1
|
Ding T, Shen W, Tao W, Peng J, Pan M, Qi X, Feng W, Wei N, Zheng S, Jin H. Curcumol ameliorates alcohol and high-fat diet-induced fatty liver disease via modulation of the Ceruloplasmin/iron overload/mtDNA signaling pathway. J Nutr Biochem 2025; 136:109807. [PMID: 39549858 DOI: 10.1016/j.jnutbio.2024.109807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Fatty liver disease (FLD), a chronic liver disease characterized by excessive lipid deposition, is affecting more and more people worldwide owing to the increasing global incidence of obesity and heavy alcohol consumption. However, there is still no effective strategy for prevention or treatment of alcohol and high-fat diet (HFD)-induced FLD. The purpose of this study was to investigate the effect of curcumol on alcohol and HFD-induced FLD and the underlying molecular mechanisms. The results showed that curcumol ameliorated alcohol and HFD-induced hepatocyte injury in vivo and in vitro, and the mechanism might be related to its up-regulation of ceruloplasmin and subsequent alleviation of iron overload. Moreover, curcumol inhibited alcohol and HFD-induced mitochondrial damage and mtDNA release in hepatocytes by modulating iron overload. Furthermore, curcumol's inhibition of mtDNA release could suppress the activation of cGAS-STING and subsequent inflammation, and this phenomenon could be reversed by cGAS overexpression. Notably, alcohol and HFD-induced mtDNA release from hepatocytes contributed to HSC activation and this effect could be weakened by curcumol. In conclusion, these findings elucidated that curcumol ameliorated alcohol and HFD-induced FLD via modulating ceruloplasmin/iron overload/mtDNA signaling pathway, which lead to the inhibition of inflammation and HSCs activation.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Wanqing Shen
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Wenhui Tao
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Junlu Peng
- Department of Digestive surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Meijun Pan
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Xiaoyu Qi
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Wanyu Feng
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Na Wei
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Shuguo Zheng
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China; Laboratory of Pharmacology of Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China.
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China; Laboratory of Pharmacology of Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
2
|
Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani. Sci Rep 2017; 7:10488. [PMID: 28874760 PMCID: PMC5585245 DOI: 10.1038/s41598-017-10041-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022] Open
Abstract
Micronutrients are essential for survival and growth for all the organisms including pathogens. In this manuscript, we report that zinc (Zn) chelator N,N,N’,N’-tetrakis(2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) affects growth and viability of intracellular pathogen Leishmania donovani (LD) by a concentration and time dependent manner. Simultaneous addition of zinc salt reverses the effect of TPEN. Further experiments provide evidence of apoptosis-like death of the parasite due to Zn-depletion. TPEN treatment enhances caspase-like activity suggesting increase in apoptosis-like events in LD. Specific inhibitors of cathepsin B and Endoclease G block TPEN-induced leishmanial death. Evidences show involvement of reactive oxygen species (ROS) potentially of extra-mitochondrial origin in TPEN-induced LD death. Pentavalent antimonials remained the prime source of treatment against leishmaniasis for several decades; however, antimony-resistant Leishmania is now common source of the disease. We also reveal that Zn-depletion can promote apoptosis-like death in antimony-resistant parasites. In summary, we present a new finding about the role of zinc in the survival of drug sensitive and antimony-resistant LD.
Collapse
|
3
|
Dev S, Kumari S, Singh N, Kumar Bal S, Seth P, Mukhopadhyay CK. Role of extracellular Hydrogen peroxide in regulation of iron homeostasis genes in neuronal cells: Implication in iron accumulation. Free Radic Biol Med 2015; 86:78-89. [PMID: 26006106 DOI: 10.1016/j.freeradbiomed.2015.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022]
Abstract
Iron accumulation and oxidative stress are associated with neurodegenerative disease. Labile iron is known to catalyze free radical generation and subsequent neuronal damage, whereas the role of oxidative stress in neuronal iron accumulation is less well understood. Here, we examined the effect of hydrogen peroxide (H2O2) treatment on cellular iron-uptake, -storage, and -release proteins in the neuroblastoma cell line SH-SY5Y. We found no detectable change in the iron-uptake proteins transferrin receptor-1 and divalent metal ion transporter. In contrast, H2O2 treatment resulted in significant degradation of the iron-exporter ferroportin (Fpn). A decrease in Fpn is expected to increase the labile iron pool (LIP), reducing the iron-regulatory protein (IRP)-iron-responsive element interaction and increasing the expression of ferritin-H (Ft-H) for iron storage. Instead, we detected IRP1 activation, presumably due to oxidative stress, and a decrease in Ft-H translation. A reduction in Ft-H mRNA was also observed, probably dependent on an antioxidant-response element present in the Ft-H enhancer. The decrease in Fpn and Ft-H upon H2O2 treatment led to a time-dependent increase in the cellular LIP. Our study reveals a complex regulation of neuronal iron-release and iron-storage components in response to H2O2 that may explain iron accumulation detected in neurodegenerative diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Som Dev
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Sanju Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland,OH 44106, USA
| | - Saswat Kumar Bal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Pankaj Seth
- National Brain Research Centre, Manesar, Haryana, India
| | - Chinmay K Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
4
|
Aziza SAH, Azab MES, El-Shall SK. Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats. Pak J Biol Sci 2015; 17:964-77. [PMID: 26031015 DOI: 10.3923/pjbs.2014.964.977] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. Natural flavonoids, as rutin, are well-known antioxidants and could be efficient protective agents. Therefore, the present study was undertaken to evaluate the protective influence of rutin supplementation to improve rat antioxidant systems against IOL-induced hepatic oxidative stress. Sixty male albino rats were randomly divided to three equal groups. The first group, the control, the second group, iron overload group, the third group was used as iron overload+rutin group. Rats received six doses of ferric hydroxide polymaltose (100 mg kg(-1) b.wt.) as one dose every two days, by intraperitoneal injections (IP) and administrated rutin (50 mg kg(-1) b.wt.) as one daily oral dose until the sacrificed day. Blood samples for serum separation and liver tissue specimens were collected three times, after three, four and five weeks from the onset of the experiment. Serum iron profiles total iron, Total Iron Binding Capacity (TIBC), Unsaturated Iron Binding Capacity (UIBC), transferrin (Tf) and Transferrin Saturation% (TS%)}, ferritin, albumin, total Protein, total cholesterol, triacylglycerols levels and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were determined. Moreover, total iron in the liver, L-malondialdehyde (L-MDA), glutathione (GSH), Nitric Oxide (NO) and Total Nucleic Acid (TNA) levels and glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) activities were also determined. The obtained results revealed that, iron overload (IOL) resulted in significant increase in serum iron, TIBC, Tf, TS% and ferritin levels and AST and ALT activities and also increased liver iron, L-MDA and NO levels. Meanwhile, it decreased serum UIBC, total cholesterol, triacylglycerols, albumin, total protein and liver GSH, TNA levels and Gpx, CAT and SOD activities when compared with the control group. Rutin administration to iron-overloaded rats resulted in significant decrease in serum total iron, TIBC, Tf, TS%, ferritin levels and AST and ALT activities and liver total iron, L-MDA and NO levels with significant increases in serum UIBC, albumin, total protein and total cholesterol levels and in liver GSH, CAT and SOD activities compared with the IOL group. This study provides in vivo evidence that rutin administration can improve the antioxidant defense systems against IOL-induced hepatic oxidative stress in rats. This protective effect in liver of iron-loaded rats may be due to both antioxidant and metal chelation activities.
Collapse
|
5
|
Ali Hussei S, El-Said Az M, Kamal El-S S. Protective Effect of Curcumin on Antioxidant Defense System and Oxidative Stress in Liver Tissue of Iron Overloading Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ajcn.2014.1.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Biswas S, Mukherjee R, Tapryal N, Singh AK, Mukhopadhyay CK. Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte. PLoS One 2013; 8:e62128. [PMID: 23626778 PMCID: PMC3633924 DOI: 10.1371/journal.pone.0062128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 03/19/2013] [Indexed: 01/04/2023] Open
Abstract
Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription. Insulin is known to activate HIF-1 by a ROS dependent mechanism but the molecular mechanism of HIF-1α regulation is not known so far. Here we show that insulin regulates HIF-1α by a novel transcriptional mechanism by a ROS-sensitive activation of Sp1 in 3T3-L1 preadipocyte. Insulin shows little effect on HIF-1α protein stability, but increases HIF-1α promoter activity. Mutation analyses, electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirm the role of Sp1 in HIF-1α transcription. We further demonstrate that insulin-induced ROS generation initiates signaling pathway involving phosphatidylinositol 3-kinase and protein kinase C for Sp1 mediated HIF-1α transcription. In summary, we reveal that insulin regulates HIF-1α by a novel transcriptional mechanism involving Sp1.
Collapse
Affiliation(s)
- Sudipta Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Reshmi Mukherjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Nisha Tapryal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amit K. Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Chinmay K. Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
7
|
Hatori Y, Clasen S, Hasan NM, Barry AN, Lutsenko S. Functional partnership of the copper export machinery and glutathione balance in human cells. J Biol Chem 2012; 287:26678-87. [PMID: 22648419 DOI: 10.1074/jbc.m112.381178] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells use the redox properties of copper in numerous physiologic processes, including antioxidant defense, neurotransmitter biosynthesis, and angiogenesis. Copper delivery to the secretory pathway is an essential step in copper utilization and homeostatic maintenance. We demonstrate that the glutathione/glutathione disulfide (GSH/GSSG) pair controls the copper transport pathway by regulating the redox state of a copper chaperone Atox1. GSSG oxidizes copper-coordinating cysteines of Atox1 with the formation of an intramolecular disulfide. GSH alone is sufficient to reduce the disulfide, restoring the ability of Atox1 to bind copper; glutaredoxin 1 facilitates this reaction when GSH is low. In cells, high GSH both reduces Atox1 and is required for cell viability in the absence of Atox1. In turn, Atox1, which has a redox potential similar to that of glutaredoxin, becomes essential for cell survival when GSH levels decrease. Atox1(+/+) cells resist short term glutathione depletion, whereas Atox1(-/-) cells under the same conditions are not viable. We conclude that GSH balance and copper homeostasis are functionally linked and jointly maintain conditions for copper secretion and cell proliferation.
Collapse
Affiliation(s)
- Yuta Hatori
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common and ubiquitous disorder (Bedogni et al. in Hepatology 42:44-52, 2005; Bellentani et al. in Ann Intern Med 132:112-117, 2000) which in a proportion of subjects leads to non-alcoholic steatohepatitis (NASH), advanced liver disease and hepatocellular carcinoma. Although the factors responsible for progression of disease are still uncertain, there is evidence that insulin resistance (IR) is a key operative mechanism (Angulo et al. in Hepatology 30:1356-1362, 1999) and that two stages are involved. The first is the accumulation of triglycerides in hepatocytes followed by a "second hit" which promotes cellular oxidative stress. Several factors may be responsible for the induction of oxidative stress but hepatic iron has been implicated in various studies. The topic is controversial, however, with early studies showing an association between hepatic iron (with or without hemochromatosis gene mutations) and the progression to hepatic fibrosis. Subsequent studies, however, could not confirm an association between the presence of hepatic iron and any of the histological determinants of NAFLD or NASH. Recent studies have reactivated interest in this subject firstly, with the demonstration that hepatic iron loading increases liver cholesterol synthesis with increased lipid deposition in the liver increasing the cellular lipid burden and secondly, a large clinical study has concluded that hepatocellular iron deposition is associated with an increased risk of hepatic fibrosis, thus, strongly supporting the original observation made over a decade ago. An improvement in insulin sensitivity has been demonstrated following phlebotomy therapy but a suitably powered controlled clinical trial is required before this treatment can be implemented.
Collapse
|