.
Collapse
Affiliation(s)
- Sanjay Rai
- Base Hospital Guwahati, Basistha Guwahati, India
| | | | - Omna Shaki
- Base Hospital Guwahati, Basistha Guwahati, India
| | - Amit Kale
- Base Hospital Guwahati, Basistha Guwahati, India
| |
Collapse
|
5
|
Tanaka K, Adachi H, Akasaka H, Tamaoki J, Fuse Y, Kobayashi M, Kitazawa T, Teraoka H. Oxidative stress inducers potentiate 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated pre-cardiac edema in larval zebrafish. J Vet Med Sci 2021; 83:1050-1058. [PMID: 34024870 PMCID: PMC8349820 DOI: 10.1292/jvms.21-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We reported the involvement of oxidative stress and prostaglandins including thromboxane and prostacyclin in pre-cardiac edema (early edema) caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While the involvement of oxidative stress in TCDD-induced toxicity has been frequently reported, the mechanism of its action is still unclear. In the present study, oxidative stress inducers including paraquat, hydrogen peroxide (H2O2) and rotenone augmented early edema (edema) induced by a low concentration of TCDD (0.1 ppb) at 55 hr post fertilization (hpf), while each of them alone did not cause edema. Edema caused by TCDD plus oxidative stress inducers was almost abolished by antioxidants, an antagonist for thromboxane receptor (ICI-192,605) and an agonist for prostacyclin receptor (beraprost), suggesting that the site of action of these inducers was in the regular signaling pathway after activation of aryl hydrocarbon receptor type 2 (AHR2) by TCDD. Oxidative stress inducers also enhanced edema caused by an agonist for the thromboxane receptor (U46619), and the enhancement was also inhibited by antioxidants. Sulforaphane and auranofin, activators of Nrf2 that is a master regulator of anti-oxidative response, did not affect U46619-evoked edema but almost abolished TCDD-induced edema and potentiation by paraquat in both TCDD- and U46619-induced edema. Taken together, the results suggest that oxidative stress augments pre-cardiac edema caused by TCDD via activation of thromboxane receptor-mediated signaling in developing zebrafish. As paraquat and other oxidative stress inducers used also are environmental pollutants, interaction between dioxin-like compounds and exogenous source of oxidative stress should also be considered.
Collapse
Affiliation(s)
- Katsuki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hikaru Adachi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hironobu Akasaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuji Fuse
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
6
|
Jessop ZM, García-Gareta E, Zhang Y, Jovic TH, Badiei N, Sharma V, Whitaker IS, Kang N. Role of hydrogen peroxide in intra-operative wound preparation based on an in vitro fibrin clot degradation model. JPRAS Open 2021; 29:113-122. [PMID: 34195332 PMCID: PMC8237242 DOI: 10.1016/j.jpra.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Three per cent hydrogen peroxide (H2O2) is widely used to irrigate acute and chronic wounds in the surgical setting and clinical experience tells us that it is more effective at removing dried-on blood than normal saline alone. We hypothesise that this is due to the effect of H2O2 on fibrin clot architecture via fibrinolysis. We investigate the mechanisms and discuss the clinical implications using an in vitro model. Coagulation assays with normal saline (NaCl), 1% and 3% concentrations of H2O2 were performed to determine the effect on fibrin clot formation. These effects were confirmed by spectrophotometry. The effects of 1%, 3% and 10% H2O2 on the macroscopic and microscopic features of fibrin clots were assessed at set time intervals and compared to a NaCl control. Quantitative analysis of fibrin networks was undertaken to determine the fibre length, diameter, branch point density and pore size. Fibrin clots immersed in 1%, 3% and 10% H2O2 demonstrated volume losses of 0.09-0.25mm3/min, whereas those immersed in the normal saline gained in volume by 0.02±0.13 mm3/min. Quantitative analysis showed that H2O2 affects the structure of the fibrin clot in a concentration-dependent manner, with the increase in fibre length, diameter and consequently pore sizes. Our results support our hypothesis that the efficacy of H2O2 in cleaning blood from wounds is enhanced by its effects on fibrin clot architecture in a concentration- and time-dependent manner. The observed changes in fibre size and branch point density suggest that H2O2 is acting on the quaternary structure of the fibrin clot, most likely via its effect on cross-linking of the fibrin monomers and may therefore be of benefit for the removal of other fibrin-dependent structures such as wound slough.
Collapse
Affiliation(s)
- Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom.,The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom.,Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom
| | - Yadan Zhang
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom
| | - Thomas H Jovic
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom.,The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Nafiseh Badiei
- Centre for NanoHealth, Swansea University, United Kingdom
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University, United Kingdom.,The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Norbert Kang
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, United Kingdom.,Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
7
|
Domagala J, Lachota M, Klopotowska M, Graczyk-Jarzynka A, Domagala A, Zhylko A, Soroczynska K, Winiarska M. The Tumor Microenvironment-A Metabolic Obstacle to NK Cells' Activity. Cancers (Basel) 2020; 12:cancers12123542. [PMID: 33260925 PMCID: PMC7761432 DOI: 10.3390/cancers12123542] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
NK cells have unique capabilities of recognition and destruction of tumor cells, without the requirement for prior immunization of the host. Maintaining tolerance to healthy cells makes them an attractive therapeutic tool for almost all types of cancer. Unfortunately, metabolic changes associated with malignant transformation and tumor progression lead to immunosuppression within the tumor microenvironment, which in turn limits the efficacy of various immunotherapies. In this review, we provide a brief description of the metabolic changes characteristic for the tumor microenvironment. Both tumor and tumor-associated cells produce and secrete factors that directly or indirectly prevent NK cell cytotoxicity. Here, we depict the molecular mechanisms responsible for the inhibition of immune effector cells by metabolic factors. Finally, we summarize the strategies to enhance NK cell function for the treatment of tumors.
Collapse
Affiliation(s)
- Joanna Domagala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Marta Klopotowska
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Antoni Domagala
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland;
- Department of Urology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Karolina Soroczynska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Correspondence: ; Tel.: +48-225-992-199
| |
Collapse
|
8
|
Fracassi F, Niccoli G, Cosentino N, Eligini S, Fiorelli S, Fabbiocchi F, Vetrugno V, Refaat H, Montone RA, Marenzi G, Tremoli E, Crea F. Human monocyte-derived macrophages: Pathogenetic role in plaque rupture associated to systemic inflammation. Int J Cardiol 2020; 325:1-8. [PMID: 33035612 DOI: 10.1016/j.ijcard.2020.09.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Macrophages play a key role in coronary plaque destabilization. In-vitro human monocyte-derived macrophages (MDMs) are used to study macrophages infiltrating tissue. Optical coherence tomography (OCT) provides an in-vivo insight of the coronary arteries. We compared the MDMs morpho-phenotype and culprit plaque features at OCT in acute coronary syndrome (ACS) patients according to the underlying plaque pathobiology. METHODS Sixty-six patients undergoing coronary angiography and pre-angioplasty OCT of the culprit vessel were allocated to three groups according to mechanism of ACS at OCT and C-reactive protein levels (cut-off: 2 mg/Ll): 1) plaque rupture with systemic inflammation; 2) plaque rupture without systemic inflammation, 3) plaque with intact fibrous cap. A blood sample was collected to obtain MDMs, categorized as having "round" or "spindle" morphology. RESULTS Thirty-two patients (48.5%) were assigned to Group 1, 10 (15.2%) to Group 2 and 24 (36.4%) to Group 3. The "round" MDMs were significantly more frequent in Group 1 (39.25 ± 4.98%) than in Group 2 (23.89 ± 3.10%) and Group 3 (23.02 ± 7.89%), p = 0.008. MDMs in Group 1 as compared to Groups 2 and 3 showed lower efferocytosis (8.74 ± 1.38 vs 9.74 ± 2.15 vs 11.41 ± 2.41; p = 0.012), higher tissue factor levels (369.84 ± 101.13 vs 301.89 ± 59.78 vs 231.74 ± 111.47; p = 0.001) and higher heme oxygenase-1 expression (678.78 ± 145.43 vs 419.12 ± 74.44 vs 409.78 ± 64.33; p = 0.008). CONCLUSIONS MDMs of ACS patients show morpho-phenotypic heterogeneity with prevalence of pro-thrombotic and pro-oxidative properties in case of plaque rupture and systemic inflammation. Such MDMs subpopulation may take part to the cellular pathways leading to fibrous cap rupture with the subsequent thrombus formation.
Collapse
Affiliation(s)
- Francesco Fracassi
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giampaolo Niccoli
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy.
| | | | - Sonia Eligini
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | | | | | - Vincenzo Vetrugno
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy
| | - Hesham Refaat
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Cardiology Department, Zagazig University, Zagazig, Egypt
| | - Rocco Antonio Montone
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy
| | | | - Elena Tremoli
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - Filippo Crea
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
9
|
Dalisson B, Barralet J. Bioinorganics and Wound Healing. Adv Healthc Mater 2019; 8:e1900764. [PMID: 31402608 DOI: 10.1002/adhm.201900764] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Wound dressings and the healing enhancement (increasing healing speed and quality) are two components of wound care that lead to a proper healing. Wound care today consists mostly of providing an optimal environment by removing waste and necrotic tissues from a wound, preventing infections, and keeping the wounds adequately moist. This is however often not enough to re-establish the healing process in chronic wounds; with the local disruption of vascularization, the local environment is lacking oxygen, nutrients, and has a modified ionic and molecular concentration which limits the healing process. This disruption may affect cellular ionic pumps, energy production, chemotaxis, etc., and will affect the healing process. Biomaterials for wound healing range from simple absorbents to sophisticated bioactive delivery vehicles. Often placing a material in or on a wound can change multiple parameters such as pH, ionic concentration, and osmolarity, and it can be challenging to pinpoint key mechanism of action. This article reviews the literature of several inorganic ions and molecules and their potential effects on the different wound healing phases and their use in new wound dressings.
Collapse
Affiliation(s)
| | - Jake Barralet
- Faculty of DentistryMcGill University Montreal H3A 1G1 QC Canada
- Division of OrthopaedicsDepartment of SurgeryFaculty of MedicineMcGill University Montreal H4A 0A9 QC Canada
| |
Collapse
|
10
|
Kunčič MK, Jaklič D, Lapanje A, Gunde-Cimerman N. Antibacterial and antimycotic activities of Slovenian honeys. Br J Biomed Sci 2019. [DOI: 10.1080/09674845.2012.12069144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- M. Kralj Kunčič
- Department of Biology, Biotechnical Faculty, University of Ljubljana
| | - D. Jaklič
- Department of Biology, Biotechnical Faculty, University of Ljubljana
| | - A. Lapanje
- Institute of Physical Biology, Toplarniška 19
| | - N. Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
| |
Collapse
|
11
|
Biological profile of monocyte-derived macrophages in coronary heart disease patients: implications for plaque morphology. Sci Rep 2019; 9:8680. [PMID: 31213640 PMCID: PMC6581961 DOI: 10.1038/s41598-019-44847-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of a macrophage phenotype in atherosclerotic plaque may drive its progression and/or instability. Macrophages from coronary plaques are not available, and monocyte-derived macrophages (MDMs) are usually considered as a surrogate. We compared the MDM profile obtained from coronary artery disease (CAD) patients and healthy subjects, and we evaluated the association between CAD MDM profile and in vivo coronary plaque characteristics assessed by optical coherence tomography (OCT). At morphological analysis, MDMs of CAD patients had a higher prevalence of round than spindle cells, whereas in healthy subjects the prevalence of the two morphotypes was similar. Compared to healthy subjects, MDMs of CAD patients had reduced efferocytosis, lower transglutaminase-2, CD206 and CD163 receptor levels, and higher tissue factor (TF) levels. At OCT, patients with a higher prevalence of round MDMs showed more frequently a lipid-rich plaque, a thin-cap fibroatheroma, a greater intra-plaque macrophage accumulation, and a ruptured plaque. The MDM efferocytosis correlated with minimal lumen area, and TF levels in MDMs correlated with the presence of ruptured plaque. MDMs obtained from CAD patients are characterized by a morpho-phenotypic heterogeneity with a prevalence of round cells, showing pro-inflammatory and pro-thrombotic properties. The MDM profile allows identifying CAD patients at high risk.
Collapse
|
12
|
Zhang N, Dong B, Kong X, Wang C, Song W, Lin W. Development of a Xanthene-Based Red-Emissive Fluorescent Probe for Visualizing H 2O 2 in Living Cells, Tissues and Animals. J Fluoresc 2018; 28:681-687. [PMID: 29696451 DOI: 10.1007/s10895-018-2231-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023]
Abstract
Hydrogen peroxide (H2O2) plays important roles in the regulation of many biological processes, and the abnormal level of H2O2 has close relation with the initiation and progression of many diseases. Herein, we describe a novel red-emissive fluorescence probe (RhoB) for the visualization of H2O2 in living cells, tissues and animals. RhoB was constructed on the basis of a xanthene-based red-emissive dye, and displayed nearly no fluorescence. After the treatment with H2O2, RhoB can exhibit red fluorescence with the emission wavelength at 638 nm. RhoB exhibited highly sensitive and selective response to H2O2. Density functional theory (DFT) calculations were conducted to shed light on the optical properties of RhoB, and natural bond orbital (NBO) calculations demonstrate that the boron atom shows the highest positive electricity and further support the response mechanism. RhoB was successfully applied for imaging of exogenous and endogenous H2O2 in living cells, and also can be utilized for visualizing H2O2 in living tissues and animals.
Collapse
Affiliation(s)
- Nan Zhang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Chao Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Wenhui Song
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| |
Collapse
|
13
|
Kunkemoeller B, Kyriakides TR. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition. Antioxid Redox Signal 2017; 27:823-838. [PMID: 28699352 PMCID: PMC5647483 DOI: 10.1089/ars.2017.7263] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Impaired wound healing is a major complication of diabetes, and can lead to development of chronic foot ulcers in a significant number of patients. Despite the danger posed by poor healing, very few specific therapies exist, leaving patients at risk of hospitalization, amputation, and further decline in overall health. Recent Advances: Redox signaling is a key regulator of wound healing, especially through its influence on the extracellular matrix (ECM). Normal redox signaling is disrupted in diabetes leading to several pathological mechanisms that alter the balance between reactive oxygen species (ROS) generation and scavenging. Importantly, pathological oxidative stress can alter ECM structure and function. CRITICAL ISSUES There is limited understanding of the specific role of altered redox signaling in the diabetic wound, although there is evidence that ROS are involved in the underlying pathology. FUTURE DIRECTIONS Preclinical studies of antioxidant-based therapies for diabetic wound healing have yielded promising results. Redox-based therapeutics constitute a novel approach for the treatment of wounds in diabetes patients that deserve further investigation. Antioxid. Redox Signal. 27, 823-838.
Collapse
Affiliation(s)
- Britta Kunkemoeller
- 1 Department of Pathology, Yale University School of Medicine , New Haven, Connecticut
- 2 Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine , New Haven, Connecticut
| | - Themis R Kyriakides
- 1 Department of Pathology, Yale University School of Medicine , New Haven, Connecticut
- 2 Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine , New Haven, Connecticut
- 3 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| |
Collapse
|
14
|
Guo YX, Liu L, Yan DZ, Guo JP. Plumbagin prevents osteoarthritis in human chondrocytes through Nrf-2 activation. Mol Med Rep 2017; 15:2333-2338. [DOI: 10.3892/mmr.2017.6234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 11/23/2016] [Indexed: 11/06/2022] Open
|
15
|
Reactive Oxygen Species Mediated Prostaglandin E 2 Contributes to Acute Response of Epithelial Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4123854. [PMID: 28280524 PMCID: PMC5322452 DOI: 10.1155/2017/4123854] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 01/26/2023]
Abstract
Reactive oxygen species (ROS) generated after tissue injury play a crucial role during wound healing through initiating acute inflammation, clarifying infection and dead tissue, and mediating various intracellular signal transduction. Prostaglandin E2 (PGE2) has been identified as one of the major factors responsible for inflammation and tissue repair. In this study, we tested our hypothesis that ROS produced by damaged human keratinocytes induces the synthesis of PGE2. In vitro epithelial wounding model was used to observe the production of ROS and secretion of PGE2 as well as the involved signal pathway. The mechanical injury caused the rapid production of ROS in in vitro cultured keratinocytes, which was significantly blocked by an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase. The increased intracellular ROS caused by mechanical injury stimulates PGE2 production in a time-dependent manner via the activation of cyclooxygenase-2 (COX-2), which was stimulated by phosphorylation of extracellular signal-regulated protein kinase (ERK). These results indicate ROS-induced ERK activation leading to the activation of COX-2 and the synthesis of PGE2 in human keratinocytes responding to mechanical injury in the acute phase.
Collapse
|
16
|
Kallens V, Tobar N, Molina J, Bidegain A, Smith PC, Porras O, Martínez J. Glucose Promotes a Pro-Oxidant and Pro-Inflammatory Stromal Microenvironment Which Favors Motile Properties in Breast Tumor Cells. J Cell Biochem 2017; 118:994-1002. [DOI: 10.1002/jcb.25650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Violeta Kallens
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| | - Nicolás Tobar
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| | - Jessica Molina
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| | - Arantzazú Bidegain
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| | - Patricio C. Smith
- Laboratorio de Fisiología Periodontal; Facultad de Medicina; Pontificia Universidad Católica de Chile; Santiago 8330024 Chile
| | - Omar Porras
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| | - Jorge Martínez
- Laboratorio de Biología Celular y Molecular, INTA; Universidad de Chile; Santiago 7830490 Chile
| |
Collapse
|
17
|
Zhu G, Wang Q, Lu S, Niu Y. Hydrogen Peroxide: A Potential Wound Therapeutic Target? Med Princ Pract 2017; 26:301-308. [PMID: 28384636 PMCID: PMC5768111 DOI: 10.1159/000475501] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a topical antiseptic used in wound cleaning which kills pathogens through oxidation burst and local oxygen production. H2O2 has been reported to be a reactive biochemical molecule synthesized by various cells that influences biological behavior through multiple mechanisms: alterations of membrane potential, generation of new molecules, and changing intracellular redox balance, which results in activation or inactivation of different signaling transduction pathways. Contrary to the traditional viewpoint that H2O2 probably impairs tissue through its high oxidative property, a proper level of H2O2 is considered an important requirement for normal wound healing. Although the present clinical use of H2O2 is still limited to the elimination of microbial contamination and sometimes hemostasis, better understanding towards the sterilization ability and cell behavior regulatory function of H2O2 within wounds will enhance the potential to exogenously augment and manipulate healing.
Collapse
Affiliation(s)
| | | | | | - Yiwen Niu
- *Yiwen Niu, Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China), E-Mail
| |
Collapse
|
18
|
McDermott JE, Mitchell HD, Gralinski LE, Eisfeld AJ, Josset L, Bankhead A, Neumann G, Tilton SC, Schäfer A, Li C, Fan S, McWeeney S, Baric RS, Katze MG, Waters KM. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus. BMC SYSTEMS BIOLOGY 2016; 10:93. [PMID: 27663205 PMCID: PMC5035469 DOI: 10.1186/s12918-016-0336-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ anti-immune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. RESULTS We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine tumor necrosis factor alpha (TNFα) promote pathogenesis, presumably through excessive inflammation. CONCLUSIONS The current study provides validation of network modeling approaches for identifying important players in virus infection pathogenesis, and a step forward in understanding the host response to an important infectious disease. The results presented here suggest the role of Kepi in the host response to SARS-CoV, as well as inflammatory activity driving pathogenesis through TNFα signaling in SARS-CoV infections. Though we have reported the utility of this approach in bacterial and cell culture studies previously, this is the first comprehensive study to confirm that network topology can be used to predict phenotypes in mice with experimental validation.
Collapse
Affiliation(s)
- Jason E. McDermott
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Hugh D. Mitchell
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Lisa E. Gralinski
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - Amie J. Eisfeld
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - Laurence Josset
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
| | - Armand Bankhead
- Division of Biostatistics, Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR 97239 USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239 USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - Susan C. Tilton
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - Chengjun Li
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - Shufang Fan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - Shannon McWeeney
- Division of Biostatistics, Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR 97239 USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
| | - Katrina M. Waters
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| |
Collapse
|
19
|
Kasai T, Nakanishi T, Ohno Y, Shimada H, Nakamura Y, Arakawa H, Tamai I. Role of OATP2A1 in PGE(2) secretion from human colorectal cancer cells via exocytosis in response to oxidative stress. Exp Cell Res 2016; 341:123-31. [PMID: 26850138 DOI: 10.1016/j.yexcr.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/30/2022]
Abstract
Chronic inflammation induced by reactive oxygen species is associated with increased risk of developing colorectal cancer (CRC), and prostaglandin E2 (PGE2), which serves as a key mediator of inflammatory responses, plays an important role in CRC initiation and progression. Therefore, in the present study, we aimed to investigate the role of prostaglandin transporter OATP2A1/SLCO2A1 in the changes of PGE2 disposition in CRC cells in response to oxidative stress. H2O2 induced translocation of cytoplasmic OATP2A1 to plasma membranes in LoVo and COLO 320DM cells, but not in Caco-2 cells. The shift of subcellular OATP2A1 was abolished in the presence of anti-oxidant N-acetyl-L-cysteine or an inhibitor of protein kinase C, which evokes exocytosis. Exposure of LoVo cells to H2O2 caused an increase in the amount of extracellular PGE2 without changing the sum of intra- and extracellular PGE2. OATP2A1 knockdown decreased extracellular PGE2 in LoVo cells. In addition, extracellular PGE2 was significantly reduced by exocytosis inhibitor cytochalasin D, suggesting that H2O2-induced PGE2 release occurs in an exocytotic manner. Furthermore, mRNA expression of vascular endothelial growth factor (VEGF) was significantly reduced in LoVo cells by knockdown of OATP2A1. These results suggest that cytoplasmic OATP2A1 likely facilitates PGE2 loading into suitable intracellular compartment(s) for efficient exocytotic PGE2 release from CRC cells exposed to oxidative stress.
Collapse
Affiliation(s)
- Taku Kasai
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yasuhiro Ohno
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroaki Shimada
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshinobu Nakamura
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
20
|
Mouawad CA, Mrad MF, El-Achkar GA, Abdul-Sater A, Nemer GM, Creminon C, Lotersztajn S, Habib A. Statins Modulate Cyclooxygenase-2 and Microsomal Prostaglandin E Synthase-1 in Human Hepatic Myofibroblasts. J Cell Biochem 2015; 117:1176-86. [PMID: 26477987 DOI: 10.1002/jcb.25401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/06/2015] [Indexed: 12/22/2022]
Abstract
Statins have been shown to exert anti-inflammatory and anti-fibrogenic properties in the liver. In the present study, we explored the mechanisms underlying anti-fibrogenic effects of statins in isolated hepatic myofibroblasts and focused on cyclooxyegnase-2, a major anti-proliferative pathway in these cells. We show that simvastatin and fluvastatin inhibit thymidine incorporation in hMF in a dose-dependent manner. Pretreatment of cells with NS398, a COX-2 inhibitor, partially blunted this effect. cAMP levels, essential to the inhibition of hMF proliferation, were increased by statins and inhibited by non-steroidal anti-inflammatory drugs. Since statins modify prenylation of some important proteins in gene expression, we investigated the targets involved using selective inhibitors of prenyltransferases. Inhibition of geranylgeranylation resulted in the induction of COX-2 and mPGES-1. Using gel retardation assays, we further demonstrated that statins potentially activated the NFκB and CRE/E-box binding for COX-2 promoter and the binding of GC-rich regions and GATA for mPGES-1. Together these data demonstrate that statin limit hepatic myofibroblasts proliferation via a COX-2 and mPGES-1 dependent pathway. These data suggest that statin-dependent increase of prostaglandin in hMF contributes to its anti-fibrogenic effect.
Collapse
Affiliation(s)
- Charbel A Mouawad
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Department of Food Technologies, Al-Kafaat University, Ain Saadeh, Fanar, Lebanon
| | - May F Mrad
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Nehme and Therese Tohme Multiple Sclerosis Center-American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon
| | - Ali Abdul-Sater
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Deparment of Immunology, University of Toronto, Canada
| | - Georges M Nemer
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon
| | - Christophe Creminon
- iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, CEA Saclay - Bât. 136, 91191 Gif-Sur-Yvette Cedex, France
| | - Sophie Lotersztajn
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France.,Université Paris 7 Diderot, Sorbonne Paris Cité-Laboratoire d'excellence Inflamex, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, F-75018 Paris, France
| | - Aïda Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France.,Université Paris 7 Diderot, Sorbonne Paris Cité-Laboratoire d'excellence Inflamex, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, F-75018 Paris, France
| |
Collapse
|
21
|
Moreira JD, Pernomian L, Gomes MS, Pernomian L, Moreira RP, do Prado AF, da Silva CHTP, de Oliveira AM. Acute restraint stress increases carotid reactivity in type-I diabetic rats by enhancing Nox4/NADPH oxidase functionality. Eur J Pharmacol 2015; 765:503-16. [PMID: 26387612 DOI: 10.1016/j.ejphar.2015.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/16/2015] [Accepted: 09/14/2015] [Indexed: 12/23/2022]
Abstract
Hyperglycemia increases the generation of reactive oxygen species and affects systems that regulate the vascular tone including renin-angiotensin system. Stress could exacerbate intracellular oxidative stress during Diabetes upon the activation of angiotensin AT1/NADPH oxidase pathway, which contributes to the development of diabetic cardiovascular complications. For this study, type-I Diabetes was induced in Wistar rats by intraperitoneal injection of streptozotocin. 28 days after streptozotocin injection, the animals underwent to acute restraint stress for 3 h. Cumulative concentration-response curves for angiotensin II were obtained in carotid rings pre-treated or not with Nox or cyclooxygenase inhibitors. Nox1 or Nox4 expression and activity were assessed by Western blotting and lucigenin chemiluminescence, respectively. The role of Nox1 and Nox4 on reactive oxygen species generation was evaluated by flow cytometry and Amplex Red assays. Cyclooxygenases expression was assessed by real-time polymerase chain reaction. The contractile response evoked by angiotensin II was increased in diabetic rat carotid. Acute restraint stress increased this response in this vessel by mechanisms mediated by Nox4, whose local expression and activity in generating hydrogen peroxide are increased. The contractile hyperreactivity to angiotensin II in stressed diabetic rat carotid is also mediated by metabolites derived from cyclooxygenase-2, whose local expression is increased. Taken together, our findings suggest that acute restraint stress exacerbates the contractile hyperreactivity to angiotensin II in diabetic rat carotid by enhancing Nox4-driven generation of hydrogen peroxide, which evokes contractile tone by cyclooxygenases-dependent mechanisms. Finally, these findings highlight the harmful role played by acute stress in modulating diabetic vascular complications.
Collapse
Affiliation(s)
- Josimar D Moreira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University from Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Larissa Pernomian
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences from Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mayara S Gomes
- Department of Physics and Chemistry, FCFRP, USP, Ribeirão Preto, SP, Brazil
| | - Laena Pernomian
- Department of Pharmacology, Faculty of Medicine from Ribeirão Preto (FMRP), USP, Ribeirão Preto, SP, Brazil
| | - Rafael P Moreira
- Department of Physics and Chemistry, FCFRP, USP, Ribeirão Preto, SP, Brazil
| | - Alejandro F do Prado
- Department of Pharmacology, Faculty of Medicine from Ribeirão Preto (FMRP), USP, Ribeirão Preto, SP, Brazil
| | - Carlos H T P da Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences from Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana M de Oliveira
- Department of Physics and Chemistry, FCFRP, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
22
|
Toniolo A, Buccellati C, Trenti A, Trevisi L, Carnevali S, Sala A, Bolego C. Antiinflammatory and antioxidant effects of H2O2 generated by natural sources in Il1β-treated human endothelial cells. Prostaglandins Other Lipid Mediat 2015; 121:190-8. [PMID: 26391839 DOI: 10.1016/j.prostaglandins.2015.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/07/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Specific reactive oxygen species (ROS) from different sources, might lead to different and even opposite, cellular effects. We studied the production of specific ROS resulting from the exposure of human umbilical veins endothelial cells (HUVEC) to H2O2 derived from the natural antioxidant epigallocathechin gallate (EGCG) or from the exposure to IL-1β using a fluorogenic probe and flow cytometry, and evaluated by western blot analysis and immunocytochemistry the associated expression of transcription factors sensitive to both inflammatory and oxidative stress, such as NF-κB and Nrf2, and some downstream activated genes such as cyclooxygenase-2 (COX-2) and hemeoxygenase 1 (HO-1). The results obtained showed that exogenously-generated H2O2 induce anti-inflammatory and antioxidant effects in HUVECs counteracting the pro-inflammatory and pro-oxidant effect of IL-1β related to the production of superoxide anions. The underlying mechanisms resulting from the extracellular production of H2O2, include (1) Nrf2 nuclear translocation and the enhanced expression of antioxidant enzymes such as HO-1, and (2) the previously unreported inhibition of NF-κB and COX-2 expression. Overall, these findings provide evidence that the production of specific reactive oxygen species finely tunes endothelial cell function and might be relevant for the reappraisal of the effects of exogenous antioxidants in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Alice Toniolo
- Department of Pharmaceuticaland Pharmacological Sciences, University of Padova, Italy
| | - Carola Buccellati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annalisa Trenti
- Department of Pharmaceuticaland Pharmacological Sciences, University of Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceuticaland Pharmacological Sciences, University of Padova, Italy
| | - Silvia Carnevali
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Angelo Sala
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; Institute of Biomedicine and Molecular Immunology, National Research Council, Palermo, Italy.
| | - Chiara Bolego
- Department of Pharmaceuticaland Pharmacological Sciences, University of Padova, Italy
| |
Collapse
|
23
|
Eligini S, Brioschi M, Fiorelli S, Tremoli E, Banfi C, Colli S. Human monocyte-derived macrophages are heterogenous: Proteomic profile of different phenotypes. J Proteomics 2015; 124:112-23. [DOI: 10.1016/j.jprot.2015.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 03/13/2015] [Accepted: 03/29/2015] [Indexed: 12/25/2022]
|
24
|
Wu YS, Huang SL, Nan FH, Chang CS, Hsiao CM, Lai KC, Chen SN. Over-inhibition of NADPH oxidase reduce the wound healing in liver of finfish. FISH & SHELLFISH IMMUNOLOGY 2014; 40:174-181. [PMID: 25017371 DOI: 10.1016/j.fsi.2014.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
Wound healing is a complex process involving soluble mediators, blood cells, extracellular matrix, and parenchymal cells in a response that occurs after surgical procedure or traumatic injury. The present study aims to investigate the ROS producing from the injury that involved in the wound healing using the ZFL (zebrafish liver cell) and tilapia partial hepatectomy model. In the ZFL, we observed that while over-inhibition of NADPH activity leading to reduce the wound healing moreover, experiment of the oxidative stress by the extracellular hydrogen peroxide exactly presented to increase the PCNA, BrdU and Ki-67 histopathological repair response of tilapia liver follow partial hepatectomy. We conclude that over inhibition of the NADPH oxidase by DPI may reduce the cell even the tissue in the progress of healing after the injury.
Collapse
Affiliation(s)
- Yu-Sheng Wu
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Ling Huang
- Freshwater Aquaculture Research Center, Fisheries Research Institute, Council of Agriculture, Changhua 50562, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20248, Taiwan
| | - Ching-Sheng Chang
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Mei Hsiao
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Kam-Chiu Lai
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Shiu-Nan Chen
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan; College of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
25
|
Tsuruya M, Niwano Y, Nakamura K, Kanno T, Nakashima T, Egusa H, Sasaki K. Acceleration of proliferative response of mouse fibroblasts by short-time pretreatment with polyphenols. Appl Biochem Biotechnol 2014; 174:2223-35. [PMID: 25173673 DOI: 10.1007/s12010-014-1124-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
Abstract
Under the hypothesis that photo-irradiated proanthocyanidin could accelerate wound healing through reactive oxygen species (ROS) formation, we examined the effect of proanthocyanidin on 3T3-L1 mouse fibroblasts with or without photo-irradiation. As a result, irrespective of presence or absence of photo-irradiation, only 1 min exposure of the cells to proanthocyanidin resulted in accelerated proliferation of the cells in a concentration-dependent manner. Similarly to proanthocyanidin, 1 min pretreatment with catechin, caffeic acid, and chlorogenic acid accelerated the proliferative response, but gallic acid, epicatechin gallate, epigallocatechin, and epigallocatechin gallate failed. If incorporated active ingredient such as proanthocyanidin for such a short time as 1 min accelerates the proliferation response, a bioassay was conducted by utilizing antioxidant potential of proanthocyanidin. That is, intracellular oxidation of 2',7'-dichlorodihydrofluorescin induced by H2O2 was significantly inhibited when the cells were pretreated with proanthocyanidin for 1 min, suggesting that incorporated proanthocyanidin into the cells exerted antioxidant effect. This was also supported by a liquid chromatography/mass spectrometry analysis in which incorporation of proanthocyanidin components such as catechin monomers and dimers into the cells within 1 min was confirmed. These results suggest that active polyphenolic compounds such as proanthocyanidin, catechin, caffeic acid, and chlorogenic acid incorporated into the cells in such a short time as 1 min could accelerate the proliferative response of the cells.
Collapse
Affiliation(s)
- Makoto Tsuruya
- Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Liang Y, Huang B, Song E, Bai B, Wang Y. Constitutive activation of AMPK α1 in vascular endothelium promotes high-fat diet-induced fatty liver injury: role of COX-2 induction. Br J Pharmacol 2014; 171:498-508. [PMID: 24372551 DOI: 10.1111/bph.12482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/24/2013] [Accepted: 10/16/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE AMP-activated protein kinase (AMPK), an important regulator of energy metabolism, comprises three (α, β and γ) subunits, each with a unique tissue distribution. As AMPK has a wide range of protein and gene targets, defining its role has been difficult. Here, we have studied a transgenic mouse model overexpressing the constitutively active α1 subunit of AMPK in endothelial cells (EC-AMPK) to elucidate its role in energy homeostasis. EXPERIMENTAL APPROACH Wild-type and EC-AMPK mice were fed with a high fat diet for 16 weeks. Drugs (or vehicles) were given daily by oral gavage. Body weight, fat mass composition, glucose and lipid levels were monitored regularly. Tissues including aortae and liver were collected for quantitative RT-PCR, Western blotting, elisa, histological and biochemical evaluations. KEY RESULTS Compared with wild-type animals, high fat diet caused more severe metabolic defects in EC-AMPK mice, which exhibited increased body weight and fat mass, elevated blood pressure, augmented glucose and lipid levels, impaired glucose tolerance, hepatomegaly and steatohepatitis. Constitutive activation of AMPK α1 in endothelial cells induced COX-2 expression and arterial inflammation. Genes involved in lipid metabolism were down-regulated in aortae and livers of EC-AMPK mice. Chronic treatment with selective COX-2 inhibitors, celecoxib or nimesulide, significantly ameliorated arterial inflammation, steatohepatitis and hyperlipidaemia in EC-AMPK mice, without altering their blood pressure or clotting. CONCLUSIONS AND IMPLICATIONS Constitutive activation of endothelial AMPK α1 promotes vascular inflammation and the development of obesity-induced fatty livers largely via induction of COX-2.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
27
|
Eligini S, Songia P, Cavalca V, Crisci M, Tremoli E, Colli S. Cytoskeletal architecture regulates cyclooxygenase-2 in human endothelial cells: autocrine modulation by prostacyclin. J Cell Physiol 2012; 227:3847-56. [PMID: 22495438 DOI: 10.1002/jcp.24097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelium is a highly dynamic tissue that controls vascular homeostasis. This requires constant rearrangements of the shape or function of endothelial cells that cannot set aside the role of the cytoskeleton. The aim of this study was to determine the mechanisms by means of which cytoskeletal alterations induce cyclooxygenase-2 (Cox-2) expression in human endothelial cells using compounds that interfere with microtubule or actin architecture. Microtubule disruption by nocodazole markedly increased Cox-2 expression and activity, and provoked paracellular gap formation, a cardinal feature of endothelial barrier dysfunction. The Cox-2 metabolite prostacyclin down-regulated Cox-2 through an autocrine receptor-mediated mechanism, and partially prevented the disassembly of endothelial monolayers. There was also an interaction between microtubules and actin filaments in nocodazole-induced Cox-2 expression. Nocodazole provoked the dissolution of the F-actin cortical ring and stress fiber formation, increased actin glutathionylation, and concomitantly lowered intracellular levels of reduced glutathione. The restoration of glutathione levels by N-acetylcysteine opposed Cox-2 expression and preserved the integrity of endothelial monolayers. Among the signaling pathways connecting microtubule disruption with Cox-2 up-regulation, crucial roles are played by Src family kinase activation, serine/threonine phosphatase 2A inhibition, and the phosphorylation of mitogen activated protein kinase p38. Our findings provide a mechanistic insight into the observation that Cox-2 is induced in endothelial cells under cytoskeleton-perturbing conditions such as those occurring in the presence of atherogenic/inflammatory stimuli and oxidative stress. In this scenario, Cox-2 up-regulation by endothelia exposed to noxious conditions can be considered protective of the vasodilatory and anti-thrombotic properties of the vessel wall.
Collapse
|
28
|
Iwanaga K, Okada M, Murata T, Hori M, Ozaki H. Prostaglandin E2 promotes wound-induced migration of intestinal subepithelial myofibroblasts via EP2, EP3, and EP4 prostanoid receptor activation. J Pharmacol Exp Ther 2012; 340:604-11. [PMID: 22138372 DOI: 10.1124/jpet.111.189845] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Intestinal subepithelial myofibroblasts (ISMFs) are mesenchymal cells that reside in the subepithelial region throughout the intestine. When the intestine is damaged, the migratory and mitotic responses of ISMFs are crucial for wound closure. However, their mechanism of action remains unknown. We have investigated the role of cyclooxygenase (COX) and its metabolite prostaglandin E(2) (PGE(2)) in the wound repair process of bovine ISMFs. The action of a mechanical scratch in a layer of ISMFs in cell culture elevated the levels of both COX-2 mRNA expression and PGE(2) secretion 1 and 6 h after the event. After 24 h ISMFs had migrated to and reduced the wounded area around the site of the scratch. Treatment with the COX-1/2 inhibitor indomethacin, the COX-2 inhibitor 3-(4-methylsulphonylphenyl)-4-phenyl-5-trifluoromethylisoxazole (CAY10404), or E prostanoid receptor 2 to 4 (EP2-EP4) antagonists significantly inhibited wound repair. Conversely, inhibition of wound closure by indomethicin was reversed by treatment with PGE(2) or agonists of the receptors EP2, EP3, or EP4 but not of EP1. Although EP2 to EP4 stimulation did not influence ISMF proliferation, it did stimulate ISMF migration in the transwell cell migration assay. It is noteworthy that cell migration stimulated by EP2 and EP4 was inhibited by the tyrosine kinase receptor inhibitor genistein and also by (Z)-3-[2,4-dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-3-yl]-propionic acid (SU6668). However, cell migration stimulated by EP3 was unaffected. Reverse transcription-polymerase chain reaction showed EP2 or EP4 stimulation elevated the level of mRNA expression for fibroblast growth factor-2, which stimulates ISMF migration. Collectively, COX-2-dependent PGE(2) secretion promotes wound healing by ISMFs. PGE(2)-EP3 signaling may directly stimulate ISMF migration. PGE(2)-EP2/4 signaling indirectly stimulates ISMF migration by elevating the level of growth factor secretion.
Collapse
Affiliation(s)
- Koichi Iwanaga
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
29
|
Minimizing the cancer-promotional activity of cox-2 as a central strategy in cancer prevention. Med Hypotheses 2012; 78:45-57. [DOI: 10.1016/j.mehy.2011.09.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 09/19/2011] [Indexed: 02/06/2023]
|
30
|
Yamada Y, Mokudai T, Nakamura K, Hayashi E, Kawana Y, Kanno T, Sasaki K, Niwano Y. Topical treatment of oral cavity and wounded skin with a new disinfection system utilizing photolysis of hydrogen peroxide in rats. J Toxicol Sci 2012; 37:329-35. [DOI: 10.2131/jts.37.329] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | | | | | - Taro Kanno
- Tohoku University Graduate School of Dentistry
| | | | | |
Collapse
|
31
|
Pivotal Role of Protein Kinase C
δ
in Angiotensin II–Induced Endothelial Cyclooxygenase-2 Expression. Arterioscler Thromb Vasc Biol 2011; 31:1169-76. [DOI: 10.1161/atvbaha.110.216044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective—
The purpose of this study was to examine the hypothesis that angiotensin II (Ang II) induced endothelial cyclooxygenase-2 (COX-2) expression, which in turn mediated the generation of proinflammatory cytokines.
Methods and Results—
Western blot analysis on primary rat endothelial cells showed Ang II induced COX-2 expression, which was abolished by cotreatment of p38 mitogen-activated protein kinase (SB 202190) and extracellular signal–regulated kinase 1/2 (PD 98059) inhibitors. Protein kinase C
δ
(PKC
δ
) inhibitor (rottlerin) prevented extracellular signal–regulated kinase 1/2 phosphorylation and COX-2 expression. The pivotal role of PKC
δ
was further supported by a similar stimulatory effect of the PKC activator on COX-2 expression, signified by Ang II–stimulated translocation of PKC
δ
to the plasma membrane, and confirmed by PKC
δ
phosphorylation at Tyr311. Small interfering RNA targeting PKC
δ
diminished COX-2 expression, which was further abrogated by SB 202190. Human mesenteric arteries incubated with Ang II showed increased levels of endothelial COX-2 and monocyte chemoattractant protein-1; the former was inhibited by SB 202190 plus rottlerin, whereas the latter was prevented by COX-2 inhibitor.
Conclusion—
The present study pinpoints a novel role of PKC
δ
in Ang II–induced endothelial COX-2 upregulation and identifies a COX-2-dependent proatherosclerotic cytokine monocyte chemoattractant protein-1. The findings raise the possibility of curtailing endothelial COX-2 expression as a means of limiting or preventing vascular inflammation.
Collapse
|
32
|
|
33
|
Schreml S, Landthaler M, Schäferling M, Babilas P. A new star on the H2O2rizon of wound healing? Exp Dermatol 2011; 20:229-31. [DOI: 10.1111/j.1600-0625.2010.01195.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Dovolou E, Clemente M, Amiridis GS, Messinis IE, Kallitsaris A, Gutierrez-Adan A, Rizos D. Effects of Guaiazulene on In Vitro Bovine Embryo Production and on mRNA Transcripts Related to Embryo Quality. Reprod Domest Anim 2011; 46:862-9. [DOI: 10.1111/j.1439-0531.2011.01756.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Chen YY, Zheng MZ, Lv PP, Hu L, Wang LL, Shen YL. Hydrogen peroxide regulates glucose-regulated protein 78 expression via a cyclooxygenase-2 dependent mechanism. J Biochem Mol Toxicol 2010; 24:279-85. [DOI: 10.1002/jbt.20336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Aggeli IK, Kefaloyianni E, Beis I, Gaitanaki C. HOX-1 and COX-2: Two differentially regulated key mediators of skeletal myoblast tolerance under oxidative stress. Free Radic Res 2010; 44:679-93. [DOI: 10.3109/10715761003742985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Srikun D, Albers AE, Nam CI, Iavarone AT, Chang CJ. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling. J Am Chem Soc 2010; 132:4455-65. [PMID: 20201528 PMCID: PMC2850560 DOI: 10.1021/ja100117u] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) is a potent small-molecule oxidant that can exert a diverse array of physiological and/or pathological effects within living systems depending on the timing and location of its production, accumulation, trafficking, and consumption. To help study the chemistry and biology of this reactive oxygen species (ROS) in its native cellular context, we now present a new method for monitoring local, subcellular changes in H(2)O(2) levels by fluorescence imaging. Specifically, we have exploited the versatility of the SNAP-tag technology for site-specific protein labeling with small molecules on the surface or interior of living cells with the use of boronate-capped dyes to selectively visualize H(2)O(2). The resulting SNAP-Peroxy-Green (SNAP-PG) probes consist of appropriately derivatized boronates bioconjugated to SNAP-tag fusion proteins. Spectroscopic measurements of the SNAP-PG constructs confirm their ability to detect H(2)O(2) with specificity over other biologically relevant ROS. Moreover, these hybrid small-molecule/protein reporters can be used in live mammalian cells expressing SNAP-tag fusion proteins directed to the plasma membrane, nucleus, mitochondria, and endoplasmic reticulum. Imaging experiments using scanning confocal microscopy establish organelle-specific localization of the SNAP-tag probes and their fluorescence turn-on in response to changes in local H(2)O(2) levels. This work provides a general molecular imaging platform for assaying H(2)O(2) chemistry in living cells with subcellular resolution.
Collapse
Affiliation(s)
- Duangkhae Srikun
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Aaron E. Albers
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Christine I. Nam
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
38
|
Bermejo-Alvarez P, Lonergan P, Rizos D, Gutiérrez-Adan A. Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod Biomed Online 2009; 20:341-9. [PMID: 20093090 DOI: 10.1016/j.rbmo.2009.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 07/15/2009] [Accepted: 11/16/2009] [Indexed: 11/13/2022]
Abstract
This study evaluated the effect of two oxygen concentrations (20 and 5%) on bovine embryo development (kinetics of first cleavage and blastocyst development) during maturation (M) and fertilization (F) and analysed differences in gene expression between cumulus-oocyte complexes (COC) matured at 5 or 20% oxygen and the resulting blastocysts. A total of 1179 COC were divided into four groups according to the oxygen tension used (M5F5, M5F20, M20F5 and M20F20). Relative poly(A) mRNA abundance of GLUT1, GAPDH, LDHA, G6PD, MNSOD, GPX1, IGFR2, BAX, CCNB1, PTGS2 and GREM1 was analysed in COC, whereas 10 quality-related genes were analysed in blastocysts. M20F5 group developmental rates were significantly lower than all other groups (one-way ANOVA, P < or = 0.05). Two-way ANOVA showed a beneficial effect of low oxygen tension during in-vitro maturation on developmental rates, whereas the opposite situation was obtained in fertilization (P < or = 0.05). GAPDH, IGFR2, CCNB1, and GREM1 were up-regulated in the oocytes matured in low oxygen, whereas GLUT1, GAPDH, LDHA and GREM1 were up-regulated and PTGS2 down-regulated in the cumulus cells from the M5 group (P < or = 0.05). No differences were observed in blastocysts. Low oxygen tension during maturation alters the expression of genes related to oocyte competence and glucose metabolism and significantly (P < or = 0.05) improves embryo development, but not blastocyst quality.
Collapse
|