1
|
Rezende LG, Tasso TT, Candido PHS, Baptista MS. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem Photobiol 2021; 98:572-590. [PMID: 34931324 DOI: 10.1111/php.13582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.
Collapse
Affiliation(s)
- Laura G Rezende
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago T Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H S Candido
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| | - Mauricio S Baptista
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS. Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 2020; 697:108665. [PMID: 33159891 DOI: 10.1016/j.abb.2020.108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage. Photochemical reactions occur naturally in many biological membranes and are responsible for diverse processes such as photosynthesis and vision/phototaxis. However, excessive exposure to light in the presence of absorbing molecules produces excited states and other oxidant species that may cause cell aging/death, mutations and innumerable diseases including cancer. At the same time, targeting key compartments of diseased cells with light can be a promising strategy to treat many diseases in a clinical procedure called Photodynamic Therapy. Here we analyze the relationships between membrane alterations induced by photo-oxidation and the biochemical responses in mammalian cells. We specifically address the impact of photosensitization reactions in membranes of different organelles such as mitochondria, lysosome, endoplasmic reticulum, and plasma membrane, and the subsequent responses of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Marcia S F Franco
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Tsubone TM, Baptista MS, Itri R. Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophys Chem 2019; 254:106263. [DOI: 10.1016/j.bpc.2019.106263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
|
4
|
Abstract
Photodynamic therapy (PDT) offers a new approach to selective tumor eradication. Modifications designed to increase and optimize efficacy continue to emerge. Selective photodamage to malignant cells and their environment can bring about tumor cell destruction, shutdown of the tumor vasculature, stimulation of immunologic anti-tumor effects and potentiation of other therapeutic effects. Current development of combination protocols may provide a better rationale for integration of PDT into clinical practice. An example described here is the ability of a sequential (two-sensitizer) PDT protocol to enhance the efficacy of photokilling. The first step involves low-level lysosomal photodamage that has been shown to promote the apoptotic response to subsequent photodynamic effects directed at mitochondria. In this report, we demonstrate the ability of Photofrin, an FDA-approved photosensitizing agent, to serve as either the first or second element of the sequential protocol.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit MI, USA
| |
Collapse
|
5
|
Zhao Y, Liu Y, Xu Q, Barahman M, Bartusik D, Greer A, Lyons AM. Singlet oxygen generation on porous superhydrophobic surfaces: effect of gas flow and sensitizer wetting on trapping efficiency. J Phys Chem A 2014; 118:10364-71. [PMID: 24885074 PMCID: PMC4234451 DOI: 10.1021/jp503149x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon-phthalocyanine (Pc) particles are immobilized. Singlet oxygen ((1)O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV-vis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquid-gas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Chemistry, College of Staten Island, City University of New York , Staten Island, New York 10314, United States
| | | | | | | | | | | | | |
Collapse
|
6
|
Tyurina YY, Domingues RM, Tyurin VA, Maciel E, Domingues P, Amoscato AA, Bayir H, Kagan VE. Characterization of cardiolipins and their oxidation products by LC-MS analysis. Chem Phys Lipids 2014; 179:3-10. [PMID: 24333544 PMCID: PMC4025908 DOI: 10.1016/j.chemphyslip.2013.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 12/15/2022]
Abstract
Cardiolipins, a class of mitochondria-specific lipid molecules, is one of the most unusual and ancient phospholipids found in essentially all living species. Typical of mammalian cells is the presence of vulnerable to oxidation polyunsaturated fatty acid resides in CL molecules. The overall role and involvement of cardiolipin oxidation (CLox) products in major intracellular signaling as well as extracellular inflammatory and immune responses have been established. However, identification of individual peroxidized molecular species in the context of their ability to induce specific biological responses has not been yet achieved. This is due, at least in part, to technological difficulties in detection, identification, structural characterization and quantitation of CLox associated with their very low abundance and exquisite diversification. This dictates the need for the development of new methodologies for reliable, sensitive and selective analysis of both CLox. LC-MS-based oxidative lipidomics with high mass accuracy instrumentation as well as new software packages are promising in achieving the goals of expedited and reliable analysis of cardiolipin oxygenated species in biosamples.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Rosario M Domingues
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Elisabete Maciel
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
7
|
Rokitskaya TI, Kotova EA, Agapov II, Moisenovich MM, Antonenko YN. Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen. FEBS Lett 2014; 588:1590-5. [PMID: 24613917 DOI: 10.1016/j.febslet.2014.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
In contrast to expectations that unsaturated fatty acids contribute to oxidative stress by providing a source of lipid peroxides, we demonstrated the protective effect of double bonds in lipids on oxidative damage to membrane proteins. Photodynamic inactivation of gramicidin channels was decreased in unsaturated lipid compared to saturated lipid bilayers. By estimating photosensitizer (boronated chlorine e6 amide) binding to the membrane with the current relaxation technique, the decrease in gramicidin photoinactivation was attributed to singlet oxygen scavenging by double bonds in lipids rather than to the reduction in photosensitizer binding. Gramicidin protection by unsaturated lipids was also observed upon induction of oxidative stress with tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Igor I Agapov
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation; Academician V.I.Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | - Mikhail M Moisenovich
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
8
|
Alves E, Santos N, Melo T, Maciel E, Dória ML, Faustino MAF, Tomé JPC, Neves MGPMS, Cavaleiro JAS, Cunha Â, Helguero LA, Domingues P, Almeida A, Domingues MRM. Photodynamic oxidation of Escherichia coli membrane phospholipids: new insights based on lipidomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2717-28. [PMID: 24591033 DOI: 10.1002/rcm.6739] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 05/22/2023]
Abstract
RATIONALE The irreversible oxidation of biological molecules, such as lipids, can be achieved with a photosensitizing agent and subsequent exposure to light, in the presence of molecular oxygen. Although lipid peroxidation is an important toxicity mechanism in bacteria, the alterations caused by the photodynamic therapy on bacterial phospholipids are still unknown. In this work, we studied the photodynamic oxidation of Escherichia coli membrane phospholipids using a lipidomic approach. METHODS E. coli ATCC 25922 were irradiated for 90 min with white light (4 mW cm(-2), 21.6 J cm(-2)) in the presence of a tricationic porphyrin [(5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin triiodide, Tri-Py(+)-Me-PF]. Lipids were extracted and separated by thin-layer chromatography. Phospholipid classes were quantified by phosphorus assay and analyzed by electrospray ionization tandem mass spectrometry. Fatty acids were analyzed by gas chromatography. Quantification of lipid hydroperoxides was performed by FOX2 assay. Analysis of the photodynamic oxidation of a phospholipid standard was also performed. RESULTS Our approach allowed us to see that the photodynamic treatment induced the formation of a high amount of lipid hydroperoxides in the E. coli lipid extract. Quantification of fatty acids revealed a decrease in the unsaturated C16:1 and C18:1 species suggesting that oxidative modifications were responsible for their variation. It was also observed that photosensitization induced the oxidation of phosphatidylethanolamines with C16:1, C18:1 and C18:2 fatty acyl chains, with formation of hydroxy and hydroperoxy derivatives. CONCLUSIONS Membrane phospholipids of E. coli are molecular targets of the photodynamic effect induced by Tri-Py(+) -Me-PF. The overall change in the relative amount of unsaturated fatty acids and the formation of PE hydroxides and hydroperoxides evidence the damages in bacterial phospholipids caused by this lethal treatment.
Collapse
Affiliation(s)
- Eliana Alves
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Melo T, Santos N, Lopes D, Alves E, Maciel E, Faustino MAF, Tomé JPC, Neves MGPMS, Almeida A, Domingues P, Segundo MA, Domingues MRM. Photosensitized oxidation of phosphatidylethanolamines monitored by electrospray tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1357-1365. [PMID: 24338891 DOI: 10.1002/jms.3301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Photodynamic therapy combines visible light and a photosensitizer (PS) in the presence of molecular oxygen to generate reactive oxygen species able to modify biological structures such as phospholipids. Phosphatidylethanolamines (PEs), being major phospholipid constituents of mammalian cells and membranes of Gram-negative bacteria, are potential targets of photosensitization. In this work, the oxidative modifications induced by white light in combination with cationic porphyrins (Tri-Py(+)-Me-PF and Tetra-Py(+)-Me) were evaluated on PE standards. Electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) were used to identify and characterize the oxidative modifications induced in PEs (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4). Photo-oxidation products of POPE, PLPE and PAPE as hydroxy, hydroperoxy and keteno derivatives and products due to oxidation in ethanolamine polar head were identified. Hydroperoxy-PEs were found to be the major photo-oxidation products. Quantification of hydroperoxides (PE-OOH) allowed differentiating the potential effect in photodamage of the two porphyrins. The highest amounts of PE-OOH were notorious in the presence of Tri-Py(+)-Me-PF, a highly efficient PS against bacteria. The identification of these modifications in PEs is an important key point in the understanding cell damage processes underlying photodynamic therapy approaches.
Collapse
Affiliation(s)
- Tânia Melo
- Mass Spectrometry Centre, UI QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Alves E, Melo T, Simões C, Faustino MAF, Tomé JPC, Neves MGPMS, Cavaleiro JAS, Cunha A, Gomes NCM, Domingues P, Domingues MRM, Almeida A. Photodynamic oxidation of Staphylococcus warneri membrane phospholipids: new insights based on lipidomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1607-1618. [PMID: 23765609 DOI: 10.1002/rcm.6614] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/17/2013] [Accepted: 04/28/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE The photodynamic process involves the combined use of light and a photosensitizer, which, in the presence of oxygen, originates cytotoxic species capable of oxidizing biological molecules, such as lipids. However, the effect of the photodynamic process in the bacterial phospholipid profile by a photosensitizer has never been reported. A lipidomic approach was used to study the photodynamic oxidation of membrane phospholipids of Staphylococcus warneri by a tricationic porphyrin [5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin triiodide, Tri-Py(+)-Me-PF]. METHODS S. warneri (10(8) colony forming units mL(-1)) was irradiated with white light (4 mW cm(-2), 21.6 J cm(-2)) in the presence of Tri-Py(+)-Me-PF (5.0 μM). Non-photosensitized bacteria were used as control (irradiated without porphyrin). After irradiation, total lipids were extracted and separated by thin-layer chromatography (TLC). Isolated fractions of lipid classes were quantified by phosphorus assay and analyzed by mass spectrometry (MS): off-line TLC/ESI-MS, hydrophilic interaction (HILIC)-LC/MS and MS/MS. RESULTS The most representative classes of S. warneri phospholipids were identified as phosphatidylglycerols (PGs) and cardiolipins (CLs). Lysyl-phosphatidylglycerols (LPGs), phosphatidylethanolamines (PEs), phosphatidylcholines (PCs) and phosphatidic acids (PAs) were also identified. After photodynamic treatment, an overall increase in the relative abundance of PGs was observed as well as the appearance of new oxidized species from CLs, including hydroxy and hydroperoxy derivatives. Formation of high amounts of lipid hydroperoxides was confirmed by FOX2 assay. Photodynamic oxidation of phospholipid standards revealed the formation of hydroperoxy and dihydroperoxy derivatives, confirming the observed CL oxidized species in S. warneri. CONCLUSIONS Membrane phospholipids of S. warneri are molecular targets of the photoinactivation process induced by Tri-Py(+) -Me-PF. The overall modification in the relative amount of phospholipids and the formation of lipid hydroxides and hydroperoxides indicate the lethal damage caused to photosensitized bacterial cells.
Collapse
Affiliation(s)
- Eliana Alves
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim J, Hoppel CL. Comprehensive approach to the quantitative analysis of mitochondrial phospholipids by HPLC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 912:105-14. [PMID: 23266842 DOI: 10.1016/j.jchromb.2012.10.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/22/2012] [Accepted: 10/30/2012] [Indexed: 02/02/2023]
Abstract
A normal-phase HPLC-MS method was established to analyze mitochondrial phospholipids quantitatively as well as qualitatively. An efficient extraction procedure and chromatographic conditions were developed using twelve standardized phospholipids and lysophospholipids. The chromatographic conditions provided physical separation of phospholipids by class, and efficient ionization allowed detection of low abundance phospholipids such as phosphatidylglycerol and monolysocardiolipin. The chromatographic separation of each class of phospholipid permitted qualitative identification of molecular species without interference from other classes. This is advantageous for mitochondrial lipidomics because the composition of mitochondrial phospholipids varies depending on tissue source, pathological condition, and nutrition. Using the method, seven classes of phospholipids (phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, phosphatidylserine, cardiolipin, and monolysocardiolipin) were detected in rat heart and skeletal muscle mitochondria and all but phosphatidylserine were quantified. The concentration was calculated using standard curves with an internal standard generated for each class of phospholipid. The method was validated for intraday and interday variation and showed excellent reproducibility and accuracy. This new method, with each step documented, provides a powerful tool for accurate quantitation of phospholipids, a basic structural component of mitochondrial membranes.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States
| | | |
Collapse
|
12
|
Yin H, Zhu M. Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis, mitochondrial dysfunction and human diseases. Free Radic Res 2012; 46:959-74. [PMID: 22468920 DOI: 10.3109/10715762.2012.676642] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cardiolipin (CL) is a mitochondria-specific phospholipid and is critical for maintaining the integrity of mitochondrial membrane and mitochondrial function. CL also plays an active role in mitochondria-dependent apoptosis by interacting with cytochrome c (cyt c), tBid and other important Bcl-2 proteins. The unique structure of CL with four linoleic acid side chains in the same molecule and its cellular location make it extremely susceptible to free radical oxidation by reactive oxygen species including free radicals derived from peroxidase activity of cyt c/CL complex, singlet oxygen and hydroxyl radical. The free radical oxidation products of CL have been emerged as important mediators in apoptosis. In this review, we summarize the free radical chemical mechanisms that lead to CL oxidation, recent development in detection of oxidation products of CL by mass spectrometry and the implication of CL oxidation in mitochondria-mediated apoptosis, mitochondrial dysfunction and human diseases.
Collapse
Affiliation(s)
- Huiyong Yin
- Laboratory of Lipid Metabolism in Human Nutrition and Related Diseases, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
13
|
Maciel E, Domingues P, Domingues MRM. Liquid chromatography/tandem mass spectrometry analysis of long-chain oxidation products of cardiolipin induced by the hydroxyl radical. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:316-326. [PMID: 21192027 DOI: 10.1002/rcm.4866] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The anionic phospholipid cardiolipin (CL) is found almost exclusively in the inner membrane of mitochondria, playing an important role in energy metabolism. Oxidation of CL has been associated with apoptotic events and various pathologies. In this study, electrospray ionization mass spectrometry coupled with liquid chromatography (LC/ESI-MS) was used to identify tetralinoleoyl-cardiolipin (TLCL) modifications induced by the OH(·) radical generated under Fenton reaction conditions (H(2)O(2) and Fe(2+)). The identified oxidation products of TLCL contained 2, 4, 6 and 8 additional oxygen atoms. These long-chain oxidation products were characterized by LC/ESI-MS/MS as doubly [M-2H](2-) and singly charged [M-H](-) ions. A detailed analysis of the fragmentation pathways of these precursor ions allowed the identification of hydroperoxy derivatives of CL. MS/MS analysis indicated that CL oxidation products with 4, 6 and 8 oxygen atoms have one fatty acyl chain bearing 4 oxygen atoms ([RCOO+4O](-)). Even when the TLCL molecule was oxidized by the addition of eight oxygen atoms, one of the acyl chains remained non-modified and one fatty acyl chain contained three or four oxygen atoms. This led us to conclude that under oxidative conditions by the OH(·) radical, the distribution of oxygens/peroxy groups in the CL molecule is not random, even when CL has the same fatty acyl chains in all the positions. Using mass spectrometry, the oxidation products have been unequivocally assigned, which may be useful for their detection in biological samples.
Collapse
Affiliation(s)
- Elisabete Maciel
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | |
Collapse
|
14
|
Abstract
A simple, high-yielding preparation of monolysocardiolipin (MLCL) by phospholipase A2 hydrolysis of cardiolipin (CL) in methanol on a semi-preparative scale is described. In methanol, phospholipase A2 preferentially hydrolyzes CL to MLCL. This selectivity results in ∼80% yield of MLCL. The synthesized MLCL and dilysocardiolipin were characterized by NMR and ESI-MS/MS. Only the sn-2 position of CL was hydrolyzed by phospholipase A2 in methanol.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
15
|
Kim J, Minkler PE, Salomon RG, Anderson VE, Hoppel CL. Cardiolipin: characterization of distinct oxidized molecular species. J Lipid Res 2010; 52:125-35. [PMID: 20858593 DOI: 10.1194/jlr.m010520] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiolipin (CL) is a phospholipid predominantly found in the mitochondrial inner membrane and is associated structurally with individual complexes of the electron transport chain (ETC). Because the ETC is the major mitochondrial reactive oxygen species (ROS)-generating site, the proximity to the ETC and bisallylic methylenes of the PUFA chains of CL make it a likely target of ROS in the mitochondrial inner membrane. Oxidized cellular CL products, uniquely derived from ROS-induced autoxidation, could serve as biomarkers for the presence of the ROS and could help in the understanding of the mechanism of oxidative stress. Because major CL species have four unsaturated acyl chains, whereas other phospholipids usually have only one in the sn-2 position, characterization of oxidized CL is highly challenging. In the current study, we exposed CL, under aerobic conditions, to singlet oxygen (¹O₂), the radical initiator 2,2'-azobis(2-methylpropionamidine) dihydrochloride, or room air, and the oxidized CL species were characterized by HPLC-tandem mass spectrometry (MS/MS). Our reverse-phase ion-pair HPLC-MS/MS method can characterize the major and minor oxidized CL species by detecting distinctive fragment ions associated with specific oxidized species. The HPLC-MS/MS results show that monohydroperoxides and bis monohydroperoxides were generated under all three conditions. However, significant amounts of CL dihydroperoxides were produced only by ¹O₂-mediated oxidation. These products were barely detectable from radical oxidation either in a liposome bilayer or in thin film. These observations are only possible due to the chromatographic separation of the different oxidized species.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
16
|
Rodriguez ME, Kim J, Delos Santos GB, Azizuddin K, Berlin J, Anderson VE, Kenney ME, Oleinick NL. Binding to and photo-oxidation of cardiolipin by the phthalocyanine photosensitizer Pc 4. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:051604. [PMID: 21054078 PMCID: PMC2945736 DOI: 10.1117/1.3484256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/20/2010] [Accepted: 05/26/2010] [Indexed: 05/30/2023]
Abstract
Cardiolipin is a unique phospholipid of the mitochondrial inner membrane. Its peroxidation correlates with release of cytochrome c and induction of apoptosis. The phthalocyanine photosensitizer Pc 4 binds preferentially to the mitochondria and endoplasmic reticulum. Earlier Förster resonance energy transfer studies showed colocalization of Pc 4 and cardiolipin, which suggests cardiolipin as a target of photodynamic therapy (PDT) with Pc 4. Using liposomes as membrane models, we find that Pc 4 binds to cardiolipin-containing liposomes similarly to those that do not contain cardiolipin. Pc 4 binding is also studied in MCF-7c3 cells and those whose cardiolipin content was reduced by treatment with palmitate. Decreased levels of cardiolipin are quantified by thin-layer chromatography. The similar level of binding of Pc 4 to cells, irrespective of palmitate treatment, supports the lack of specificity of Pc 4 binding. Thus, factors other than cardiolipin are likely responsible for the preferential localization of Pc 4 in mitochondria. Nonetheless, cardiolipin within liposomes is readily oxidized by Pc 4 and light, yielding apparently mono- and dihydroperoxidized cardiolipin. If similar products result from exposure of cells to Pc 4-PDT, they could be part of the early events leading to apoptosis following Pc 4-PDT.
Collapse
Affiliation(s)
- Myriam E Rodriguez
- Case Western Reserve University, Department of Radiation Oncology, Cleveland, Ohio 44106-4942, USA
| | | | | | | | | | | | | | | |
Collapse
|