1
|
Yi LX, Tan EK, Zhou ZD. Tyrosine Hydroxylase Inhibitors and Dopamine Receptor Agonists Combination Therapy for Parkinson's Disease. Int J Mol Sci 2024; 25:4643. [PMID: 38731862 PMCID: PMC11083272 DOI: 10.3390/ijms25094643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
There are currently no disease-modifying therapies for Parkinson's disease (PD), a progressive neurodegenerative disorder associated with dopaminergic neuronal loss. There is increasing evidence that endogenous dopamine (DA) can be a pathological factor in neurodegeneration in PD. Tyrosine hydroxylase (TH) is the key rate-limiting enzyme for DA generation. Drugs that inhibit TH, such as alpha-methyltyrosine (α-MT), have recently been shown to protect against neurodegeneration in various PD models. DA receptor agonists can activate post-synaptic DA receptors to alleviate DA-deficiency-induced PD symptoms. However, DA receptor agonists have no therapeutic effects against neurodegeneration. Thus, a combination therapy with DA receptor agonists plus TH inhibitors may be an attractive therapeutic approach. TH inhibitors can protect and promote the survival of remaining dopaminergic neurons in PD patients' brains, whereas DA receptor agonists activate post-synaptic DA receptors to alleviate PD symptoms. Additionally, other PD drugs, such as N-acetylcysteine (NAC) and anticholinergic drugs, may be used as adjunctive medications to improve therapeutic effects. This multi-drug cocktail may represent a novel strategy to protect against progressive dopaminergic neurodegeneration and alleviate PD disease progression.
Collapse
Affiliation(s)
- Ling Xiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore;
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore;
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore;
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
2
|
Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Role of dopamine in the pathophysiology of Parkinson's disease. Transl Neurodegener 2023; 12:44. [PMID: 37718439 PMCID: PMC10506345 DOI: 10.1186/s40035-023-00378-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
A pathological feature of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and decreased dopamine (DA) content in the substantia nigra pars compacta in PD brains. DA is the neurotransmitter of dopaminergic neurons. Accumulating evidence suggests that DA interacts with environmental and genetic factors to contribute to PD pathophysiology. Disturbances of DA synthesis, storage, transportation and metabolism have been shown to promote neurodegeneration of dopaminergic neurons in various PD models. DA is unstable and can undergo oxidation and metabolism to produce multiple reactive and toxic by-products, including reactive oxygen species, DA quinones, and 3,4-dihydroxyphenylacetaldehyde. Here we summarize and highlight recent discoveries on DA-linked pathophysiologic pathways, and discuss the potential protective and therapeutic strategies to mitigate the complications associated with DA.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Ling Xiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Dennis Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tit Meng Lim
- Department of Biological Science, National University of Singapore, Singapore, 119077, Singapore
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
3
|
Thomas C, Wurzer L, Malle E, Ristow M, Madreiter-Sokolowski CT. Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs. FRONTIERS IN AGING 2022; 3:905261. [PMID: 35821802 PMCID: PMC9261327 DOI: 10.3389/fragi.2022.905261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Lia Wurzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Ristow
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
4
|
Kubicova L, Bachmann G, Weckwerth W, Chobot V. (±)-Catechin-A Mass-Spectrometry-Based Exploration Coordination Complex Formation with Fe II and Fe III. Cells 2022; 11:958. [PMID: 35326409 PMCID: PMC8946835 DOI: 10.3390/cells11060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Catechin is an extensively investigated plant flavan-3-ol with a beneficial impact on human health that is often associated with antioxidant activities and iron coordination complex formation. The aim of this study was to explore these properties with FeII and FeIII using a combination of nanoelectrospray-mass spectrometry, differential pulse voltammetry, site-specific deoxyribose degradation assay, FeII autoxidation assay, and brine shrimp mortality assay. Catechin primarily favored coordination complex formation with Fe ions of the stoichiometry catechin:Fe in the ratio of 1:1 or 2:1. In the detected Fe-catechin coordination complexes, FeII prevailed. Differential pulse voltammetry, the site-specific deoxyribose degradation, and FeII autoxidation assays proved that coordination complex formation affected catechin's antioxidant effects. In situ formed Fe-catechin coordination complexes showed no toxic activities in the brine shrimp mortality assay. In summary, catechin has properties for the possible treatment of pathological processes associated with ageing and degeneration, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Lenka Kubicova
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Gert Bachmann
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Vladimir Chobot
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| |
Collapse
|
5
|
Zhou ZD, Saw WT, Ho PGH, Zhang ZW, Zeng L, Chang YY, Sun AXY, Ma DR, Wang HY, Zhou L, Lim KL, Tan EK. The role of tyrosine hydroxylase-dopamine pathway in Parkinson's disease pathogenesis. Cell Mol Life Sci 2022; 79:599. [PMID: 36409355 PMCID: PMC9678997 DOI: 10.1007/s00018-022-04574-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by selective and progressive dopamine (DA) neuron loss in the substantia nigra and other brain regions, with the presence of Lewy body formation. Most PD cases are sporadic, whereas monogenic forms of PD have been linked to multiple genes, including Leucine kinase repeat 2 (LRRK2) and PTEN-induced kinase 1 (PINK1), two protein kinase genes involved in multiple signaling pathways. There is increasing evidence to suggest that endogenous DA and DA-dependent neurodegeneration have a pathophysiologic role in sporadic and familial PD. METHODS We generated patient-derived dopaminergic neurons and human midbrain-like organoids (hMLOs), transgenic (TG) mouse and Drosophila models, expressing both mutant and wild-type (WT) LRRK2 and PINK1. Using these models, we examined the effect of LRRK2 and PINK1 on tyrosine hydroxylase (TH)-DA pathway. RESULTS We demonstrated that PD-linked LRRK2 mutations were able to modulate TH-DA pathway, resulting in up-regulation of DA early in the disease which subsequently led to neurodegeneration. The LRRK2-induced DA toxicity and degeneration were abrogated by wild-type (WT) PINK1 (but not PINK1 mutations), and early treatment with a clinical-grade drug, α-methyl-L-tyrosine (α-MT), a TH inhibitor, was able to reverse the pathologies in human neurons and TG Drosophila models. We also identified opposing effects between LRRK2 and PINK1 on TH expression, suggesting that functional balance between these two genes may regulate the TH-DA pathway. CONCLUSIONS Our findings highlight the vital role of the TH-DA pathway in PD pathogenesis. LRRK2 and PINK1 have opposing effects on the TH-DA pathway, and its balance affects DA neuron survival. LRRK2 or PINK1 mutations can disrupt this balance, promoting DA neuron demise. Our findings provide support for potential clinical trials using TH-DA pathway inhibitors in early or prodromic PD.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Wuan Ting Saw
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Patrick Ghim Hoe Ho
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Zhi Wei Zhang
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Li Zeng
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Ya Yin Chang
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Alfred Xu Yang Sun
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Dong Rui Ma
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Hong Yan Wang
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Lei Zhou
- Ocular Proteomics Laboratory, Singapore Eye Research Institute, Singapore, 169856 Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077 Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Kah Leong Lim
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Developmental of Stem Cell Biology and Regenerative Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Eng-King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Department of Neurology, Singapore General Hospital, National Neuroscience Institute, Outram Road, Singapore, 169608 Singapore
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| |
Collapse
|
6
|
Toxic Feedback Loop Involving Iron, Reactive Oxygen Species, α-Synuclein and Neuromelanin in Parkinson's Disease and Intervention with Turmeric. Mol Neurobiol 2021; 58:5920-5936. [PMID: 34426907 DOI: 10.1007/s12035-021-02516-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a movement disorder associated with severe loss of mainly dopaminergic neurons in the substantia nigra. Pathological hallmarks include Lewy bodies, and loss of neuromelanin, due to degeneration of neuromelanin-containing dopaminergic neurons. Despite being described over 200 years ago, the etiology of PD remains unknown. Here, we highlight the roles of reactive oxygen species (ROS), iron, alpha synuclein (α-syn) and neuromelanin in a toxic feedback loop culminating in neuronal death and spread of the disease. Dopaminergic neurons are particularly vulnerable due to decreased antioxidant concentration with aging, constant exposure to ROS and presence of neurotoxic compounds (e.g. ortho-quinones). ROS and iron increase each other's levels, creating a state of oxidative stress. α-Syn aggregation is influenced by ROS and iron but also increases ROS and iron via its induced mitochondrial dysfunction and ferric-reductase activity. Neuromelanin's binding affinity is affected by increased ROS and iron. Furthermore, during neuronal death, neuromelanin is degraded in the extracellular space, releasing its bound toxins. This cycle of events continues to neighboring neurons in the form of a toxic loop, causing PD pathology. The increase in ROS and iron may be an important target for therapies to disrupt this toxic loop, and therefore diets rich in certain 'nutraceuticals' may be beneficial. Turmeric is an attractive candidate, as it is known to have anti-oxidant and iron chelating properties. More studies are needed to test this theory and if validated, this would be a step towards development of lifestyle-based therapeutic modalities to complement existing PD treatments.
Collapse
|
7
|
Müller T. Experimental Dopamine Reuptake Inhibitors in Parkinson's Disease: A Review of the Evidence. J Exp Pharmacol 2021; 13:397-408. [PMID: 33824605 PMCID: PMC8018398 DOI: 10.2147/jep.s267032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is the second most chronic neurodegenerative disorder worldwide. Deficit of monoamines, particularly dopamine, causes an individually varying compilation of motor and non-motor features. Constraint of presynaptic uptake extends monoamine stay in the synaptic cleft. This review discusses possible benefits of dopamine reuptake inhibition for the treatment of PD. Translation of this pharmacologic principle into positive clinical study results failed to date. Past clinical trial designs did not consider a mandatory, concomitant stable inhibition of glial monoamine turnover, i.e. with monoamine oxidase B inhibitors. These studies focused on improvement of motor behavior and levodopa associated motor complications, which are fluctuations of motor and non-motor behavior. Future clinical investigations in early, levodopa- and dopamine agonist naïve patients shall also aim on alleviation of non-motor symptoms, like fatigue, apathy or cognitive slowing. Oral levodopa/dopa decarboxylase inhibitor application is inevitably necessary with advance of PD. Monoamine reuptake (MRT) inhibition improves the efficacy of levodopa, the blood brain barrier crossing metabolic precursor of dopamine. The pulsatile brain delivery pattern of orally administered levodopa containing formulations results in synaptic dopamine variability. Ups and downs of dopamine counteract the physiologic principle of continuous neurotransmission, particularly in nigrostriatal, respectively mesocorticolimbic pathways, both of which regulate motor respectively non-motor behavior. Thus synaptic dopamine pulsatility overwhelms the existing buffering capacity. Onset of motor and non-motor complications occurs. Future MRT inhibitor studies shall focus on a stabilizing and preventive effect on levodopa related fluctuations of motor and non-motor behavior. Their long-term study designs in advanced levodopa treated patients shall allow a cautious adaptation of oral l-dopa therapy combined with a mandatory inhibition of glial monoamine turnover. Then the evidence for a preventive and beneficial, symptomatic effect of MRT inhibition on motor and non-motor complications will become more likely.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, 13088, Germany
| |
Collapse
|
8
|
Zhou RP, Chen Y, Wei X, Yu B, Xiong ZG, Lu C, Hu W. Novel insights into ferroptosis: Implications for age-related diseases. Theranostics 2020; 10:11976-11997. [PMID: 33204324 PMCID: PMC7667696 DOI: 10.7150/thno.50663] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Rapid increase in aging populations is an urgent problem because older adults are more likely to suffer from disabilities and age-related diseases (ARDs), burdening healthcare systems and society in general. ARDs are characterized by the progressive deterioration of tissues and organs over time, eventually leading to tissue and organ failure. To date, there are no effective interventions to prevent the progression of ARDs. Hence, there is an urgent need for new treatment strategies. Ferroptosis, an iron-dependent cell death, is linked to normal development and homeostasis. Accumulating evidence, however, has highlighted crucial roles for ferroptosis in ARDs, including neurodegenerative and cardiovascular diseases. In this review, we a) summarize initiation, regulatory mechanisms, and molecular signaling pathways involved in ferroptosis, b) discuss the direct and indirect involvement of the activation and/or inhibition of ferroptosis in the pathogenesis of some important diseases, and c) highlight therapeutic targets relevant for ARDs.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Bin Yu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
9
|
Lim SC, Jansson PJ, Assinder SJ, Maleki S, Richardson DR, Kovacevic Z. Unique targeting of androgen-dependent and -independent AR signaling in prostate cancer to overcome androgen resistance. FASEB J 2020; 34:11511-11528. [PMID: 32713076 DOI: 10.1096/fj.201903167r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
The androgen receptor (AR) is a major driver of prostate cancer (PCa) and a key therapeutic target for AR inhibitors (ie, Enzalutamide). However, Enzalutamide only inhibits androgen-dependent AR signaling, enabling intrinsic AR activation via androgen-independent pathways, leading to aggressive castration-resistant PCa (CRPC). We investigated the ability of novel anti-cancer agents, Dp44mT and DpC, to overcome androgen resistance. The effect of Dp44mT and DpC on androgen-dependent and independent AR signaling was assessed in androgen-dependent and -independent PCa cells using 2D- and 3D-tissue culture. The clinically trialed DpC was then examined in vivo and compared to Enzalutamide. These agents uniquely promote AR proteasomal degradation and inhibit AR transcription in PCa cells via the upregulation of c-Jun, potently reducing the AR target, prostate-specific antigen (PSA). These agents also inhibited the activation of key molecules in both androgen-dependent and independent AR signaling (ie, EGFR, MAPK, PI3K), which promote CRPC. The clinically trialed DpC also significantly inhibited PCa tumor growth, AR, and PSA expression in vivo, being more potent than Enzalutamide. DpC is a promising candidate for a unique, structurally distinct generation of AR inhibitors that simultaneously target both androgen-dependent and independent arms of AR signaling. No other therapies exhibit such comprehensive and potent AR suppression, which is critical for overcoming the development of androgen resistance.
Collapse
Affiliation(s)
- Syer C Lim
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia
| | - Stephen J Assinder
- Discipline of Physiology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia
| | - Sanaz Maleki
- Histopathology Laboratory, Department of Pathology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Centre for Cancer Cell Biology, Griffith Institute of Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Zaklina Kovacevic
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
10
|
Jaramillo A, Barrera-Gutiérrez R, Cortés MT. Synthesis, Follow-Up, and Characterization of Polydopamine-like Coatings Departing from Micromolar Dopamine- o-Quinone Precursor Concentrations. ACS OMEGA 2020; 5:15016-15027. [PMID: 32637775 PMCID: PMC7330902 DOI: 10.1021/acsomega.0c00676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The understanding of oxidized species derived from the neurotransmitter dopamine (DA) is a relevant topic for both the medical field (Parkinson's disease) as well as for the field of materials science where the formation process of polydopamine (PDA) films is an active area of research. Polymers that interact strongly with almost all surfaces but have a low electrical conductivity have been obtained by the chemical oxidation of DA. Since electrical conductivity is a desired property for several applications, deposition alternatives such as electrochemical PDA synthesis have been proposed, but the results are still insufficient. In this context, we propose a new PDA chemical-electrochemical deposition process on glassy carbon electrodes. The chemical oxidation step that converts dopamine into dopamine-o-quinone previous to the electrochemical deposition was crucial to decrease the precursor concentration to the micromolar range. The PDA-like films synthesized by this method had high adhesion and low charge-transfer resistance, which was evidenced by impedance measurements and the successful electrodeposition of a polypyrrole coating on top of a PDA-like film. In addition, we observed that anodization of GC surfaces increases sensitivity toward six electroactive couples derived from DA oxidation in the pH regimes studied. These results show the complexity of the intermediates formed during the electrochemical polymerization of PDA.
Collapse
Affiliation(s)
- Andrés
M. Jaramillo
- Department of Chemistry, Universidad de Los Andes, Cra 1 N° 18A-12, Bogotá 111711, Colombia
| | | | - María T. Cortés
- Department of Chemistry, Universidad de Los Andes, Cra 1 N° 18A-12, Bogotá 111711, Colombia
| |
Collapse
|
11
|
Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell 2019; 18:e13031. [PMID: 31432604 PMCID: PMC6826160 DOI: 10.1111/acel.13031] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/05/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease prevalence is rapidly increasing in an aging global population. With this increase comes exponentially rising social and economic costs, emphasizing the immediate need for effective disease‐modifying treatments. Motor dysfunction results from the loss of dopaminergic neurons in the substantia nigra pars compacta and depletion of dopamine in the nigrostriatal pathway. While a specific biochemical mechanism remains elusive, oxidative stress plays an undeniable role in a complex and progressive neurodegenerative cascade. This review will explore the molecular factors that contribute to the high steady‐state of oxidative stress in the healthy substantia nigra during aging, and how this chemical environment renders neurons susceptible to oxidative damage in Parkinson's disease. Contributing factors to oxidative stress during aging and as a pathogenic mechanism for Parkinson's disease will be discussed within the context of how and why therapeutic approaches targeting cellular redox activity in this disorder have, to date, yielded little therapeutic benefit. We present a contemporary perspective on the central biochemical contribution of redox imbalance to Parkinson's disease etiology and argue that improving our ability to accurately measure oxidative stress, dopaminergic neurotransmission and cell death pathways in vivo is crucial for both the development of new therapies and the identification of novel disease biomarkers.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of Pharmacology, Faculty of Medical and Health The University of Sydney Sydney NSW Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Vic. Australia
- Elemental Bio‐imaging Facility University of Technology Sydney Broadway NSW Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of Pharmacology, Faculty of Medical and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
12
|
Iron Redox Chemistry and Implications in the Parkinson's Disease Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4609702. [PMID: 31687080 PMCID: PMC6803728 DOI: 10.1155/2019/4609702] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
The etiology of Parkinson's disease (PD) is linked with cellular inclusions in the substantia nigra pars compacta region of the brain that are enriched in the misfolded presynaptic protein α-synuclein (αS) and death of the dopaminergic neurons. Brain iron homeostasis governs both neurotransmission and neurodegeneration; hence, the role of iron in PD progression and neuronal health is apparent. Elevated iron deposits become prevalent in the cerebral region upon aging and even more so in the PD brain. Structural as well as oxidative modifications can result from coordination of αS with redox active iron, which could have functional and/or pathological implications. In this review, we will discuss iron-mediated αS aggregation, alterations in iron metabolism, and the role of the iron-dopamine couple. Moreover, iron interactions with N-terminally acetylated αS, the physiologically relevant form of the human protein, will be addressed to shed light on the current understanding of protein dynamics and the physiological environment in the disease state. Oxidative pathways and biochemical alterations resulting from aberrant iron-induced chemistry are the principal focus of this review in order to highlight the plethora of research that has uncovered this emerging dichotomy of iron playing both functional and disruptive roles in PD pathology.
Collapse
|
13
|
Zhou ZD, Xie SP, Saw WT, Ho PGH, Wang H, Lei Z, Yi Z, Tan EK. The Therapeutic Implications of Tea Polyphenols Against Dopamine (DA) Neuron Degeneration in Parkinson's Disease (PD). Cells 2019; 8:cells8080911. [PMID: 31426448 PMCID: PMC6721683 DOI: 10.3390/cells8080911] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
: Accumulative evidence indicated that the pathologically accumulated metal ions (iron species and Mn3+) and abnormally up-regulated monoamine oxidase B (MAOB) activity induced oxidation of endogenous dopamine (DA) can lead to mitochondria impairment, lysosome dysfunction, proteasome inhibition, and selective DA neuron vulnerability, which is implicated in the pathogenesis of Parkinson's disease (PD). The DA oxidation can generate deleterious reactive oxygen species (ROS) and highly reactive DA quinones (DAQ) to induce DA-related toxicity, which can be alleviated by DA oxidation suppressors, ROS scavengers, DAQ quenchers, and MAOB inhibitors. On the other hand, the nuclear factor erythroid 2-related factor 2 (Nrf2)-Keap1 and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) anti-oxidative and proliferative signaling pathways play roles in anti-oxidative cell defense and mitochondria biogenesis, which is implicated in DA neuron protections. Therefore, agents with capabilities to suppress DA-related toxicity including inhibition of DA oxidation, scavenge of ROS, detoxification of DAQ, inhibition of MAOB, and modulations of anti-oxidative signaling pathways can be protective to DA neurons. Accumulative evidence shows that tea or coffee consumptions and smoking are related to deceased PD prevalence with unknown mechanisms. In this study, we investigate the protective capabilities of tea polyphenols and other PD relevant agents to inhibit DA-related toxicity and protect against environmental or genetic factors induced DA neuron degeneration in vitro and in vivo. We find that tea polyphenols can significantly suppress DA-related toxicity to protect DA neurons. The tea polyphenols can protect DA neurons via inhibition of DA oxidation, conjugation with DAQ, scavenge of ROS, inhibition of MAOB, and modulations of Nrf2-Keap1 and PGC-1α anti-oxidative signaling pathways. The tea polyphenols with more phenolic hydroxyl groups and ring structures have stronger protective functions. The protective capabilities of tea polyphenols is further strengthened by evidence that phenolic hydroxyl groups can directly conjugate with DAQ. However, GSH and other sulfhydyl groups containing agents have weaker capabilities to abrogate DA oxidation, detoxify ROS and DAQ and inhibit MAOB; whereas nicotine (NICO) and caffeine (CAF) can only modulate Nrf2-Keap1 and PGC-1α pathways to protect DA neurons weakly. The tea polyphenols are identified to protect against overexpression of mutant A30P α-synuclein (α-syn) induced DA neuron degeneration and PD-like symptoms in transgenic Drosophila. Based on achievements from current studies, the excellent and versatile protective capabilities of tea polyphenols are highlighted, which will contribute and benefit to future anti-PD therapy.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Shao Ping Xie
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Wuan Ting Saw
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Patrick Ghim Hoe Ho
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Hongyan Wang
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zhou Lei
- Ocular Proteomics Laboratory, Singapore Eye Research Institute, Singapore 169856, Singapore
- Singapore Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zhao Yi
- Department of Neurology, Singapore General Hospital, Singapore 169608, Singapore
| | - Eng King Tan
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore.
- Department of Neurology, Singapore General Hospital, Singapore 169608, Singapore.
| |
Collapse
|
14
|
Liu C, Liang MC, Soong TW. Nitric Oxide, Iron and Neurodegeneration. Front Neurosci 2019; 13:114. [PMID: 30833886 PMCID: PMC6388708 DOI: 10.3389/fnins.2019.00114] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Iron is a crucial cofactor for several physiological functions in the brain including transport of oxygen, DNA synthesis, mitochondrial respiration, synthesis of myelin, and neurotransmitter metabolism. If iron concentration exceeds the capacity of cellular sequestration, excessive labile iron will be harmful by generating oxidative stress that leads to cell death. In patients suffering from Parkinson disease, the total amount of iron in the substantia nigra was reported to increase with disease severity. High concentrations of iron were also found in the amyloid plaques and neurofibrillary tangles of human Alzheimer disease brains. Besides iron, nitric oxide (NO) produced in high concentration has been associated with neurodegeneration. NO is produced as a co-product when the enzyme NO synthase converts L-arginine to citrulline, and NO has a role to support normal physiological functions. When NO is produced in a high concentration under pathological conditions such as inflammation, aberrantly S-nitrosylated proteins can initiate neurodegeneration. Interestingly, NO is closely related with iron homeostasis. Firstly, it regulates iron-related gene expression through a system involving iron regulatory protein and its cognate iron responsive element (IRP-IRE). Secondly, it modified the function of iron-related protein directly via S-nitrosylation. In this review, we examine the recent advances about the potential role of dysregulated iron homeostasis in neurodegeneration, with an emphasis on AD and PD, and we discuss iron chelation as a potential therapy. This review also highlights the changes in iron homeostasis caused by NO. An understanding of these mechanisms will help us formulate strategies to reverse or ameliorate iron-related neurodegeneration in diseases such as AD and PD.
Collapse
Affiliation(s)
- Chao Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- Neurobiology/Ageing Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Mui Cheng Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Neurobiology/Ageing Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Neurobiology/Ageing Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
15
|
Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol 2017; 155:96-119. [PMID: 26455458 PMCID: PMC4826627 DOI: 10.1016/j.pneurobio.2015.09.012] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration.
Collapse
Affiliation(s)
- Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Juan Segura-Aguilar
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Emanuele Ferrari
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Patricia Muñoz
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Irmgard Paris
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Sciences, Santo Tomás University, Viña del Mar, Chile
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center, New York, NY, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
16
|
Lopes FM, Bristot IJ, da Motta LL, Parsons RB, Klamt F. Mimicking Parkinson's Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models. Neuromolecular Med 2017; 19:241-255. [PMID: 28721669 DOI: 10.1007/s12017-017-8454-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and has both unknown etiology and non-curative therapeutic options. Patients begin to present the classic motor symptoms of PD-tremor at rest, bradykinesia and rigidity-once 50-70% of the dopaminergic neurons of the nigrostriatal pathway have degenerated. As a consequence of this, it is difficult to investigate the early-stage events of disease pathogenesis. In vitro experimental models are used extensively in PD research because they present a controlled environment that enables the direct investigation of the early molecular mechanisms that are potentially involved with dopaminergic degeneration, as well as for the screening of potential therapeutic drugs. However, the establishment of PD in vitro models is a controversial issue for neuroscience research not only because it is challenging to mimic, in isolated cell systems, the physiological neuronal environment, but also the pathophysiological conditions experienced by human dopaminergic cells in vivo during the progression of the disease. Since no previous work has attempted to systematically review the literature regarding the establishment of an optimal in vitro model, and/or the features presented by available models used in the PD field, this review aims to summarize the merits and limitations of the most widely used dopaminergic in vitro models in PD research, which may help the PD researcher to choose the most appropriate model for studies directed at the elucidation of the early-stage molecular events underlying PD onset and progression.
Collapse
Affiliation(s)
- Fernanda Martins Lopes
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil. .,Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Ivi Juliana Bristot
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Leonardo Lisbôa da Motta
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
17
|
RA Differentiation Enhances Dopaminergic Features, Changes Redox Parameters, and Increases Dopamine Transporter Dependency in 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells. Neurotox Res 2017; 31:545-559. [DOI: 10.1007/s12640-016-9699-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 12/19/2022]
|
18
|
Ng CH, Chan CW, Lai JW, Ooi IH, Chong KV, Maah MJ, Seng HL. Enantiomeric pair of copper(II) polypyridyl-alanine complexes: Effect of chirality on their interaction with biomolecules. J Inorg Biochem 2016; 160:1-11. [DOI: 10.1016/j.jinorgbio.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/11/2016] [Accepted: 04/03/2016] [Indexed: 10/22/2022]
|
19
|
|
20
|
Touchette JC, Breckenridge JM, Wilken GH, Macarthur H. Direct intranigral injection of dopaminochrome causes degeneration of dopamine neurons. Neurosci Lett 2015; 612:178-184. [PMID: 26704434 DOI: 10.1016/j.neulet.2015.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive neurodegeneration of nigrastriatal dopaminergic neurons leading to clinical motor dysfunctions. Many animal models of PD have been developed using exogenous neurotoxins and pesticides. Evidence strongly indicates that the dopaminergic neurons of the substantia nigra pars compacta (SNpc) are highly susceptible to neurodegeneration due to a number of factors including oxidative stress and mitochondrial dysfunction. Oxidation of DA to a potential endogenous neurotoxin, dopaminochrome (DAC), may be a potential contributor to the vulnerability of the nigrostriatal tract to oxidative insult. In this study, we show that DAC causes slow and progressive degeneration of dopaminergic neurons in contrast to 1-methyl-4-phenylpyridinium (MPP(+)), which induces rapid lesions of the region. The DAC model may be more reflective of early stresses that initiate the progressive neurodegenerative process of PD, and may prove a useful model for future neurodegenerative studies.
Collapse
Affiliation(s)
- Jillienne C Touchette
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Julie M Breckenridge
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Gerald H Wilken
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Heather Macarthur
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States.
| |
Collapse
|
21
|
Zhou ZD, Xie SP, Sathiyamoorthy S, Saw WT, Sing TY, Ng SH, Chua HPH, Tang AMY, Shaffra F, Li Z, Wang H, Ho PGH, Lai MKP, Angeles DC, Lim TM, Tan EK. F-box protein 7 mutations promote protein aggregation in mitochondria and inhibit mitophagy. Hum Mol Genet 2015; 24:6314-30. [PMID: 26310625 DOI: 10.1093/hmg/ddv340] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/17/2015] [Indexed: 11/14/2022] Open
Abstract
The mutations of F-box protein 7 (FBXO7) gene (T22M, R378G and R498X) are associated with a severe form of autosomal recessive juvenile-onset Parkinson's disease (PD) (PARK 15). Here we demonstrated that wild-type (WT) FBXO7 is a stress response protein and it can play both cytoprotective and neurotoxic roles. The WT FBXO7 protein is vital to cell mitophagy and can facilitate mitophagy to protect cells, whereas mutant FBXO7 inhibits mitophagy. Upon stress, the endogenous WT FBXO7 gets up-regulated, concentrates into mitochondria and forms FBXO7 aggregates in mitochondria. However, FBXO7 mutations aggravate deleterious FBXO7 aggregation in mitochondria. The FBXO7 aggregation and toxicity can be alleviated by Proline, glutathione (GSH) and coenzyme Q10, whereas deleterious FBXO7 aggregation in mitochondria can be aggravated by prohibitin 1 (PHB1), a mitochondrial protease inhibitor. The overexpression of WT FBXO7 could lead to FBXO7 protein aggregation and dopamine neuron degeneration in transgenic Drosophila heads. The elevated FBXO7 expression and aggregation were identified in human fibroblast cells from PD patients. FBXO7 can also form aggregates in brains of PD and Alzheimer's disease. Our study provides novel pathophysiologic insights and suggests that FBXO7 may be a potential therapeutic target in FBXO7-linked neuron degeneration in PD.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore, Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, Singapore
| | - Shao Ping Xie
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | | | - Wuan Ting Saw
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Tan Ye Sing
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Shin Hui Ng
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Heidi Pek Hup Chua
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Alyssa Mei Yan Tang
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Fathima Shaffra
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Zeng Li
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Hongyan Wang
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, Singapore
| | - Patrick Ghim Hoe Ho
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Mitchell Kim Peng Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dario C Angeles
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, Singapore and
| | - Tit Meng Lim
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore, Singapore
| | - Eng-King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore, Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, Singapore, Department of Neurology, Singapore General Hospital, Outram Road, Singapore, Singapore and
| |
Collapse
|
22
|
Xiong R, Siegel D, Ross D. Quinone-induced protein handling changes: implications for major protein handling systems in quinone-mediated toxicity. Toxicol Appl Pharmacol 2014; 280:285-95. [PMID: 25151970 DOI: 10.1016/j.taap.2014.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 11/24/2022]
Abstract
Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ-induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Ccxampus, Aurora, CO 80045, USA
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Ccxampus, Aurora, CO 80045, USA
| | - David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Ccxampus, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Zhou ZD, Refai FS, Xie SP, Ng SH, Chan CHS, Ho PGH, Zhang XD, Lim TM, Tan EK. Mutant PINK1 upregulates tyrosine hydroxylase and dopamine levels, leading to vulnerability of dopaminergic neurons. Free Radic Biol Med 2014; 68:220-33. [PMID: 24374372 DOI: 10.1016/j.freeradbiomed.2013.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
PINK1 mutations cause autosomal recessive forms of Parkinson disease (PD). Previous studies suggest that the neuroprotective function of wild-type (WT) PINK1 is related to mitochondrial homeostasis. PINK1 can also localize to the cytosol; however, the cytosolic function of PINK1 has not been fully elucidated. In this study we demonstrate that the extramitochondrial PINK1 can regulate tyrosine hydroxylase (TH) expression and dopamine (DA) content in dopaminergic neurons in a PINK1 kinase activity-dependent manner. We demonstrate that overexpression of full-length (FL) WT PINK1 can downregulate TH expression and DA content in dopaminergic neurons. In contrast, overexpression of PD-linked G309D, A339T, and E231G PINK1 mutations upregulates TH and DA levels in dopaminergic neurons and increases their vulnerability to oxidative stress. Furthermore transfection of FL WT PINK1 or PINK1 fragments with the PINK1 kinase domain can inhibit TH expression, whereas kinase-dead (KD) FL PINK1 or KD PINK1 fragments upregulate TH level. Our findings highlight a potential novel function of extramitochondrial PINK1 in dopaminergic neurons. Deregulation of these functions of PINK1 may contribute to PINK1 mutation-induced dopaminergic neuron degeneration. However, deleterious effects caused by PINK1 mutations may be alleviated by iron-chelating agents and antioxidant agents with DA quinone-conjugating capacity.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute, Singapore 308433, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
| | | | - Shao Ping Xie
- National Neuroscience Institute, Singapore 308433, Singapore
| | - Shin Hui Ng
- National Neuroscience Institute, Singapore 308433, Singapore
| | | | | | - Xiao Dong Zhang
- Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
| | - Tit Meng Lim
- Department of Biological Science, National University of Singapore, Singapore 117543, Singapore
| | - Eng King Tan
- National Neuroscience Institute, Singapore 308433, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore; Department of Neurology, Singapore General Hospital, Singapore 169608, Singapore.
| |
Collapse
|
24
|
|
25
|
Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson's disease. Free Radic Biol Med 2013; 62:13-25. [PMID: 23665395 PMCID: PMC3736736 DOI: 10.1016/j.freeradbiomed.2013.05.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 12/14/2022]
Abstract
It has been established that oxidative stress, defined as the condition in which the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson disease. Glutathione is a ubiquitous thiol tripeptide that acts alone or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals, and peroxynitrites. In this review, we examine the synthesis, metabolism, and functional interactions of glutathione and discuss how these relate to the protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson disease.
Collapse
Affiliation(s)
- Michelle Smeyne
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, 901-595-3066
| | - Richard Jay Smeyne
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, 901-595-2830
| |
Collapse
|
26
|
Jellinger KA. The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 110:1-47. [PMID: 24209432 DOI: 10.1016/b978-0-12-410502-7.00002-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders are featured by a variety of pathological conditions that share similar critical processes, such as oxidative stress, free radical activity, proteinaceous aggregations, mitochondrial dysfunctions, and energy failure. They are mediated or triggered by an imbalance of metal ions leading to changes of critical biological systems and initiating a cascade of events finally leading to neurodegeneration and cell death. Their causes are multifactorial, and although the source of the shift in oxidative homeostasis is still unclear, current evidence points to changes in the balance of redox transition metals, especially iron, copper, and other trace metals. They are present at elevated levels in Alzheimer disease, Parkinson disease, multisystem atrophy, etc., while in other neurodegenerative disorders, copper, zinc, aluminum, and manganese are involved. This chapter will review the recent advances of the role of metals in the pathogenesis and pathophysiology of major neurodegenerative diseases and discuss the use of chelating agents as potential therapies for metal-related disorders.
Collapse
|
27
|
Jellinger KA. Neuropathology of sporadic Parkinson's disease: evaluation and changes of concepts. Mov Disord 2011; 27:8-30. [PMID: 22081500 DOI: 10.1002/mds.23795] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD), one of the most frequent neurodegenerative disorders, is no longer considered a complex motor disorder characterized by extrapyramidal symptoms, but a progressive multisystem or-more correctly-multiorgan disease with variegated neurological and nonmotor deficiencies. It is morphologically featured not only by the degeneration of the dopaminergic nigrostriatal system, responsible for the core motor deficits, but by multifocal involvement of the central, peripheral and autonomic nervous system and other organs associated with widespread occurrence of Lewy bodies and dystrophic Lewy neurites. This results from deposition of abnormal α-synuclein (αSyn), the major protein marker of PD, and other synucleinopathies. Recent research has improved both the clinical and neuropathological diagnostic criteria of PD; it has further provided insights into the development and staging of αSyn and Lewy pathologies and has been useful in understanding the pathogenesis of PD. However, many challenges remain, for example, the role of Lewy bodies and the neurobiology of axons in the course of neurodegeneration, the relation between αSyn, Lewy pathology, and clinical deficits, as well as the interaction between αSyn and other pathologic proteins. Although genetic and experimental models have contributed to exploring the causes, pathomechanisms, and treatment options of PD, there is still a lack of an optimal animal model, and the etiology of this devastating disease is far from being elucidated.
Collapse
|