1
|
Khosravi A, Deyhim MR, Yari F, Nikougoftar Zarif M. Resveratrol; a Double-Edged Sword Antioxidant Agent for Preserving Platelet Cell Functions During Storage; Molecular Insights. Rep Biochem Mol Biol 2023; 11:553-564. [PMID: 37131901 PMCID: PMC10149130 DOI: 10.52547/rbmb.11.4.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 05/04/2023]
Abstract
Background In the current study we have aimed to find the effects of Resveratrol treatment on platelet concentrates (PCs) at the dose dependent manner. We have also attempted to find the molecular mechanism of the effects. Methods The PCs, have received from Iranian blood transfusion organization (IBTO). Totally 10 PCs were studied. The PCs divided into 4 groups including untreated (control) and treated by different dose of Resveratrol; 10, 30 and 50 µM. Platelet aggregation and total reactive oxygen species (ROS) levels were evaluated at day 3 of PCs storage. In silico analysis was carried out to find out the potential involved mechanisms. Results The aggregation against collagen has fallen dramatically in all studied groups but at the same time, aggregation was significantly higher in the control versus treated groups (p<0.05). The inhibitory effect was dose dependent. The aggregation against Ristocetin did not significantly affect by Resveratrol treatment. The mean of total ROS significantly increased in all studied groups except those PCs treated with 10 µM of Resveratrol (P=0.9). The ROS level significantly increased with increasing Resveratrol concentration even more than control group (slope=11.6, P=0.0034). Resveratrol could potently interact with more than 15 different genes which, 10 of them enrolled in cellular regulation of the oxidative stress. Conclusions Our findings indicated that the Resveratrol affect the platelet aggregation at the dose dependent manner. Moreover, we have also found that the Resveratrol play as double-edged sword in the controlling oxidative state of the cells. Therefore, Using the optimal dose of Resveratrol is the great of importance.
Collapse
Affiliation(s)
- Abbas Khosravi
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Reza Deyhim
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
- Corresponding author: Mohammad Reza Deyhim; Tel: +98 21 82052180; E-mail:
| | - Fatemeh Yari
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
2
|
de Oliveira Fialho CG, Moreira APB, Bressan J, de Cássia Gonçalves Alfenas R, Mattes R, Costa NMB. Effects of whole peanut within an energy-restricted diet on inflammatory and oxidative processes in obese women: a randomized controlled trial. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3446-3455. [PMID: 34837651 DOI: 10.1002/jsfa.11692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/09/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Peanut consumption has little effect on body weight, despite its high energy density and is associated with reduced cardiovascular disease risk. Based on previous research, we hypothesized that the consumption of whole peanut would be associated with greater improvements in body composition, lipid profile, and biomarkers of inflammation and oxidative stress. METHODOLOGY Twenty-four women with obesity [body mass index (BMI) > 30 kg m-2 ], 33.1 ± 8.7 years old, were assigned to three groups and consumed 56 g of whole peanut (WP), skinned peanut (SP), and no peanut (NP) and consumed energy-restricted diets (250 kcal d-1 less than their customary diet) for 8 weeks. RESULTS WP group lost an average of 3.2 kg, while SP group lost 2.6 kg and the NP group 1.8 kg. However, only the groups that consumed peanuts showed a significant reduction in BMI. WP group presented lower body weight, BMI, waist circumference, total lean mass, and total body fat than the SP group in the eighth week. There was a significant reduction in total cholesterol and low-density lipoprotein (LDL) after 4 weeks of intervention, which was maintained in week-8 for the WP and SP groups. In addition, there was an improvement in platelets and plasma homocysteine with WP group. CONCLUSION Our results suggest that the regular intake of the whole peanut as part of an energy-restricted diet showed health benefits since it enhanced body weight loss, besides improving body composition and reducing cholesterol, platelets, and homocysteine concentrations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Josefina Bressan
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Brazil
| | | | - Richard Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
3
|
Cheng P, Liao HY, Zhang HH. The role of Wnt/mTOR signaling in spinal cord injury. J Clin Orthop Trauma 2022; 25:101760. [PMID: 35070684 PMCID: PMC8762069 DOI: 10.1016/j.jcot.2022.101760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury (SCI) is the most common disabling spinal injury, a complex pathologic process that can eventually lead to severe neurological dysfunction. The Wnt/mTOR signaling pathway is a pervasive signaling cascade that regulates a wide range of physiological processes during embryonic development, from stem cell pluripotency to cell fate. Numerous studies have reported that Wnt/mTOR signaling pathway plays an important role in neural development, synaptogenesis, neuron growth, differentiation and survival after the central nervous system (CNS) is damaged. Wnt/mTOR also plays an important role in regulating various pathophysiological processes after spinal cord injury (SCI). After SCI, Wnt/mTOR signal regulates the physiological and pathological processes of neural stem cell proliferation and differentiation, neuronal axon regeneration, neuroinflammation and pain through multiple pathways. Due to the characteristics of the Wnt signal in SCI make it a potential therapeutic target of SCI. In this paper, the characteristics of Wnt/mTOR signal, the role of Wnt/mTOR pathway on SCI and related mechanisms are reviewed, and some unsolved problems are discussed. It is hoped to provide reference value for the research field of the role of Wnt/mTOR pathway in SCI, and provide a theoretical basis for biological therapy of SCI.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| | - Hai-Yang Liao
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 342800, PR China
| | - Hai-Hong Zhang
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| |
Collapse
|
4
|
Ding Y, Chen Q. mTOR pathway: A potential therapeutic target for spinal cord injury. Biomed Pharmacother 2021; 145:112430. [PMID: 34800780 DOI: 10.1016/j.biopha.2021.112430] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is the most common disabling spinal injury, and the complex pathological process can eventually lead to severe neurological dysfunction. Many studies have reported that the mammalian target of rapamycin (mTOR) signaling pathway plays an important role in synaptogenesis, neuron growth, differentiation, and survival after central nervous system injury. It is also involved in various traumatic and central nervous system diseases, including traumatic brain injury, neonatal hypoxic-ischemic brain injury, Alzheimer's disease, Parkinson's disease, and cerebral apoplexy. mTOR has also been reported to play an important regulatory role in various pathophysiological processes following SCI. Activation of mTOR signals after SCI can regulate physiological and pathological processes, such as proliferation and differentiation of neural stem cells, regeneration of nerve axons, neuroinflammation, and glial scar formation, through various pathways. Inhibition of mTOR activity has been confirmed to promote repair in SCI. At present, many studies have reported that Chinese herbal medicine can inhibit the SCI-activated mTOR pathway to improve the microenvironment and promote nerve repair after SCI. Due to the role of the mTOR pathway in SCI, it may be a potential therapeutic target for SCI. This review is focused on the pathophysiological process of SCI, characteristics of the mTOR pathway, role of the mTOR pathway in SCI, role of inhibition of mTOR on SCI, and role and significance of inhibition of mTOR by related Chinese herbal medicine inhibitors in SCI. In addition, the review discusses the deficiencies and solutions to mTOR and SCI research shortcomings. This study hopes to provide reference for mTOR and SCI research and a theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 342800, PR China; The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 342800, PR China.
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 342800, PR China; The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 342800, PR China.
| |
Collapse
|
5
|
Aboonabi A, Meyer RR, Gaiz A, Singh I. Anthocyanins in berries exhibited anti-atherogenicity and antiplatelet activities in a metabolic syndrome population. Nutr Res 2020; 76:82-93. [PMID: 32217379 DOI: 10.1016/j.nutres.2020.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) is a global challenge for atherosclerosis. It was hypothesized that a four-week consumption of anthocyanin supplements by MetS patients who had three or more risk factors linked with metabolic syndrome would have a greater improvement in cardiometabolic biomarkers and would also reduce the risk of thrombosis. A total of 55 participants in two groups of Normal healthy and MetS (age 25-75y) were given 320 mg anthocyanin supplements twice daily for 4 weeks. Platelet coagulant activities, lipid profiles, fasting blood glucose, and inflammatory and oxidative stress biomarkers were measured before and after supplementation to evaluate the atheroprotective effects of anthocyanins in the study subjects. Four weeks of anthocyanin supplementation significantly decreased cardiometabolic risk factors including the average serum fasting blood glucose (FBG) (by 13.3%, P < .05) and lipid profiles by significant reduction in triglyceride (by 24.9%, P < .05) and LDL-C (by 33.1%, P < .05) in the MetS group. Anthocyanin supplementation also decreased high sensitivity C-reactive protein (hs-CRP) level (by 28%, P < .05) in females. However, no significant differences in serum UA (uric acid) and HDL-C were observed between anthocyanin pre- and post-treatment in both groups. Moreover, Anthocyanin supplements decreased ADP-induced platelet activation configuration expressed as P-selectin by 40% (P < .05). There was a positive correlation between decreased hs-CRP values and the levels of LDL-C and FBG in the MetS group (P < .05). These results support the hypothesis that anthocyanin supplementation exerts anti-atherogenicity effects by improving cardiometabolic risk factors and reducing thrombogenicity in the MetS population.
Collapse
Affiliation(s)
- Anahita Aboonabi
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| | - Roselyn Rose Meyer
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| | - Almottesembellah Gaiz
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| | - Indu Singh
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| |
Collapse
|
6
|
Poniedziałek B, Siwulski M, Wiater A, Komaniecka I, Komosa A, Gąsecka M, Magdziak Z, Mleczek M, Niedzielski P, Proch J, Ropacka-Lesiak M, Lesiak M, Henao E, Rzymski P. The Effect of Mushroom Extracts on Human Platelet and Blood Coagulation: In vitro Screening of Eight Edible Species. Nutrients 2019; 11:nu11123040. [PMID: 31842490 PMCID: PMC6950045 DOI: 10.3390/nu11123040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases remain the leading global cause of mortality indicating the need to identify all possible factors reducing primary and secondary risk. This study screened the in vitro antiplatelet and anticoagulant activities of hot water extracts of eight edible mushroom species (Agaricus bisporus, Auricularia auricularia-judae, Coprinuscomatus, Ganodermalucidum, Hericium erinaceus, Lentinulaedodes, Pleurotuseryngii, and Pleurotusostreatus) increasingly cultivated for human consumption, and compared them to those evoked by acetylsalicylic acid (ASA). The antioxidant capacity and concentration of polysaccharides, phenolic compounds, organic acids, ergosterol, macro elements, and trace elements were also characterized. The most promising antiplatelet effect was exhibited by A. auricularia-judae and P. eryngii extracts as demonstrated by the highest rate of inhibition of adenosine-5′-diphosphate (ADP)-induced and arachidonic acid (AA)-induced aggregation. The response to both extracts exceeded the one evoked by 140 µmol/L of ASA in the ADP test and was comparable to it in the case of the AA test. Such a dual effect was also observed for G. lucidum extract, even though it was proven to be cytotoxic in platelets and leukocytes. The extract of P. ostreatus revealed an additive effect on AA-induced platelet aggregation. None of the mushroom extracts altered the monitored coagulation parameters (prothrombin time, prothrombin ratio, and International Normalized Ratio). The effect of mushroom extracts on platelet function was positively related to their antioxidative properties and concentration of polysaccharides and ergosterol, and inversely related to zinc concentration. The study suggests that selected mushrooms may exert favorable antiplatelet effects, highlighting the need for further experimental and clinical research in this regard.
Collapse
Affiliation(s)
- Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Correspondence: (B.P.); (P.R.); Tel.: +48-61854-7604 (B.P. & P.R.)
| | - Marek Siwulski
- Department of Vegetable Crops, Poznan University of Life Sciences, 60-594 Poznan, Poland;
| | - Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Sklodowska University in Lublin, 20-033 Lublin, Poland;
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Anna Komosa
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.K.); (M.L.)
| | - Monika Gąsecka
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (Z.M.); (M.M.)
| | - Zuzanna Magdziak
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (Z.M.); (M.M.)
| | - Mirosław Mleczek
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (Z.M.); (M.M.)
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (P.N.); (J.P.)
| | - Jędrzej Proch
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (P.N.); (J.P.)
| | - Mariola Ropacka-Lesiak
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Maciej Lesiak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.K.); (M.L.)
| | - Eliana Henao
- Department of Biology, Universidad del Valle, 100-00 Cali, Colombia;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Correspondence: (B.P.); (P.R.); Tel.: +48-61854-7604 (B.P. & P.R.)
| |
Collapse
|
7
|
Wang Y, Wu YP, Han JJ, Zhang MQ, Yang CX, Jiao P, Tian H, Zhu C, Qin SC, Sun XJ, Zhang HT, Zhao XM. Inhibitory effects of hydrogen on in vitro platelet activation and in vivo prevention of thrombosis formation. Life Sci 2019; 233:116700. [DOI: 10.1016/j.lfs.2019.116700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
|
8
|
Platelet mitochondrial dysfunction and mitochondria-targeted quinone-and hydroquinone-derivatives: Review on new strategy of antiplatelet activity. Biochem Pharmacol 2018; 156:215-222. [DOI: 10.1016/j.bcp.2018.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/21/2018] [Indexed: 01/03/2023]
|
9
|
Beneficial Effects of Resveratrol-Mediated Inhibition of the mTOR Pathway in Spinal Cord Injury. Neural Plast 2018; 2018:7513748. [PMID: 29780409 PMCID: PMC5892236 DOI: 10.1155/2018/7513748] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/03/2018] [Accepted: 02/18/2018] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) causes a high rate of morbidity and disability. The clinical features of SCI are divided into acute, subacute, and chronic phases according to its pathophysiological events. The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in cell death and inflammation in the acute phase and neuroregeneration in the subacute/chronic phases at different times. Resveratrol has the potential of regulating cell growth, proliferation, metabolism, and angiogenesis through the mTOR signaling pathway. Herein, we explicate the role of resveratrol in the repair of SCI through the inhibition of the mTOR signaling pathway. The inhibition of the mTOR pathway by resveratrol has the potential of serving as a neuronal restorative mechanism following SCI.
Collapse
|
10
|
Redox Proteomics and Platelet Activation: Understanding the Redox Proteome to Improve Platelet Quality for Transfusion. Int J Mol Sci 2017; 18:ijms18020387. [PMID: 28208668 PMCID: PMC5343922 DOI: 10.3390/ijms18020387] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/27/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Blood banks use pathogen inactivation (PI) technologies to increase the safety of platelet concentrates (PCs). The characteristics of PI-treated PCs slightly differ from those of untreated PCs, but the underlying reasons are not well understood. One possible cause is the generation of oxidative stress during the PI process. This is of great interest since reactive oxygen species (ROS) act as second messengers in platelet functions. Furthermore, there are links between protein oxidation and phosphorylation, another mechanism that is critical for cell regulation. Current research efforts focus on understanding the underlying mechanisms and identifying new target proteins. Proteomics technologies represent powerful tools for investigating signaling pathways involving ROS and post-translational modifications such as phosphorylation, while quantitative techniques enable the comparison of the platelet resting state versus the stimulated state. In particular, redox cysteine is a key player in platelet activation upon stimulation by different agonists. This review highlights the experiments that have provided insights into the roles of ROS in platelet function and the implications for platelet transfusion, and potentially in diseases such as inflammation and platelet hyperactivity. The review also describes the implication of redox mechanism in platelet storage considerations.
Collapse
|
11
|
Vardin AM, Abdollahi B, Kosari-Nasab M, Abbasi MM. Effects of Cornus mas fruit hydro-methanolic extract on serum antioxidants, lipid profile, and hematologic parameters following cisplatin-induced changes in rats. Res Pharm Sci 2017; 12:510-516. [PMID: 29204179 PMCID: PMC5691577 DOI: 10.4103/1735-5362.217431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cisplatin (Cis) has serious adverse side-effects that limit its clinical use. The mechanism underlying the effects is complex, including mitochondrial oxidative stress and inflammation. This study investigated whether Cornus mas, a fruit with high antioxidant contents, hydro-methanolic extract (CME) can modulate the cisplatin-induced changes. Forty Wistar rats were divided into a control group, Cis group, CME group, CME 300 + Cis group, and the CME 700 + Cis group. After the intervention, blood samples were taken for biochemical and hematological analysis. CME analysis showed noticeable total phenol and total antioxidant contents. The plasma glutathione peroxidase and catalase levels were significantly decreased and malondialdehyde and blood hemoglobin levels were significantly increased in the Cis group, which were reversed to the control levels in the CME + Cis groups. In the CME group, the red blood cell count was significantly lower and the red cell distribution width and hemoglobin distribution width levels were significantly higher. In the Cis-treated group, white blood cells, neutrophils, monocytes, basophils, and large unstained cells were significantly increased and lymphocytes were significantly decreased when compared with the control group that was reached to non-significant levels in CME 700 + Cis group. The blood cholesterol and high density lipoprotein in all CME-treated groups were significantly decreased. The eosinophils increased in the CME group significantly. The results showed considerable total antioxidant and total phenol contents and relative protective effects of CME against Cis-induced antioxidant and hematologic changes in rats.
Collapse
Affiliation(s)
| | - Bita Abdollahi
- Student Research Committee, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Morteza Kosari-Nasab
- Student Research Committee, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Mehran Mesgari Abbasi
- Student Research Committee, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| |
Collapse
|
12
|
Preventive effect of l-carnitine and its derivatives on endothelial dysfunction and platelet aggregation. Clin Nutr ESPEN 2016; 15:1-10. [DOI: 10.1016/j.clnesp.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022]
|
13
|
Platelet protective efficacy of 3,4,5 trisubstituted isoxazole analogue by inhibiting ROS-mediated apoptosis and platelet aggregation. Mol Cell Biochem 2016; 414:137-51. [DOI: 10.1007/s11010-016-2667-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
|
14
|
Lannan KL, Refaai MA, Ture SK, Morrell CN, Blumberg N, Phipps RP, Spinelli SL. Resveratrol preserves the function of human platelets stored for transfusion. Br J Haematol 2015; 172:794-806. [PMID: 26683619 DOI: 10.1111/bjh.13862] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/07/2015] [Indexed: 12/30/2022]
Abstract
Stored platelets undergo biochemical, structural and functional changes that lead to decreased efficacy and safety of platelet transfusions. Not only do platelets acquire markers of activation during storage, but they also fail to respond normally to agonists post-storage. We hypothesized that resveratrol, a cardioprotective antioxidant, could act as a novel platelet storage additive to safely prevent unwanted platelet activation during storage, while simultaneously preserving normal haemostatic function. Human platelets treated with resveratrol and stored for 5 d released less thromboxane B2 and prostaglandin E2 compared to control platelets. Resveratrol preserved the ability of platelets to aggregate, spread and respond to thrombin, suggesting an improved ability to activate post-storage. Utilizing an in vitro model of transfusion and thromboelastography, clot strength was improved with resveratrol treatment compared to conventionally stored platelets. The mechanism of resveratrol's beneficial actions on stored platelets was partly mediated through decreased platelet apoptosis in storage, resulting in a longer half-life following transfusion. Lastly, an in vivo mouse model of transfusion demonstrated that stored platelets are prothrombotic and that resveratrol delayed vessel occlusion time to a level similar to transfusion with fresh platelets. We show resveratrol has a dual ability to reduce unwanted platelet activation during storage, while preserving critical haemostatic function.
Collapse
Affiliation(s)
- Katie L Lannan
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Majed A Refaai
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sara K Ture
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
15
|
Jang JY, Min JH, Wang SB, Chae YH, Baek JY, Kim M, Ryu JS, Chang TS. Resveratrol inhibits collagen-induced platelet stimulation through suppressing NADPH oxidase and oxidative inactivation of SH2 domain-containing protein tyrosine phosphatase-2. Free Radic Biol Med 2015; 89:842-51. [PMID: 26482867 DOI: 10.1016/j.freeradbiomed.2015.10.413] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/05/2015] [Accepted: 10/14/2015] [Indexed: 11/18/2022]
Abstract
Reactive oxygen species (ROS) produced upon collagen stimulation are implicated in propagating various platelet-activating pathways. Among ROS-producing enzymes, NADPH oxidase (NOX) is largely responsible for collagen receptor-dependent ROS production. Therefore, NOX has been proposed as a novel target for the development of antiplatelet agent. We here investigate whether resveratrol inhibits collagen-induced NOX activation and further examine the effects of resveratrol on ROS-dependent signaling pathways in collagen-stimulated platelets. Collagen-induced superoxide anion production in platelets was inhibited by resveratrol. Resveratrol suppressed collagen-induced phosphorylation of p47(phox), a major regulatory subunit of NOX. Correlated with the inhibitory effects on NOX, resveratrol protected SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) from ROS-mediated inactivation and subsequently attenuated the specific tyrosine phosphorylation of key components (spleen tyrosine kinase, Vav1, Bruton's tyrosine kinase, and phospholipase Cγ2) for collagen receptor signaling cascades. Resveratrol also inhibited downstream responses such as cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Furthermore, resveratrol inhibited platelet aggregation and adhesion in response to collagen. The antiplatelet effects of resveratrol through the inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2 suggest that resveratrol is a potential compound for prevention and treatment of thrombovascular diseases.
Collapse
Affiliation(s)
- Ji Yong Jang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Ji Hyun Min
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Su Bin Wang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Yun Hee Chae
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Jin Young Baek
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Myunghee Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Jae-Sang Ryu
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Tong-Shin Chang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea.
| |
Collapse
|
16
|
Liu Y, Park JM, Chang KH, Chin YW, Lee MY. α- and γ-mangostin cause shape changes, inhibit aggregation and induce cytolysis of rat platelets. Chem Biol Interact 2015; 240:240-8. [DOI: 10.1016/j.cbi.2015.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/12/2015] [Accepted: 08/28/2015] [Indexed: 01/16/2023]
|
17
|
Jang JY, Wang SB, Min JH, Chae YH, Baek JY, Yu DY, Chang TS. Peroxiredoxin II is an antioxidant enzyme that negatively regulates collagen-stimulated platelet function. J Biol Chem 2015; 290:11432-42. [PMID: 25802339 DOI: 10.1074/jbc.m115.644260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Indexed: 12/16/2022] Open
Abstract
Collagen-induced platelet signaling is mediated by binding to the primary receptor glycoprotein VI (GPVI). Reactive oxygen species produced in response to collagen have been found to be responsible for the propagation of GPVI signaling pathways in platelets. Therefore, it has been suggested that antioxidant enzymes could down-regulate GPVI-stimulated platelet activation. Although the antioxidant enzyme peroxiredoxin II (PrxII) has emerged as having a role in negatively regulating signaling through various receptors by eliminating H2O2 generated upon receptor stimulation, the function of PrxII in collagen-stimulated platelets is not known. We tested the hypothesis that PrxII negatively regulates collagen-stimulated platelet activation. We analyzed PrxII-deficient murine platelets. PrxII deficiency enhanced GPVI-mediated platelet activation through the defective elimination of H2O2 and the impaired protection of SH2 domain-containing tyrosine phosphatase 2 (SHP-2) against oxidative inactivation, which resulted in increased tyrosine phosphorylation of key components for the GPVI signaling cascade, including Syk, Btk, and phospholipase Cγ2. Interestingly, PrxII-mediated antioxidative protection of SHP-2 appeared to occur in the lipid rafts. PrxII-deficient platelets exhibited increased adhesion and aggregation upon collagen stimulation. Furthermore, in vivo experiments demonstrated that PrxII deficiency facilitated platelet-dependent thrombus formation in injured carotid arteries. This study reveals that PrxII functions as a protective antioxidant enzyme against collagen-stimulated platelet activation and platelet-dependent thrombosis.
Collapse
Affiliation(s)
- Ji Yong Jang
- From the Graduate School of Pharmaceutical Sciences and
| | - Su Bin Wang
- From the Graduate School of Pharmaceutical Sciences and
| | - Ji Hyun Min
- From the Graduate School of Pharmaceutical Sciences and
| | - Yun Hee Chae
- From the Graduate School of Pharmaceutical Sciences and
| | | | - Dae-Yeul Yu
- the Disease Model Research Laboratory, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 605-806, Korea
| | - Tong-Shin Chang
- From the Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750 and
| |
Collapse
|
18
|
Abdollahi B, Mesgari Abbasi M, Zakeri Milani P, Nourdadgar AS, Banan Khojasteh SM, Nejati V. Hydro-methanolic extract of cornus MAS L. And blood glucose, lipid profile and hematological parameters of male rats. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e17784. [PMID: 25031858 PMCID: PMC4082518 DOI: 10.5812/ircmj.17784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/19/2014] [Accepted: 04/01/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Cornus mas L, an olive-shaped red-colored single-seeded fruit, is used in traditional medicine in different parts of Europe and Asia. OBJECTIVES In the present study, 40 male Wistar rats were randomly divided into five groups, and the effects of 21 days of intraperitoneally (IP) administration of 50, 200 and 400 mg/kg body weight of C. mas hydro-methanolic extract on the rats hematological and biochemical parameters were investigated. The experimental study was carried out in Tabriz, Iran. MATERIALS AND METHODS The hematology and biochemical tests were performed by the Technicon H1 Hematology Analyzer and enzymatic methods, respectively. RESULTS The results indicated that all doses of the extract caused significant (P < 0.05) decreases in the hemoglobin distribution width (HDW) (2.3 ± 0.2 vs. 2.5 ± 0.2, P = 0.049) and platelet distribution width (PDW) (56.5 ± 1.8 vs. 63.9 ± 3.6, P = 0.001) of the treated groups vs. control group, whereas only high doses caused significant elevation in the mean corpuscular hemoglobin concentration (MCHC) (30.3 ± 0.8 vs. 28.6 ± 0.6, P = 0.047), mean platelet volume (MPV) (5.0 ± 0.6 vs. 4.1 ± 0.3, P = 0.002), total platelet mass (PCT) (0.33 ± 0.07 vs. 0.26 ± 0.01, P = 0.050), and significant decrease in the red cell distribution width (RDW) (13.8 ± 0.4 vs. 14.7 ± 1.3, P = 0.048) of the treated groups vs. control group. CONCLUSIONS Decreasing effect of the extract on platelet activity might classify it as an alternative for antiplatelet therapy in cardiovascular diseases (CVD). The results of this study suggested that further investigations with higher doses of C. mas fruit extract are necessary to obtain significant protective and nonprotective changes in hematological and biochemical parameters.
Collapse
Affiliation(s)
- Bita Abdollahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Mehran Mesgari Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Parvin Zakeri Milani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | | | | | - Vahid Nejati
- Faculty of Science, Urmia University, Urmia, IR Iran
| |
Collapse
|
19
|
Secor D, Swarbreck S, Ellis CG, Sharpe MD, Tyml K. Ascorbate reduces mouse platelet aggregation and surface P-selectin expression in an ex vivo model of sepsis. Microcirculation 2014; 20:502-10. [PMID: 23402318 DOI: 10.1111/micc.12047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Compromised perfusion of the capillary bed can lead to organ failure and mortality in sepsis. We have reported that intravenous injection of ascorbate inhibits platelet adhesion and plugging in septic capillaries. In this study, we hypothesized that ascorbate reduces aggregation of platelets and their surface expression of P-selectin (a key adhesion molecule) in mice. METHODS Platelets were isolated from control mice and subjected to agents known to be released into the bloodstream during sepsis (thrombin, ADP or U46619, thromboxane A2 analog). Platelet aggregation was analyzed by aggregometry and P-selectin expression by flow cytometry. RESULTS Platelet-activating agents increased aggregation and P-selectin expression. Ascorbate inhibited these increases. This inhibitory effect was NOS-independent (LNAME had no effect). In contrast to the platelet-activating agents, direct stimuli lipopolysaccharide, TNFα, or plasma from septic mice did not increase aggregation/expression, a finding consistent with the literature. The results suggest a complex mechanism of platelet aggregation and P-selectin expression in sepsis, where generation of platelet-activating stimuli is required first, before platelet aggregation and adhesion in capillaries occur. CONCLUSION The ability of ascorbate to reduce platelet aggregation and P-selectin expression could be an important mechanism by which ascorbate inhibits capillary plugging in sepsis.
Collapse
Affiliation(s)
- Dan Secor
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
The effect of reagents mimicking oxidative stress on fibrinogen function. ScientificWorldJournal 2013; 2013:359621. [PMID: 24235886 PMCID: PMC3818977 DOI: 10.1155/2013/359621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/02/2013] [Indexed: 01/06/2023] Open
Abstract
Fibrinogen is one of the plasma proteins most susceptible to oxidative modification. It has been suggested that modification of fibrinogen may cause thrombotic/bleeding complications associated with many pathophysiological states of organism. We exposed fibrinogen molecules to three different modification reagents-malondialdehyde, sodium hypochlorite, and peroxynitrite-that are presented to various degrees in different stages of oxidative stress. We studied the changes in fibrin network formation and platelet interactions with modified fibrinogens under flow conditions. The fastest modification of fibrinogen was caused by hypochlorite. Fibers from fibrinogen modified with either reagent were thinner in comparison with control fibers. We found that platelet dynamic adhesion was significantly lower on fibrinogen modified with malondialdehyde and significantly higher on fibrinogen modified either with hypochlorite or peroxynitrite reflecting different prothrombotic/antithrombotic properties of oxidatively modified fibrinogens. It seems that, in the complex reactions ongoing in living organisms at conditions of oxidation stress, hypochlorite modifies proteins (e.g., fibrinogen) faster and more preferentially than malondialdehyde. It suggests that the prothrombotic effects of prior fibrinogen modifications may outweigh the antithrombotic effect of malondialdehyde-modified fibrinogen in real living systems.
Collapse
|
21
|
Misra A, Srivastava S, Ankireddy SR, Islam NS, Chandra T, Kumar A, Barthwal MK, Dikshit M. Phospholipase C-γ2 via p38 and ERK1/2 MAP kinase mediates diperoxovanadate-asparagine induced human platelet aggregation and sCD40L release. Redox Rep 2013; 18:174-85. [PMID: 23883624 DOI: 10.1179/1351000213y.0000000057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Redox imbalance either inside platelets or in their immediate surroundings prove detrimental to their physiologic functions during haemostasis. This study was therefore aimed to assess the effect of peroxide radicals on platelet functions and underlying signalling mechanisms using asparagine-conjugated diperoxovanadate (DPV-Asn). METHODS Platelet aggregation, ATP secretion, TxB2 release, intra-platelet calcium mobilization, protein tyrosine phosphorylation, GPIIbIIIa activation by PAC1 labelling and sCD40L release (enzyme-linked immunosorbent assay) was monitored using various concentrations of DPV-Asn. Cell viability was assessed by Annexin V labelling, MTT assay, LDH leakage and mitochondrial membrane potential by JC-1. RESULTS Platelet aggregation induced by DPV-Asn was chiefly regulated by dense granule secretion, thromboxane A2 (TxA2) generation, intra-platelet [Ca(2+)] influx, GPIIbIIIa activation and sCD40L release, which were significantly reduced in presence of U73122 (PLC inhibitor), aspirin (COX), SB203580 (p38 inhibitor), and PD98059 (ERK inhibitor). This was further corroborated by enhanced tyrosine phosphorylation of numerous platelet proteins including PLC-γ2, which apparently played a central role in transducing peroxide signals to regulate [Ca(2+)] influx and phosphorylation of p38 and ERK1/2 MAP kinase. DISCUSSION Peroxide radicals critically regulate the thrombo-inflammatory functions of platelets via the PLCγ2-p38-ERK1/2-TxA2 pathway, which closely resembles the clinical scenario of various pathologies like hyperglycemia and atherosclerosis during which oxidative stress disrupts platelet functions.
Collapse
Affiliation(s)
- Ankita Misra
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kang MS, Yang HM, Kang JY, Ryou SH, Kang JS. Effect of coenzyme Q10 and Ardisia japonica Blume on plasma and liver lipids, platelet aggregation, and erythrocyte Na efflux channels in simvastatin-treated guinea pigs. Nutr Res Pract 2012. [PMID: 23198020 PMCID: PMC3506872 DOI: 10.4162/nrp.2012.6.5.414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Forty guinea pigs were divided into four groups and fed 0.04% cholesterol based control diet, plus 0.05% simvastatin, and statin plus 0.1% CoQ10 or 10% Ardisia Japonica Blume (AJB) leave powder for 4 weeks. Plasma total cholesterol levels decreased significantly in all groups fed the statin-containing diet compared with that in guinea pigs fed the control diet (P < 0.01). Plasma and liver triglycerides decreased significantly in the statin plus CoQ10 group compared with those in the control (both P < 0.05). Maximum platelet aggregation was significantly higher in the statin plus CoQ10 group than that in the other groups (P < 0.05). Na-K ATPase activity increased in the statin group and decreased in the statin plus CoQ10 group (P < 0.01). Na-K co-transport and Na passive transport decreased significantly in the control group compared with those in the other groups (both P < 0.05). Intracellular Na was highest in the statin group and lowest in the statin plus CoQ10 group and was correlated with Na-K ATPase activity. Thiobarbituric acid reactive substance production in platelet-rich plasma and liver tended to decrease in the statin plus CoQ10 group compared with those in the other groups. Plasma glutamic-pyruvic transaminase and glutamic-oxaloacetic transaminase increased significantly in the statin group compared with those in the control (P < 0.05). These result suggest that antioxidant rich AJB did not have positive effects on cardiovascular disease parameters. The statin plus CoQ10 seemed to decrease cholesterol more efficiently than that of statin alone.
Collapse
Affiliation(s)
- Min Sook Kang
- Department of Foods and Nutrition, Jeju National University, 1 Ara-dong, Jeju-si, Jeju 690-756, Korea
| | | | | | | | | |
Collapse
|
23
|
Warner CM, Gust KA, Stanley JK, Habib T, Wilbanks MS, Garcia-Reyero N, Perkins EJ. A systems toxicology approach to elucidate the mechanisms involved in RDX species-specific sensitivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7790-7798. [PMID: 22697906 DOI: 10.1021/es300495c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Interspecies uncertainty factors in ecological risk assessment provide conservative estimates of risk where limited or no toxicity data is available. We quantitatively examined the validity of interspecies uncertainty factors by comparing the responses of zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) to the energetic compound 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), a known neurotoxicant. Relative toxicity was measured through transcriptional, morphological, and behavioral end points in zebrafish and fathead minnow fry exposed for 96 h to RDX concentrations ranging from 0.9 to 27.7 mg/L. Spinal deformities and lethality occurred at 1.8 and 3.5 mg/L RDX respectively for fathead minnow and at 13.8 and 27.7 mg/L for zebrafish, indicating that zebrafish have an 8-fold greater tolerance for RDX than fathead minnow fry. The number and magnitude of differentially expressed transcripts increased with increasing RDX concentration for both species. Differentially expressed genes were enriched in functions related to neurological disease, oxidative-stress, acute-phase response, vitamin/mineral metabolism and skeletal/muscular disorders. Decreased expression of collagen-coding transcripts were associated with spinal deformity and likely involved in sensitivity to RDX. Our work provides a mechanistic explanation for species-specific sensitivity to RDX where zebrafish responded at lower concentrations with greater numbers of functions related to RDX tolerance than fathead minnow. While the 10-fold interspecies uncertainty factor does provide a reasonable cross-species estimate of toxicity in the present study, the observation that the responses between ZF and FHM are markedly different does initiate a call for concern regarding establishment of broad ecotoxicological conclusions based on model species such as zebrafish.
Collapse
Affiliation(s)
- Christopher M Warner
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Carlotti ME, Sapino S, Ugazio E, Gallarate M, Morel S. Resveratrol in Solid Lipid Nanoparticles. J DISPER SCI TECHNOL 2012. [DOI: 10.1080/01932691.2010.548274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Platelet-rich plasma peptides: key for regeneration. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:532519. [PMID: 22518192 PMCID: PMC3303558 DOI: 10.1155/2012/532519] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 02/06/2023]
Abstract
Platelet-derived Growth Factors (GFs) are biologically active peptides that enhance tissue repair mechanisms such as angiogenesis, extracellular matrix remodeling, and cellular effects as stem cells recruitment, chemotaxis, cell proliferation, and differentiation. Platelet-rich plasma (PRP) is used in a variety of clinical applications, based on the premise that higher GF content should promote better healing. Platelet derivatives represent a promising therapeutic modality, offering opportunities for treatment of wounds, ulcers, soft-tissue injuries, and various other applications in cell therapy. PRP can be combined with cell-based therapies such as adipose-derived stem cells, regenerative cell therapy, and transfer factors therapy. This paper describes the biological background of the platelet-derived substances and their potential use in regenerative medicine.
Collapse
|
26
|
Takeuchi S, Wada K, Nagatani K, Osada H, Otani N, Nawashiro H. Hydrogen may inhibit collagen-induced platelet aggregation: an ex vivo and in vivo study. Intern Med 2012; 51:1309-13. [PMID: 22687834 DOI: 10.2169/internalmedicine.51.7161] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Hydrogen selectively reduces hydroxyl radicals and peroxynitrite, and numerous experimental and clinical studies suggest that hydrogen can exert potent cellular protective effects against a wide variety of diseases. Furthermore, there is increasing evidence that antioxidants can modulate platelet activation. The aim of the present study was to investigate the relationship between hydrogen and collagen-induced platelet aggregation. METHODS For human ex vivo studies, we collected blood samples from six healthy humans and added normal saline or hydrogen-rich saline to blood and platelet-rich plasma. We found that collagen (1 µg/mL)-induced platelet aggregation was significantly inhibited by hydrogen-rich saline compared with a normal saline group (p=0.044). For rat in vivo studies, animals (n=17) were exposed to either nitrogen-based mixed gas with hydrogen (H2 gas group; n=9) or without hydrogen (non-H2 gas group; n=8). Additionally, another animals (n=13) administered either normal (NS group; n=7) or hydrogen-rich saline (HS group; n=6) (5 ml/kg) via intravenous infusion. Blood samples were drawn from the vena cava before treatment and from the right ventricle after treatment. Collagen (12 µg/mL)-induced platelet aggregation was then measured. RESULTS Collagen-induced platelet aggregation was significantly decreased in H2 gas and HS group rats (p=0.042, 0.018, respectively), while there was no difference in non-H2 gas and NS group rats before and after treatment. CONCLUSION In summary, these data suggest that hydrogen may inhibit collagen-induced platelet aggregation.
Collapse
Affiliation(s)
- Satoru Takeuchi
- Department of Neurosurgery, National Defense Medical College, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Ma F, Gao Y, Qiao H, Hu X, Chang J. Antiplatelet activity of 3-butyl-6-bromo-1(3H)-isobenzofuranone on rat platelet aggregation. J Thromb Thrombolysis 2011; 33:64-73. [PMID: 22057435 DOI: 10.1007/s11239-011-0647-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Hu Y, Liu J, Wang J, Liu Q. The controversial links among calorie restriction, SIRT1, and resveratrol. Free Radic Biol Med 2011; 51:250-6. [PMID: 21569839 DOI: 10.1016/j.freeradbiomed.2011.04.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022]
Abstract
It has been widely known that slow metabolism induced by calorie restriction (CR) can extend the life span of model organisms though the underlying mechanism remains poorly understood. Accumulated evidence suggests that SIRT1 may be actively involved in CR-induced signaling pathways. As a putative activator of SIRT1, resveratrol, known for the French paradox, can partially mimic the physiological effects of CR. While the deacetylase activity of SIRT1 is important for the beneficial effects of resveratrol, resveratrol-induced SIRT1 activation has recently been challenged by the observations that resveratrol could not induce SIRT1-mediated deacetylation of native substrates in vitro. To resolve the discrepancy of resveratrol-induced activation of SIRT1 deacetylase activity between the in vitro and in vivo assays, a model of indirect SIRT1 activation by resveratrol is proposed. In this review, we will discuss the emerging roles of SIRT1 and resveratrol in CR and focus on debate over the links between SIRT1 and resveratrol.
Collapse
Affiliation(s)
- Yi Hu
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
29
|
Cao D, Li H, Yi J, Zhang J, Che H, Cao J, Yang L, Zhu C, Jiang W. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLoS One 2011; 6:e21071. [PMID: 21695166 PMCID: PMC3112222 DOI: 10.1371/journal.pone.0021071] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/18/2011] [Indexed: 01/29/2023] Open
Abstract
Background It is a widespread belief in Asian countries that mung bean soup (MBS) may afford a protective effect against heat stress. Lack of evidence supports MBS conferring a benefit in addition to water. Results Here we show that vitexin and isovitexin are the major antioxidant components in mungbean (more than 96% of them existing in the bean seed coat), and both of them could be absorbed via gavage into rat plasma. In the plasma of rats fed with mungbean coat extract before or after exposure to heat stress, the levels of malonaldehyde and activities of lactate dehydrogenase and nitric oxide synthase were remarkably reduced; the levels of total antioxidant capacity and glutathione (a quantitative assessment of oxidative stress) were significantly enhanced. Conclusions Our results demonstrate that MBS can play additional roles to prevent heat stress injury. Characterization of the mechanisms underlying mungbean beneficial effects should help in the design of diet therapy strategies to alleviate heat stress, as well as provide reference for searching natural medicines against oxidative stress induced diseases.
Collapse
Affiliation(s)
- Dongdong Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - He Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Jianyong Yi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Jingjing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Huilian Che
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Liu Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Chunqiu Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
30
|
Májek P, Reicheltová Z, Stikarová J, Suttnar J, Sobotková A, Dyr JE. Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin. Proteome Sci 2010. [PMID: 21073729 DOI: 10.1186/1477-5956-8-56.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Platelets are small anucleated blood particles that play a key role in the control of bleeding. Platelets need to be activated to perform their functions and participate in hemostasis. The process of activation is accompanied by vast protein reorganization and posttranslational modifications. The goal of this study was to identify changes in proteins in platelets activated by different agonists. Platelets were activated by three different agonists - arachidonic acid, collagen, and thrombin. 2D SDS-PAGE (pI 4-7) was used to separate platelet proteins. Proteomes of activated and resting platelets were compared with each other by Progenesis SameSpots statistical software; and proteins were identified by nanoLC-MS/MS. RESULTS 190 spots were found to be significantly different. Of these, 180 spots were successfully identified and correspond to 144 different proteins. Five proteins were found that had not previously been identified in platelets: protein CDV3 homolog, protein ETHE1, protein LZIC, FGFR1 oncogene partner 2, and guanine nucleotide-binding protein subunit beta-5. Using spot expression profile analysis, we found two proteins (WD repeat-containing protein 1 and mitochondrial glycerol-3-phosphate dehydrogenase) that may be part of thrombin specific activation or signal transduction pathway(s). CONCLUSIONS Our results, characterizing the differences within proteins in both activated (by various agonists) and resting platelets, can thus contribute to the basic knowledge of platelets and to the understanding of the function and development of new antiplatelet drugs.
Collapse
Affiliation(s)
- Pavel Májek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
31
|
Májek P, Reicheltová Z, Stikarová J, Suttnar J, Sobotková A, Dyr JE. Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin. Proteome Sci 2010; 8:56. [PMID: 21073729 PMCID: PMC2996359 DOI: 10.1186/1477-5956-8-56] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/12/2010] [Indexed: 12/27/2022] Open
Abstract
Background Platelets are small anucleated blood particles that play a key role in the control of bleeding. Platelets need to be activated to perform their functions and participate in hemostasis. The process of activation is accompanied by vast protein reorganization and posttranslational modifications. The goal of this study was to identify changes in proteins in platelets activated by different agonists. Platelets were activated by three different agonists - arachidonic acid, collagen, and thrombin. 2D SDS-PAGE (pI 4-7) was used to separate platelet proteins. Proteomes of activated and resting platelets were compared with each other by Progenesis SameSpots statistical software; and proteins were identified by nanoLC-MS/MS. Results 190 spots were found to be significantly different. Of these, 180 spots were successfully identified and correspond to 144 different proteins. Five proteins were found that had not previously been identified in platelets: protein CDV3 homolog, protein ETHE1, protein LZIC, FGFR1 oncogene partner 2, and guanine nucleotide-binding protein subunit beta-5. Using spot expression profile analysis, we found two proteins (WD repeat-containing protein 1 and mitochondrial glycerol-3-phosphate dehydrogenase) that may be part of thrombin specific activation or signal transduction pathway(s). Conclusions Our results, characterizing the differences within proteins in both activated (by various agonists) and resting platelets, can thus contribute to the basic knowledge of platelets and to the understanding of the function and development of new antiplatelet drugs.
Collapse
Affiliation(s)
- Pavel Májek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
32
|
San Miguel SM, Opperman LA, Allen EP, Zielinski J, Svoboda KK. Antioxidants Counteract Nicotine and Promote Migration via RacGTP in Oral Fibroblast Cells. J Periodontol 2010; 81:1675-90. [DOI: 10.1902/jop.2010.100187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|