1
|
Balsa LM, Santa Maria de la Parra L, Ferretti V, León IE. Deciphering the Effect of a Cu(II)-hydrazone Complex on Intracellular Cell Signalling Pathways in a Human Osteosarcoma 2D and 3D Models. Chembiochem 2024; 25:e202400373. [PMID: 39121373 DOI: 10.1002/cbic.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/11/2024]
Abstract
New therapeutic strategies for osteosarcoma (OS) have demonstrated the potential efficacy of copper compounds as anticancer drugs and as a substitute for the often used platinum compounds. OS is a type of bone cancer, primarily affecting young adults and children.The main objective of this work is to discover the molecular targets and cellular pathways related to the antitumor properties of a Cu(II)-hydrazone toward human OS 2D and 3D systems. Cell viability study using MG-63 cells was evaluated in OS monolayer and spheroids. CuHL significantly reduced cell viability in OS models (IC50 2D: 2.6±0.3 μM; IC50 3D: 9.9±1.4 μM) (p<0.001). Also, CuHL inhibits cell proliferation and it induces cells to apoptosis. The main mechanism of action found for CuHL are the interaction with DNA, genotoxicity, the ROS generation and the proteasome activity inhibition. Besides, 67 differentially expressed proteins were found using proteomic approaches. Of those 67 proteins, 40 were found overexpressed and 27 underexpressed. The response to stress and to unfolded protein, as well as ATP synthesis were the most affected biological process among upregulated proteins, whilst proteins related to DNA replication and redox homeostasis were downregulated.
Collapse
Affiliation(s)
- Lucía M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
| | - Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
| | - Valeria Ferretti
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, 1900), Argentina
| |
Collapse
|
2
|
Pandey P, Ramniwas S, Pandey S, Lakhanpal S, Padmapriya G, Mishra S, Kaur M, Ashraf A, Kumar MR, Khan F. Review to Elucidate the Correlation between Cuproptosis-Related Genes and Immune Infiltration for Enhancing the Detection and Treatment of Cervical Cancer. Int J Mol Sci 2024; 25:10604. [PMID: 39408933 PMCID: PMC11477161 DOI: 10.3390/ijms251910604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Copper is a vital trace element in oxidized and reduced forms. It plays crucial roles in numerous biological events such as redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy, and immune modulation. Maintaining the balance of copper in the body is essential because its deficiency and excess can be harmful. Abnormal copper metabolism has a two-fold impact on the development of tumors and cancer treatment. Cuproptosis is a form of cell death that occurs when there is excessive copper in the body, leading to proteotoxic stress and the activation of a specific pathway in the mitochondria. Research has been conducted on the advantageous role of copper ionophores and chelators in cancer management. This review presents recent progress in understanding copper metabolism, cuproptosis, and the molecular mechanisms involved in using copper for targeted therapy in cervical cancer. Integrating trace metals and minerals into nanoparticulate systems is a promising approach for controlling invasive tumors. Therefore, we have also included a concise overview of copper nanoformulations targeting cervical cancer cells. This review offers comprehensive insights into the correlation between cuproptosis-related genes and immune infiltration, as well as the prognosis of cervical cancer. These findings can be valuable for developing advanced clinical tools to enhance the detection and treatment of cervical cancer.
Collapse
Affiliation(s)
- Pratibha Pandey
- Post Doctoral Department, Eudoxia Research University, New Castle, DE 19808, USA;
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India;
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - G. Padmapriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN Deemed to be University, Bangalore 560069, India;
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur 303121, India;
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur 303012, India;
| | - Ayash Ashraf
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, India;
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam 531162, India;
| | - Fahad Khan
- Center for Global Health Research Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| |
Collapse
|
3
|
Viswanathamurthi P, Dhivya R, Kavitha V, Haribabu J, Echeverria C. A Reversible Fluorescent Chemosensor for the Selective Detection of Cu 2+ and CN - ions by Displacement Approach. J Fluoresc 2024; 34:1811-1819. [PMID: 37642776 DOI: 10.1007/s10895-023-03381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023]
Abstract
A novel fluorescence chemosensor BDP (2-(1-(benzothiazol-2-yl)-5-(4-(diphenylamino)phenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenol) has been synthesized and its sensing behavior has been screened towards various cations by absorption, emission and mass spectroscopic techniques. The probe BDP detects Cu2+ ions preferentially over other metal ions, and the resulting BDP-Cu2+ ensemble acts as a secondary sensor for cyanide anion detection over other anions. The fluorescence intensity of the probe BDP is quenched when it comes into contact with Cu2+ ions, but it is increased reversibly when it comes into contact with cyanide anion, according to spectroscopic measurements. Along with this, optical studies indicate that the sensor BDP has capability to sense Cu2+ and CN- ions selectively over other examined competitive ions with the LOD of 2.57×10-8 M and 2.98×10-8 M respectively. The detection limit of Cu2+ ions is lower than the WHO recommended Cu2+ ions concentration (31.5 µM) in drinking water. On the basis of "on-off-on" fluorescence change of the probe BDP upon interaction with Cu2+ and CN- ions, a possible mechanism for this selective sensing behavior was presented and IMPLICATION logic gate was successfully designed. Furthermore, cell imaging investigations were used to investigate the probe BDP's biological applicability.
Collapse
Affiliation(s)
| | | | | | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapo, Chile
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapo, Chile
| |
Collapse
|
4
|
Miao YD, Quan WX, Dong X, Gan J, Ji CF, Wang JT, Zhang F. Prognosis-related metabolic genes in the development of colorectal cancer progress and perspective. Gene 2023; 862:147263. [PMID: 36758843 DOI: 10.1016/j.gene.2023.147263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonplace malignant tumors in the world. The occurrence and development of CRC are involved in numerous events. Metabolic reprogramming is one of the hallmarks of cancer and is convoluted and associated with carcinogenesis. Lots of metabolic genes are involved in the occurrence and progression of CRC. Study methods combining tumor genomics and metabolomics are more likely to explore this field in depth. In this mini-review, we make the latest progress and future prospects into the different molecular mechanisms of seven prognosis-related metabolic genes, we screened out in previous research, involved in the occurrence and development of CRC.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Wu-Xia Quan
- Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Xin Dong
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Jian Gan
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Cui-Feng Ji
- Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Jiang-Tao Wang
- Department of Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Fang Zhang
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China.
| |
Collapse
|
5
|
de Souza ÍP, de Melo ACC, Rodrigues BL, Bortoluzzi A, Poole S, Molphy Z, McKee V, Kellett A, Fazzi RB, da Costa Ferreira AM, Pereira-Maia EC. Antitumor copper(II) complexes with hydroxyanthraquinones and N,N-heterocyclic ligands. J Inorg Biochem 2023; 241:112121. [PMID: 36696836 DOI: 10.1016/j.jinorgbio.2023.112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Five ternary copper(II) complexes, [Cu2(phen)2(L1)(ClO4)2] (1), [Cu2(phen)2(L1)(DMSO)2](PF6)2 (2), [Cu2(bpy)2(L1)(ClO4)2(H2O)2] (3), [Cu2(dmp)2(L1)(ClO4)2(H2O)2] (4), and [Cu(phen)(L2)]2(ClO4)2 (5), in which phen = 1,10-phenanthroline, bpy = 2,2'-bipyridine, dmp = 2,9-dimethyl-1,10-phenanthroline, H2L1 = 1,4-dihydroxyanthracene-9,10-dione and HL2 = 1-hydroxyanthracene-9,10-dione, DMSO = dimethylsulfoxide, were synthesized and fully characterized. Complex 2 was obtained through the substitution of perchlorate for DMSO. When two hydroxyquinone groups are present, L1 makes a bridge between two Cu(II) ions, which also bind two nitrogens of the respective diimine ligand. The compounds bind to calf thymus DNA and oxidatively cleave pUC19 DNA according to the following order of activity 1 > 4-5 > 3. Furthermore, complexes 1, 3, 4 and 5 inhibit topoisomerase-I activity and the growth of myelogenous leukemia cells with the IC50 values of 1.13, 10.60, 0.078, and 1.84 μmol L-1, respectively. Complexes 1 and 4 are the most active in cancer cells and in DNA cleavage.
Collapse
Affiliation(s)
- Ívina P de Souza
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Avenida Amazonas, 5253, 30421-169 Belo Horizonte, MG, Brazil
| | - Ariane C C de Melo
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Bernardo L Rodrigues
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Adailton Bortoluzzi
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Simon Poole
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Science, Dublin City University, Dublin 9, Ireland
| | - Zara Molphy
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Science, Dublin City University, Dublin 9, Ireland
| | - Vickie McKee
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Science, Dublin City University, Dublin 9, Ireland; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Andrew Kellett
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Science, Dublin City University, Dublin 9, Ireland
| | - Rodrigo B Fazzi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Ana M da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Structural, Spectral Studies and Antimicrobial Activity of Zinc(II), Cadmium(II) and Nickel(II) Complexes of 2-Acetylbenzothiophene-3-thiosemicarbazone and 2-Acetylbenzothiophene-4-ethyl-3-thiosemicarbazone. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Shu L, Shang Z, Li J, Gao Y, Bi W. A dual-response triphenylamine-based fluorescent probe for selective sensing of copper(II) and nitric oxide in live cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Hu J, Luo Y, Hou M, Qi JJ, Liang LL, Li WG. Synthesis, Structure, and Anticancer Studies of Cu (II) and Ni (II) Complexes Based on (5‐Chlorosalicylaldehyde)‐4‐Aminoantipyrine Schiff‐base. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Hu
- School of Basic Courses Bengbu Medical College Bengbu China
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu China
| | - Yun Luo
- School of Basic Courses Bengbu Medical College Bengbu China
| | - Min Hou
- School of Basic Courses Bengbu Medical College Bengbu China
| | - Jia Jia Qi
- School of Basic Courses Bengbu Medical College Bengbu China
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu China
| | - Li Li Liang
- School of Basic Courses Bengbu Medical College Bengbu China
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu China
| | - Wen Ge Li
- School of Basic Courses Bengbu Medical College Bengbu China
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu China
| |
Collapse
|
9
|
Wang N, Gu Y, Li L, Chi J, Liu X, Xiong Y, Zhong C. Development and Validation of a Prognostic Classifier Based on Lipid Metabolism-Related Genes for Breast Cancer. J Inflamm Res 2022; 15:3477-3499. [PMID: 35726216 PMCID: PMC9206459 DOI: 10.2147/jir.s357144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background The changes of lipid metabolism have been implicated in the development of many tumors, but its role in breast invasive carcinoma (BRCA) remains to be fully established. Here, we attempted to ascertain the prognostic value of lipid metabolism-related genes in BRCA. Methods We obtained RNA expression data and clinical information for BRCA and normal samples from public databases and downloaded a lipid metabolism-related gene set. Ingenuity Pathway Analysis (IPA) was applied to identify the potential pathways and functions of Differentially Expressed Genes (DEGs) related to lipid metabolism. Subsequently, univariate and multivariate Cox regression analyses were utilized to construct the prognostic gene signature. Functional enrichment analysis of prognostic genes was achieved by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Kaplan-Meier analysis, Receiver Operating Characteristic (ROC) curves, clinical follow-up results were employed to assess the prognostic potency. Potential compounds targeting prognostic genes were screened by Connectivity Map (CMap) database and a prognostic gene-drug interaction network was constructed using Comparative Toxicogenomics Database (CTD). Furthermore, we separately validated the selected marker genes in BRCA samples and human breast cancer cell lines (MCF-7, MDA-MB-231). Results IPA and functional enrichment analysis demonstrated that the 162 lipid metabolism-related DEGs we obtained were involved in many lipid metabolism and BRCA pathological signatures. The prognostic classifier we constructed comprising SDC1 and SORBS1 can serve as an independent prognostic marker for BRCA. CMap filtered 37 potential compounds against prognostic genes, of which 16 compounds could target both two prognostic genes were identified by CTD. The functions of the two prognostic genes in breast cancer cells were verified by cell function experiments. Conclusion Within this study, we identified a novel prognostic classifier based on two lipid metabolism-related genes: SDC1 and SORBS1. This result highlighted a new perspective on the metabolic exploration of BRCA.
Collapse
Affiliation(s)
- Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiangrui Chi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinwei Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chaochao Zhong
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
10
|
Hangan AC, Turza A, Lucaciu RL, Sevastre B, Páll E, Oprean LS, Borodi G. New Cu +2 Complexes with N-Sulfonamide Ligands: Potential Antitumor, Antibacterial, and Antioxidant Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103338. [PMID: 35630815 PMCID: PMC9144936 DOI: 10.3390/molecules27103338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022]
Abstract
Nowadays, the discovery of a new non-toxic metal complex with biological activity represents a very active area of research. Two Cu+2 complexes, [Cu(L1)2(H2O)3] (C1) (HL1= N-(5-(4-methylphenyl)-[1,3,4]–thiadiazole–2-yl)-naphtalenesulfonamide) and [Cu(L2)2(py)2(H2O)] (C2) (HL2= N-(5-ethyl-[1,3,4]–thiadiazole–2-yl)-naphtalenesulfonamide), with two new ligands were synthesized. The X-ray crystal structures of the complexes were determined. In both complexes, Cu+2 is five-coordinated, forming a CuN2O3 and CuN4O chromophore, respectively. The ligands act as monodentate, coordinating the metal ion through a single Nthiadiazole atom; for the C2 complex, the molecules from the reaction medium (pyridine and water) are also involved in the coordination of Cu+2. The complexes have a distorted square pyramidal square-planar geometry. The compounds were characterized by FT-IR, electronic EPR spectroscopy, and magnetic methods. The nuclease activity studies confirm the complexes’ capacity to cleave the DNA molecule. Using a xanthine-xanthine oxydase system, the SOD mimetic activity of the complexes was demonstrated. Cytotoxicity studies were carried out on two tumor cell lines (HeLa, WM35) and on a normal cell line (HFL1) using the MTT method, with cisplatin used as a positive control. The antibacterial activity of the complexes was investigated against two Gram-positive and two Gram-negative bacteria, and compared with Amoxicillin and Norfloxacin using the disk diffusion method. Both complexes showed in vitro biological activity but the C2 complex was more active. A lack of in vivo toxicity was demonstrated for the C2 complex by performing hepatic, renal, and hematological studies on Swiss mice.
Collapse
Affiliation(s)
- Adriana Corina Hangan
- Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.C.H.); (L.S.O.)
| | - Alexandru Turza
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (A.T.); (G.B.)
| | - Roxana Liana Lucaciu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Bogdan Sevastre
- Paraclinic/Clinic Department, Faculty of Veterinary Madicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.S.); (E.P.)
| | - Emőke Páll
- Paraclinic/Clinic Department, Faculty of Veterinary Madicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.S.); (E.P.)
| | - Luminița Simona Oprean
- Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.C.H.); (L.S.O.)
| | - Gheorghe Borodi
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (A.T.); (G.B.)
| |
Collapse
|
11
|
Enhanced antitumor effect of L-buthionine sulfoximine or ionizing radiation by copper complexes with 2,2´-biquinoline and sulfonamides on A549 2D and 3D lung cancer cell models. J Biol Inorg Chem 2022; 27:329-343. [PMID: 35247094 DOI: 10.1007/s00775-022-01933-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
Two ternary copper(II) complexes with 2,2'-biquinoline (BQ) and with sulfonamides: sulfamethazine (SMT) or sulfaquinoxaline (SDQ) whose formulae are Cu(SMT)(BQ)Cl and Cu(SDQ)(BQ)Cl·CH3OH, in what follows SMTCu and SDQCu, respectively, induced oxidative stress by increasing ROS level from 1.0 μM and the reduction potential of the couple GSSG/GSH2. The co-treatment with L-buthionine sulfoximine (BSO), which inhibits the production of GSH, enhanced the effect of copper complexes on tumor cell viability and on oxidative damage. Both complexes generated DNA strand breaks given by-at least partially-the oxidation of pyrimidine bases, which caused the arrest of the cell cycle in the G2/M phase. These phenomena triggered processes of apoptosis proven by activation of caspase 3 and externalization of phosphatidylserine and loss of cell integrity from 1.0 μM. The combination with BSO induced a marked increase in the apoptotic population. On the other hand, an improved cell proliferation effect was observed when combining SDQCu with a radiation dose of 2 Gy from 1.0 μM or with 6 Gy from 1.5 μM. Finally, studies in multicellular spheroids demonstrated that even though copper(II) complexes did not inhibit cell invasion in collagen gels up to 48 h of treatment at the higher concentrations, multicellular resistance outperformed several drugs currently used in cancer treatment. Overall, our results reveal an antitumor effect of both complexes in monolayer and multicellular spheroids and an improvement with the addition of BSO. However, only SDQCu was the best adjuvant of ionizing radiation treatment.
Collapse
|
12
|
In Silico Inhibitability of Copper Carbenes and Silylenes against Rhizoctonia solani and Magnaporthe oryzae. J CHEM-NY 2021. [DOI: 10.1155/2021/5555521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Copper lighter tetrylenes are promising for inhibition towards Rhizoctonia solani-based protein PDB-4G9M and Magnaporthe oryzae-based PDB-6JBR in rice. Quantum properties of four hypothetic copper complexes of carbenes and silylenes (Cu-NHC1, Cu-NHC2, Cu-NHSi1, and Cu-NHSi2) were examined using the density functional theory. Their inhibitability towards the targeted proteins was evaluated using molecular docking simulation. Quantum analysis predicts the stability of the investigated complexes and thus their practical existability and practicable synthesisability. Their electronic configurations are justified as highly conducive to intermolecular interaction. Regarding ligand-protein as carbenes/silylenes-4G9M inhibitory structures, the stability is estimated in the order [Cu-NHC2]-4G9M (DS −12.9 kcal⋅mol−1) > [Cu-NHSi1]-4G9M (DS −11.8 kcal⋅mol−1) = [Cu-NHSi2]-4G9M (DS −11.7 kcal⋅mol−1) > [Cu-NHC1]-4G9M (DS –11.4 kcal⋅mol−1). In contrast, the corresponding order for the carbenes/silylenes-6JBR systems is [Cu-NHSi2]-6JBR (DS –13.4 kcal⋅mol−1) > [Cu-NHC2]-6JBR (DS −13.0 kcal⋅mol−1) = [Cu-NHSi1]-6JBR (DS −12.6 kcal⋅mol−1) > [Cu-NHC1]-6JBR (DS −12.3 kcal⋅mol−1). In theory, this study suggests a potentiality of copper lighter tetrylenes and their derivatives against the infection of fungi Rhizoctonia solani and Magnaporthe oryzae, thus encouraging attempts for experimental developments.
Collapse
|
13
|
Xu G, Tang H, Chen J, Zhu M, Xie Y, Li Y, Hao Q, Sun Y, Cong D, Meng Q, Ren Z, Li Q, Bao H, Lv Z, Li Y, Pei J. Estrone-targeted liposomes for mitoxantrone delivery via estrogen receptor: In vivo targeting efficacy, antitumor activity, acute toxicity and pharmacokinetics. Eur J Pharm Sci 2021; 161:105780. [PMID: 33667664 DOI: 10.1016/j.ejps.2021.105780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 11/19/2022]
Abstract
Estrogen receptor (ER) is a potential target receptor for ER-positive cancer therapy including breast cancers, gastric cancers, and human acute myeloblastic leukaemia. In order to reduce the side-effects of mitoxantrone (MTO), estrone-targeted liposomes for MTO delivery via ER were designed for selectively targeting cancer cells. In previous studies, MTO-loaded estrogen receptor targeted and sterically stabilized liposome (ES-SSL-MTO; ES: estrone, is known to bind the ER) had been synthesized and showed a very high antiproliferative effect with IC50 value of 0.7 ng/mL. Based on these, further studies including in vivo targeting efficacy and antitumor activity, acute toxicity and pharmacokinetics of MTO liposomes were carried out. The results showed SSL (sterically stabilized liposome, PEGylated liposome, PEG: Polyethylene Glycol) could reduce drug metabolism, improve the stability of liposomes, prolong in vivo circulation time of drugs, reduce the toxicity of MTO. But SSL could not be enriched in tumor tissues. However, estrone (ES)-targeted liposomes could be delivered to tumor sites. ES-SSL could effectively enter into ER-expressing tumor cellsand be accumulated, prolong the circulation time in vivo, reduce side effects of drug. ES-SSL-MTO could provide higher bioavailability than MTO, enhance the anti-tumor effect and the safety of MTO, reduce the toxicity and side effects of MTO and improve the therapeutic effect of MTO. These facts proved ES-SSL is a useful tumor-targeting drug delivery system for MTO.
Collapse
Affiliation(s)
- Guoxing Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Huan Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Jinglin Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Ming Zhu
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Yizhuo Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Yao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Qiang Hao
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Yuxin Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Dengli Cong
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Qin Meng
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Zhihui Ren
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Qianwen Li
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Han Bao
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Zhe Lv
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Yan Li
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China
| | - Jin Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun130021, Jilin, China.
| |
Collapse
|
14
|
Kalındemirtaş FD, Kaya B, Bener M, Şahin O, Kuruca SE, Demirci TB, Ülküseven B. Iron(III) complexes based on tetradentate thiosemicarbazones: Synthesis, characterization, radical scavenging activity and
in vitro
cytotoxicity on K562, P3HR1 and JURKAT cells. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Büşra Kaya
- Department of Chemistry, Faculty of Engineering Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Mustafa Bener
- Department of Chemistry, Faculty of Science Istanbul University Istanbul Turkey
| | - Onur Şahin
- Department of Occupat Health & Safety, Faculty of Health Sciences Sinop University Sinop Turkey
| | - Serap Erdem Kuruca
- Deparment of Physiology, Istanbul Medical Faculty Istanbul University Istanbul Turkey
| | - Tülay Bal Demirci
- Department of Chemistry, Faculty of Engineering Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Bahri Ülküseven
- Department of Chemistry, Faculty of Engineering Istanbul University‐Cerrahpasa Istanbul Turkey
| |
Collapse
|
15
|
Balsa LM, Ferraresi-Curotto V, Lavecchia MJ, Echeverría GA, Piro OE, García-Tojal J, Pis-Diez R, González-Baró AC, León IE. Anticancer activity of a new copper(II) complex with a hydrazone ligand. Structural and spectroscopic characterization, computational simulations and cell mechanistic studies on 2D and 3D breast cancer cell models. Dalton Trans 2021; 50:9812-9826. [PMID: 34190268 DOI: 10.1039/d1dt00869b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report here the synthesis, crystal structure, characterization and anticancer activity of a copper(ii)-hydrazone complex, [Cu(MeBHoVa)(H2O)2](NO3) (for short, CuHL), against human breast cancer cells on monolayer (2D) and spheroids/mammospheres (3D). The solid-state molecular structure of the complex has been determined by X-ray diffraction methods. The conformational space was searched and geometries were optimized both in the gas phase and including solvent effects by computational methods based on DFT. The compound has been characterized in the solid state and in solution by spectroscopic (FTIR, Raman, UV-vis) methods. The results were compared with those obtained for the hydrazone ligand and complemented with DFT calculations. Cell viability assays on MCF7 (IC50(CuHL) = 1.7 ± 0.1 μM, IC50(CDDP) = 42.0 ± 3.2 μM) and MDA-MB-231 (IC50(CuHL) = 1.6 ± 0.1 μM, IC50(CDDP) = 131.0 ± 18 μM) demonstrated that the complex displays higher antitumor activity than cisplatin (CDDP) on 2D and 3D human breast cancer cell models. Molecular docking and molecular dynamics simulations showed that CuHL could interacts with DNA, inducing a significant genotoxic effect on both breast cancer cells from 0.5 to 1 μM. On the other hand, CuHL increases the ROS production and induces cell programmed death on breast cancer cells at very low micromolar concentrations (0.5-1.0 μM). Moreover, the compound decreased the amount of breast CSCs on MCF7 and MDA-MB-231 cells reducing the percentage of CD44+/CD24-/low cells from 0.5 to 1.5 μM. In addition, CuHL overcame CDDP with an IC50 value 65-fold lower against breast multicellular spheroids ((IC50(CuHL) = 2.2 ± 0.3 μM, IC50(CDDP) = 125 ± 4.5 μM)). Finally, CuHL reduced mammosphere formation capacity, hence affecting the size and number of mammospheres and showing that the complex exhibits antitumor properties on monolayer (2D) and spheroids (3D) derived from human breast cancer cells.
Collapse
Affiliation(s)
- Lucia M Balsa
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | | | - Martin J Lavecchia
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | - Gustavo A Echeverría
- Instituto de Física La Plata (IFLP, CONICET-UNLP), CC 67, B1900AVV, La Plata, Argentina.
| | - Oscar E Piro
- Instituto de Física La Plata (IFLP, CONICET-UNLP), CC 67, B1900AVV, La Plata, Argentina.
| | - Javier García-Tojal
- Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Reinaldo Pis-Diez
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | - Ana C González-Baró
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| |
Collapse
|
16
|
Awad FS, AbouZied KM, Bakry AM, Abou El-Maaty WM, El-Wakil AM, El-Shall MS. Highly fluorescent hematoporphyrin modified graphene oxide for selective detection of copper ions in aqueous solutions. Anal Chim Acta 2020; 1140:111-121. [DOI: 10.1016/j.aca.2020.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
|
17
|
Singh NK, Kumbhar AA, Pokharel YR, Yadav PN. Anticancer potency of copper(II) complexes of thiosemicarbazones. J Inorg Biochem 2020; 210:111134. [DOI: 10.1016/j.jinorgbio.2020.111134] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
|
18
|
Near-IR aza-BODIPY-based probe for the selective simultaneous detection of Cu2+ in aqueous buffer solutions and its application in biological samples. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Hager S, Pape VFS, Pósa V, Montsch B, Uhlik L, Szakács G, Tóth S, Jabronka N, Keppler BK, Kowol CR, Enyedy ÉA, Heffeter P. High Copper Complex Stability and Slow Reduction Kinetics as Key Parameters for Improved Activity, Paraptosis Induction, and Impact on Drug-Resistant Cells of Anticancer Thiosemicarbazones. Antioxid Redox Signal 2020; 33:395-414. [PMID: 32336116 DOI: 10.1089/ars.2019.7854] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: Due to their significant biological activity, thiosemicarbazones (TSCs) are promising candidates for anticancer therapy. In part, the efficacy of TSCs is linked to their ability to chelate essential metal ions such as copper and iron. Triapine, the best-studied anticancer TSC, has been tested clinically with promising results in hematological diseases. During the past few years, a novel subclass of TSCs with improved anticancer activity was found to induce paraptosis, a recently characterized form of cell death. The aim of this study was to identify structural and chemical properties associated with anticancer activity and paraptosis induction of TSCs. Results: When testing a panel of structurally related TSCs, compounds with nanomolar anticancer activity and paraptosis-inducing properties showed higher copper(II) complex solution stability and a slower reduction rate, which resulted in reduced redox activity. In contrast, TSCs with lower anticancer activity induced higher levels of superoxide that rapidly stimulated superoxide dismutase expression in treated cells, effectively protecting the cells from drug-induced redox stress. Innovation: Consequently, we hypothesize that in the case of close Triapine derivatives, intracellular reduction leads to rapid dissociation of intracellularly formed copper complexes. In contrast, TSCs characterized by highly stable, slowly reducible copper(II) complexes are able to reach new intracellular targets such as the endoplasmic reticulum-resident protein disulfide isomerase. Conclusion: The additional modes of actions observed with highly active TSC derivatives are based on intracellular formation of stable copper complexes, offering a new approach to combat (drug-resistant) cancer cells.
Collapse
Affiliation(s)
- Sonja Hager
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
| | - Veronika F S Pape
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Vivien Pósa
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Szeged, Hungary
| | - Bianca Montsch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
| | - Lukas Uhlik
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
| | - Gergely Szakács
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nikolett Jabronka
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bernhard K Keppler
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Szeged, Hungary
| | - Petra Heffeter
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Research Cluster 'Translational Cancer Therapy Research,' Vienna, Austria
| |
Collapse
|
20
|
Krasnovskaya O, Naumov A, Guk D, Gorelkin P, Erofeev A, Beloglazkina E, Majouga A. Copper Coordination Compounds as Biologically Active Agents. Int J Mol Sci 2020; 21:E3965. [PMID: 32486510 PMCID: PMC7312030 DOI: 10.3390/ijms21113965] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/24/2022] Open
Abstract
Copper-containing coordination compounds attract wide attention due to the redox activity and biogenicity of copper ions, providing multiple pathways of biological activity. The pharmacological properties of metal complexes can be fine-tuned by varying the nature of the ligand and donor atoms. Copper-containing coordination compounds are effective antitumor agents, constituting a less expensive and safer alternative to classical platinum-containing chemotherapy, and are also effective as antimicrobial, antituberculosis, antimalarial, antifugal, and anti-inflammatory drugs. 64Сu-labeled coordination compounds are promising PET imaging agents for diagnosing malignant pathologies, including head and neck cancer, as well as the hallmark of Alzheimer's disease amyloid-β (Aβ). In this review article, we summarize different strategies for possible use of coordination compounds in the treatment and diagnosis of various diseases, and also various studies of the mechanisms of antitumor and antimicrobial action.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Alexey Naumov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Dmitry Guk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Alexander Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
- Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad’ 9, 125047 Moscow, Russia
| |
Collapse
|
21
|
Ramachandran E, Gandin V, Bertani R, Sgarbossa P, Natarajan K, Bhuvanesh NSP, Venzo A, Zoleo A, Mozzon M, Dolmella A, Albinati A, Castellano C, Reis Conceição N, C. Guedes da Silva MF, Marzano C. Synthesis, Characterization and Biological Activity of Novel Cu(II) Complexes of 6-Methyl-2-Oxo-1,2-Dihydroquinoline-3-Carbaldehyde-4n-Substituted Thiosemicarbazones. Molecules 2020; 25:E1868. [PMID: 32316698 PMCID: PMC7221752 DOI: 10.3390/molecules25081868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Three new 6-methyl-2-oxo-1,2-dihydroquinoline-3-carbaldehyde-thiosemicarbazones-N-4-substituted pro-ligands and their Cu(II) complexes (1, -NH2; 2, -NHMe; 3, -NHEt) have been prepared and characterized. In both the X-ray structures of 1 and 3, two crystallographically independent complex molecules were found that differ either in the nature of weakly metal-binding species (water in 1a and nitrate in 1b) or in the co-ligand (water in 3a and methanol in 3b). Electron Paramagnetic Resonance (EPR) measurements carried out on complexes 1 and 3 confirmed the presence of such different species in the solution. The electrochemical behavior of the pro-ligands and of the complexes was investigated, as well as their biological activity. Complexes 2 and 3 exhibited a high cytotoxicity against human tumor cells and 3D spheroids derived from solid tumors, related to the high cellular uptake. Complexes 2 and 3 also showed a high selectivity towards cancerous cell lines with respect to non-cancerous cell lines and were able to circumvent cisplatin resistance. Via the Transmission Electron Microscopy (TEM) imaging technique, preliminary insights into the biological activity of copper complexes were obtained.
Collapse
Affiliation(s)
- Eswaran Ramachandran
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
- Chemistry Research Center, National Engineering College, K. R. Nagar, Kovilpatti, Tamilnadu 628503, India
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Karuppannan Natarajan
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu 641020, India
| | | | - Alfonso Venzo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (A.V.); (A.Z.)
| | - Alfonso Zoleo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (A.V.); (A.Z.)
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| | - Alberto Albinati
- Department of Chemistry, University of Milan, 20133 Milan, Italy; (A.A.); (C.C.)
| | - Carlo Castellano
- Department of Chemistry, University of Milan, 20133 Milan, Italy; (A.A.); (C.C.)
| | - Nuno Reis Conceição
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.C.); (M.F.C.G.d.S.)
| | - M. Fátima C. Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.C.); (M.F.C.G.d.S.)
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| |
Collapse
|
22
|
Parsa FG, Feizi MAH, Safaralizadeh R, Hosseini-Yazdi SA, Mahdavi M. Molecular mechanisms of apoptosis induction in K562 and KG1a leukemia cells by a water-soluble copper(II) thiosemicarbazone complex. J Biol Inorg Chem 2020; 25:383-394. [PMID: 32274578 DOI: 10.1007/s00775-020-01769-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/25/2020] [Indexed: 11/26/2022]
Abstract
Thiosemicarbazones (TSCs) and their metal complexes exhibit pronounced and selective cytotoxic potential against a broad span of cancers. Here, we assessed the anti-cancer activity of a water-soluble copper(II) complex of thiosemicarbazone (Cu-TSC) against two cancer cell lines of human leukemia. Our analysis revealed that Cu-TSC treatment results in a time and dose-dependent growth inhibition in K562 and KG1a cells while sparing normal human fibroblast (HFF2) cells. The IC50 values for the Cu-TSC treatment were measured to be 21.7 ± 1.5 µM and 50.25 ± 2.5 µM for K562 and KG1a cells, respectively. Cell cycle analysis indicated that Cu-TSC induces the accumulation of cells in the sub-G1 fraction as well as the reversible arrest in G0/G1 and G2/M phases in K562 and KG1a cells, respectively. Furthermore, the occurrence of apoptosis as the prime mode of cell death was verified through apoptotic body formation, phosphatidylserine externalization, and caspase-3 activation. Additionally, the real-time quantitative PCR analysis revealed that Cu-TSC triggers apoptosis in both cell lines via the upregulation of caspases-8, -9, and the changing of Bax/Bcl2 ratio. Finally, flow cytometric analysis confirmed that Cu-TSC treatment causes the enhancement of reactive oxygen species formation in both K562 and KG1a cells. Altogether, these findings suggest that Cu-TSC is a promising inducer of apoptosis in leukemia cells and carries potential as an anti-cancer compound.
Collapse
Affiliation(s)
| | | | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Majid Mahdavi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
23
|
King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 2020; 49:8113-8136. [DOI: 10.1039/d0cs00259c] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
24
|
Cao Y, Liu Y, Li F, Guo S, Shui Y, Xue H, Wang L. Portable colorimetric detection of copper ion in drinking water via red beet pigment and smartphone. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104176] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Praikaew P, Maniam S, Charoenpanich A, Sirirak J, Promarak V, Langford SJ, Wanichacheva N. Water-soluble Cu2+-fluorescent sensor based on core-substituted naphthalene diimide and its application in drinking water analysis and live cell imaging. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Two Cu(I) complexes based on semicarbazone ligand: synthesis, crystal structure, Hirshfeld surface and anticancer activity evaluation against human cell lines. Struct Chem 2019. [DOI: 10.1007/s11224-019-01379-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Das S, Rissanen K, Sahoo P. Rare Crystal Structure of Open Spirolactam Ring along with the Closed-Ring Form of a Rhodamine Derivative: Sensing of Cu 2+ Ions from Spinach. ACS OMEGA 2019; 4:5270-5274. [PMID: 31459698 PMCID: PMC6648640 DOI: 10.1021/acsomega.9b00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/01/2019] [Indexed: 06/10/2023]
Abstract
Crystal structures of a rhodamine derivative in its closed and open spirolactam ring forms were developed, which allows selective and sensitive detection of Cu2+ ions at a micromolar range in neutral medium. The chemosensing properties of the probe through a pentacoordinate Cu2+ ions were proven by spectroscopic and theoretical analysis. The spirolactam ring opening as the Cu2+ selective sensor was applied to spinach (Spinacia oleracea) to estimate the accumulation of copper as copper(II) in the plant.
Collapse
Affiliation(s)
- Sujoy Das
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Kari Rissanen
- Nanoscience
Centre, Department of Chemistry, University
of Jyvaskyla, Survontie 9B, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Prithidipa Sahoo
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| |
Collapse
|
28
|
Giampieri F, Afrin S, Forbes-Hernandez TY, Gasparrini M, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Quiles JL, Battino M. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:577-634. [PMID: 29943652 DOI: 10.1089/ars.2017.7234] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE In eukaryotes, autophagy represents a highly evolutionary conserved process, through which macromolecules and cytoplasmic material are degraded into lysosomes and recycled for biosynthetic or energetic purposes. Dysfunction of the autophagic process has been associated with the onset and development of many human chronic pathologies, such as cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. Recent Advances: Currently, comprehensive research is being carried out to discover new therapeutic agents that are able to modulate the autophagic process in vivo. Recent evidence has shown that a large number of natural bioactive compounds are involved in the regulation of autophagy by modulating several transcriptional factors and signaling pathways. CRITICAL ISSUES Critical issues that deserve particular attention are the inadequate understanding of the complex role of autophagy in disease pathogenesis, the limited availability of therapeutic drugs, and the lack of clinical trials. In this context, the effects that natural bioactive compounds exert on autophagic modulation should be clearly highlighted, since they depend on the type and stage of the pathological conditions of diseases. FUTURE DIRECTIONS Research efforts should now focus on understanding the survival-supporting and death-promoting roles of autophagy, how natural compounds interact exactly with the autophagic targets so as to induce or inhibit autophagy and on the evaluation of their pharmacological effects in a more in-depth and mechanistic way. In addition, clinical studies on autophagy-inducing natural products are strongly encouraged, also to highlight some fundamental aspects, such as the dose, the duration, and the possible synergistic action of these compounds with conventional therapy.
Collapse
Affiliation(s)
- Francesca Giampieri
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Sadia Afrin
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,2 Area de Nutricion y Salud, Universidad Internacional Iberoamericana , Campeche, Mexico
| | - Massimiliano Gasparrini
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Danila Cianciosi
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Patricia Reboredo-Rodriguez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,3 Departamento de Quimica Analıtica y Alimentaria, Grupo de Nutricion y Bromatologıa, Universidade Vigo , Ourense, Spain
| | - Alfonso Varela-Lopez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Jose L Quiles
- 4 Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix," Biomedical Research Centre, University of Granada , Granada, Spain
| | - Maurizio Battino
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,5 Centre for Nutrition and Health, Universidad Europea del Atlantico (UEA) , Santander, Spain
| |
Collapse
|
29
|
Ohui K, Afanasenko E, Bacher F, Ting RLX, Zafar A, Blanco-Cabra N, Torrents E, Dömötör O, May NV, Darvasiova D, Enyedy ÉA, Popović-Bijelić A, Reynisson J, Rapta P, Babak MV, Pastorin G, Arion VB. New Water-Soluble Copper(II) Complexes with Morpholine-Thiosemicarbazone Hybrids: Insights into the Anticancer and Antibacterial Mode of Action. J Med Chem 2018; 62:512-530. [PMID: 30507173 PMCID: PMC6348444 DOI: 10.1021/acs.jmedchem.8b01031] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Six
morpholine-(iso)thiosemicarbazone hybrids HL1–HL6 and
their Cu(II) complexes with good-to-moderate solubility and
stability in water were synthesized and characterized. Cu(II) complexes [Cu(L1–6)Cl] (1–6) formed weak dimeric associates in the solid state,
which did not remain intact in solution as evidenced by ESI-MS. The
lead proligands and Cu(II) complexes displayed higher antiproliferative
activity in cancer cells than triapine. In addition, complexes 2–5 were found to specifically inhibit the growth of
Gram-positive bacteria Staphylococcus aureus with MIC50 values at 2–5 μg/mL. Insights
into the processes controlling intracellular accumulation and mechanism
of action were investigated for 2 and 5,
including the role of ribonucleotide reductase (RNR) inhibition, endoplasmic
reticulum stress induction, and regulation of other cancer signaling
pathways. Their ability to moderately inhibit R2 RNR protein in the
presence of dithiothreitol is likely related to Fe chelating properties
of the proligands liberated upon reduction.
Collapse
Affiliation(s)
- Kateryna Ohui
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| | - Eleonora Afanasenko
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| | - Felix Bacher
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| | - Rachel Lim Xue Ting
- Department of Pharmacy , National University of Singapore , 3 Science Drive 2 , Singapore 117543 , Singapore
| | - Ayesha Zafar
- School of Chemical Sciences , University of Auckland , Auckland 1010 , New Zealand
| | - Núria Blanco-Cabra
- Bacterial Infections: Antimicrobial Therapies, Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Barcelona 08036 , Spain
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies, Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Barcelona 08036 , Spain
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry , University of Szeged , Dóm tér 7. , H-6720 Szeged , Hungary
| | - Nóra V May
- Research Centre of Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok körútja 2. , H-1117 Budapest , Hungary
| | - Denisa Darvasiova
- Institute of Physical Chemistry and Chemical Physics , Slovak Technical University of Technology , Radlinského 9 , 81237 Bratislava , Slovak Republic
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry , University of Szeged , Dóm tér 7. , H-6720 Szeged , Hungary
| | - Ana Popović-Bijelić
- Faculty of Physical Chemistry , University of Belgrade , 11158 Belgrade , Serbia
| | - Jóhannes Reynisson
- School of Chemical Sciences , University of Auckland , Auckland 1010 , New Zealand
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics , Slovak Technical University of Technology , Radlinského 9 , 81237 Bratislava , Slovak Republic
| | - Maria V Babak
- Department of Chemistry , National University of Singapore , 3 Science Drive 2 , 117543 , Singapore.,Drug Development Unit , National University of Singapore , 28 Medical Drive , 117546 , Singapore
| | - Giorgia Pastorin
- Department of Pharmacy , National University of Singapore , 3 Science Drive 2 , Singapore 117543 , Singapore
| | - Vladimir B Arion
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| |
Collapse
|
30
|
Sîrbu A, Palamarciuc O, Babak MV, Lim JM, Ohui K, Enyedy EA, Shova S, Darvasiová D, Rapta P, Ang WH, Arion VB. Copper(ii) thiosemicarbazone complexes induce marked ROS accumulation and promote nrf2-mediated antioxidant response in highly resistant breast cancer cells. Dalton Trans 2018; 46:3833-3847. [PMID: 28271099 DOI: 10.1039/c7dt00283a] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of water-soluble sodium salts of 3-formyl-4-hydroxybenzenesulfonic acid thiosemicarbazones (or sodium 5-sulfonate-salicylaldehyde thiosemicarbazones) containing different substituents at the terminal nitrogen atom (H, Me, Et, Ph) and their copper(ii) complexes have been prepared and characterised by elemental analysis, spectroscopic techniques (IR, UV-vis, 1H NMR), ESI mass spectrometry, X-ray crystallography and cyclic voltammetry. The proligands and their copper(ii) complexes exhibit moderate water solubility and good stability in aqueous environment, determined by investigating their proton dissociation and complex formation equilibria. The copper(ii) complexes showed moderate anticancer activity in established human cancer cell lines, while the proligands were devoid of cytotoxicity. The anticancer activity of the copper(ii) complexes correlates with their ability to induce ROS accumulation in cells, consistent with their redox potentials within the biological window, triggering the activation of antioxidation defense mechanisms in response to the ROS insult. These studies pave the way for the investigation of ROS-inducing copper(ii) complexes as prospective antiproliferative agents in cancer chemotherapy.
Collapse
Affiliation(s)
- Angela Sîrbu
- Moldova State University, Department of Chemistry, A. Mateevici Street 60, MD-2009, Chisinau, Republic of Moldova
| | - Oleg Palamarciuc
- Moldova State University, Department of Chemistry, A. Mateevici Street 60, MD-2009, Chisinau, Republic of Moldova
| | - Maria V Babak
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Jia Min Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Kateryna Ohui
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| | - Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7., H-6720 Szeged, Hungary
| | - Sergiu Shova
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, Nr. 41A, 700487 Iasi, Romania
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| |
Collapse
|
31
|
Karlsson H, Fryknäs M, Strese S, Gullbo J, Westman G, Bremberg U, Sjöblom T, Pandzic T, Larsson R, Nygren P. Mechanistic characterization of a copper containing thiosemicarbazone with potent antitumor activity. Oncotarget 2018; 8:30217-30234. [PMID: 28415818 PMCID: PMC5444738 DOI: 10.18632/oncotarget.16324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/08/2017] [Indexed: 01/05/2023] Open
Abstract
Background The thiosemicarbazone CD 02750 (VLX50) was recently reported as a hit compound in a phenotype-based drug screen in primary cultures of patient tumor cells. We synthesized a copper complex of VLX50, denoted VLX60, and characterized its antitumor and mechanistic properties. Materials and Methods The cytotoxic effects and mechanistic properties of VLX60 were investigated in monolayer cultures of multiple human cell lines, in tumor cells from patients, in a 3-D spheroid cell culture system and in vivo and were compared with those of VLX50. Results VLX60 showed ≥ 3-fold higher cytotoxic activity than VLX50 in 2-D cultures and, in contrast to VLX50, retained its activity in the presence of additional iron. VLX60 was effective against non-proliferative spheroids and against tumor xenografts in vivo in a murine model. In contrast to VLX50, gene expression analysis demonstrated that genes associated with oxidative stress were considerably enriched in cells exposed to VLX60 as was induction of reactive oxygen. VLX60 compromised the ubiquitin-proteasome system and was more active in BRAF mutated versus BRAF wild-type colon cancer cells. Conclusions The cytotoxic effects of the copper thiosemicarbazone VLX60 differ from those of VLX50 and shows interesting features as a potential antitumor drug, notably against BRAF mutated colorectal cancer.
Collapse
Affiliation(s)
| | - Mårten Fryknäs
- Department of Medical Sciences, Uppsala University, Sweden
| | - Sara Strese
- Department of Medical Sciences, Uppsala University, Sweden
| | - Joachim Gullbo
- Department of Medical Sciences, Uppsala University, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ulf Bremberg
- Department of Medicinal Chemistry, Uppsala University, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Uppsala University, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| |
Collapse
|
32
|
Swami S, Agarwala A, Verma VP, Shrivastava R. A Multifunctional Carbohydrazide-Based Chromofluorescent Sensor for the Selective Detection of Cu(II) and Zn(II) Ion. ChemistrySelect 2017. [DOI: 10.1002/slct.201701978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Suman Swami
- Department of Chemistry; Manipal University Jaipur, VPO- DehmiKalan; Off Jaipur-Ajmer express way Jaipur (Rajasthan) India
| | - Arunava Agarwala
- Department of Chemistry; Manipal University Jaipur, VPO- DehmiKalan; Off Jaipur-Ajmer express way Jaipur (Rajasthan) India
| | - Ved Prakash Verma
- Department of Chemistry; Banasthali University; Banasthali (Rajasthan) India
| | - Rahul Shrivastava
- Department of Chemistry; Manipal University Jaipur, VPO- DehmiKalan; Off Jaipur-Ajmer express way Jaipur (Rajasthan) India
| |
Collapse
|
33
|
Thirunavukkarasu T, Puschmann H, Sparkes H, Natarajan K, Gnanasoundari V. Novel water soluble bis(μ‐chloro) bridged Cu(II) binuclear and mononuclear complexes: Synthesis, characterization and biological evaluation. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Thangavel Thirunavukkarasu
- Department of ChemistryBharathiar University Coimbatore 641046 India
- Department of ChemistryCBM College Coimbatore 641042 India
| | - H. Puschmann
- Department of ChemistryDurham University Durham DH1 3LE UK
| | - H.A. Sparkes
- Department of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | | |
Collapse
|
34
|
Grasso G, Santoro AM, Lanza V, Sbardella D, Tundo GR, Ciaccio C, Marini S, Coletta M, Milardi D. The double faced role of copper in Aβ homeostasis: A survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Thio-functionalized carbohydrate thiosemicarbazones and evaluation of their anticancer activity. Bioorg Med Chem Lett 2017; 27:2713-2720. [DOI: 10.1016/j.bmcl.2017.04.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/11/2022]
|
36
|
Sahni S, Bae DH, Jansson PJ, Richardson DR. The mechanistic role of chemically diverse metal ions in the induction of autophagy. Pharmacol Res 2017; 119:118-127. [DOI: 10.1016/j.phrs.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
37
|
Singh A, Kulkarni HR, Baum RP. Imaging of Prostate Cancer Using 64 Cu-Labeled Prostate-Specific Membrane Antigen Ligand. PET Clin 2017; 12:193-203. [DOI: 10.1016/j.cpet.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Guo H, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B, Chen K, Deng J. Nickel chloride (NiCl2) induces endoplasmic reticulum (ER) stress by activating UPR pathways in the kidney of broiler chickens. Oncotarget 2017; 7:17508-19. [PMID: 26956054 PMCID: PMC4951229 DOI: 10.18632/oncotarget.7919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/23/2016] [Indexed: 12/29/2022] Open
Abstract
It has been known that overexposure to Ni can induce nephrotoxicity. However, the mechanisms of underlying Ni nephrotoxicity are still elusive, and also Ni- and Ni compound-induced ER stress has been not reported in vivo at present. Our aim was to use broiler chickens as animal model to test whether the ER stress was induced and UPR was activated by NiCl2 in the kidney using histopathology, immunohistochemistry and qRT-PCR. Two hundred and eighty one-day-old broiler chickens were divided into 4 groups and fed on a control diet and the same basal diet supplemented with 300 mg/kg, 600mg/kg and 900mg/kg of NiCl2 for 42 days. We found that dietary NiCl2 in excess of 300 mg/kg induced ER stress, which was characterized by increasing protein and mRNA expression of ER stress markers, e.g., GRP78 and GRP94. Concurrently, all the three UPR pathways were activated by dietary NiCl2. Firstly, the PERK pathway was activated by increasing eIF2a and ATF4 mRNA expression. Secondly, the IRE1 pathway was activated duo to increase in IRE1 and XBP1 mRNA expression. And thirdly, the increase of ATF6 mRNA expression suggested that ATF6 pathway was activated. The findings clearly demonstrate that NiCl2 induces the ER stress through activating PERK, IRE1 and ATF6 UPR pathways, which is proved to be a kind of molecular mechanism of Ni- or/and Ni compound-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Yaan, Sichuan, China
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Yaan, Sichuan, China.,College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Yaan, Sichuan, China.,College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Yaan, Sichuan, China.,College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Yaan, Sichuan, China.,College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Yaan, Sichuan, China.,College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Xun Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Yaan, Sichuan, China.,College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Bangyuan Wu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Yaan, Sichuan, China
| | - Kejie Chen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Yaan, Sichuan, China
| | - Jie Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Yaan, Sichuan, China
| |
Collapse
|
39
|
Prosser KE, Chang SW, Saraci F, Le PH, Walsby CJ. Anticancer copper pyridine benzimidazole complexes: ROS generation, biomolecule interactions, and cytotoxicity. J Inorg Biochem 2017; 167:89-99. [DOI: 10.1016/j.jinorgbio.2016.11.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/12/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022]
|
40
|
Fu Y, Liu Y, Wang J, Li C, Zhou S, Yang Y, Zhou P, Lu C, Li C. Calcium release induced by 2-pyridinecarboxaldehyde thiosemicarbazone and its copper complex contributes to tumor cell death. Oncol Rep 2017; 37:1662-1670. [PMID: 28112358 DOI: 10.3892/or.2017.5395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/22/2016] [Indexed: 11/06/2022] Open
Abstract
Thiosemicarbazones display significant antitumor activity and their copper complexes also exhibit enhanced biological activities in most situations, but the underlying mechanism is poorly understood. Therefore, investigation of the mechanism involved in the change upon chelation is required to extend our understanding of the effects of thiosemicarbazones. In the present study, the inhibitory effect of 2-pyridinecarboxaldehyde thiosemicarbazone (PCT) and its copper complex (PCT-Cu) on cell proliferation was investigated. The copper chelate exhibited a 3- to 10-fold increase in antitumor activity (with an IC50 <5 µM). The results showed that both PCT and PCT-Cu induced reactive oxygen species (ROS) generation in vitro and in vivo, caused cellular DNA fragmentation, depolarization of the mitochondrial membrane and cell cycle arrest. Western blotting showed that both PCT and PCT-Cu induced apoptosis. Upregulation of GRP78 in HepG2 cells following treatment with the agents indicated that endoplasmic reticulum (ER) stress occurred. Furthermore calcium release was revealed in this study, suggesting that PCT and PCT-Cu disturbed calcium homeostasis. It was noted that PCT-Cu sensitized thapsigargin‑stimulated calcium release from the ER, which was correlated with the ROS level they induced, implying that the antitumor activity of PCT and PCT-Cu partly stemmed from calcium mobilization, a situation that was reported in few studies. Our findings may significantly contribute to the understanding of the anti‑proliferative effect of the derivatives of thiosemicarbazones along with their antitumor mechanism.
Collapse
Affiliation(s)
- Yun Fu
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Youxun Liu
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jiangang Wang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Cuiping Li
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Sufeng Zhou
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yun Yang
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Pingxin Zhou
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Chengbiao Lu
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Changzheng Li
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
41
|
Li C, Ouyang H, Tang X, Wen G, Liang A, Jiang Z. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Biosens Bioelectron 2017; 87:888-893. [DOI: 10.1016/j.bios.2016.09.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 02/04/2023]
|
42
|
Wang D, Peng S, Amin ARMR, Rahman MA, Nannapaneni S, Liu Y, Shin DM, Saba NF, Eichler JF, Chen ZG. Antitumor Activity of 2,9-Di-Sec-Butyl-1,10-Phenanthroline. PLoS One 2016; 11:e0168450. [PMID: 28033401 PMCID: PMC5199049 DOI: 10.1371/journal.pone.0168450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 12/01/2016] [Indexed: 11/18/2022] Open
Abstract
The anti-tumor effect of a chelating phen-based ligand 2,9-di-sec-butyl-1,10-phenanthroline (dsBPT) and its combination with cisplatin were examined in both lung and head and neck cancer cell lines and xenograft animal models in this study. The effects of this agent on cell cycle and apoptosis were investigated. Protein markers relevant to these mechanisms were also assessed. We found that the inhibitory effect of dsBPT on lung and head and neck cancer cell growth (IC50 ranged between 0.1–0.2 μM) was 10 times greater than that on normal epithelial cells. dsBPT alone induced autophagy, G1 cell cycle arrest, and apoptosis. Our in vivo studies indicated that dsBPT inhibited tumor growth in a dose-dependent manner in a head and neck cancer xenograft mouse model. The combination of dsBPT with cisplatin synergistically inhibited cancer cell growth with a combination index of 0.3. Moreover, the combination significantly reduced tumor volume as compared with the untreated control (p = 0.0017) in a head and neck cancer xenograft model. No organ related toxicities were observed in treated animals. Our data suggest that dsBPT is a novel and potent antitumor drug that warrants further preclinical and clinical development either as a single agent or in combination with known chemotherapy drugs such as cisplatin.
Collapse
Affiliation(s)
- Dongsheng Wang
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Shifang Peng
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - A. R. M. Ruhul Amin
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Mohammad Aminur Rahman
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Sreenivas Nannapaneni
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Yuan Liu
- Department of Biostatistics and Bioinformatics, Biostatistics and Bioinformatics Shared Resource at WCI, NE, Atlanta, GA, United States of America
| | - Dong M. Shin
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Nabil F. Saba
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jack F. Eichler
- Department of Chemistry, University of California-Riverside, Riverside, CA, United States of America
| | - Zhuo G. Chen
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
43
|
Kang JH, Lee SY, Ahn HM, Kim C. Sequential detection of copper(II) and cyanide by a simple colorimetric chemosensor. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.10.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Shen C, Kolanowski JL, Tran CMN, Kaur A, Akerfeldt MC, Rahme MS, Hambley TW, New EJ. A ratiometric fluorescent sensor for the mitochondrial copper pool. Metallomics 2016; 8:915-9. [PMID: 27550322 DOI: 10.1039/c6mt00083e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Copper plays a key role in the modulation of cellular function, defence, and growth. Here we present InCCu1, a ratiometric fluorescent sensor for mitochondrial copper, which changes from red to blue emission in the presence of Cu(i). Employing this probe in microscopy and flow cytometry, we show that cisplatin-treated cells have an impaired ability to accumulate copper in the mitochondria.
Collapse
Affiliation(s)
- Clara Shen
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhou XY, Zhang T, Ren L, Wu JJ, Wang W, Liu JX. Copper elevated embryonic hemoglobin through reactive oxygen species during zebrafish erythrogenesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:1-11. [PMID: 26991749 DOI: 10.1016/j.aquatox.2016.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Copper, as an essential trace mineral, can cause diseases such as childhood leukemia at excess levels, but has been applied in anemia therapy for a long time. However, few reports have studied its role during hematopoiesis at the molecular level in an animal model. In this study, by microarray, qRT-PCR, whole-mount in situ hybridization and O-dianisidine staining detections, we revealed the increased expression of hemoglobin in copper-exposed embryos. Secondly, we found that copper-exposed embryos exhibited high levels of reactive oxygen species (ROS), and genes in oxygen binding and oxygen transporting were up-regulated in the embryos. Finally, we found that ROS scavengers NAC, GSH, and DMTU not only inhibited in vivo ROS levels induced by copper, but also significantly decreased high expression of hemoglobin back to almost normal levels in copper exposed embryos, and also helped with copper elimination from the embryos. Our data first demonstrated that ROS mediated copper induced hemoglobin expression in vertebrates, partly revealing the underlying molecular mechanism of copper therapy for anemia. Moreover, we revealed that copper homeostasis was broken by its induced ROS and ROS helped with copper overloading in the body, which could be applied as a novel therapy target for copper-caused diseases.
Collapse
Affiliation(s)
- Xin-Ying Zhou
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long Ren
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun-Jie Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weimin Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde 415000, China.
| |
Collapse
|
46
|
Zhang Z, Gou Y, Wang J, Yang K, Qi J, Zhou Z, Liang S, Liang H, Yang F. Four copper(II) compounds synthesized by anion regulation: Structure, anticancer function and anticancer mechanism. Eur J Med Chem 2016; 121:399-409. [PMID: 27309677 DOI: 10.1016/j.ejmech.2016.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/27/2022]
Abstract
Copper (Cu) compounds are a promising candidate for next generation metal anticancer drugs. Therefore, we regulated anions to synthesize four mononuclear and binuclear Cu(II) compounds derived from thiosemicarbazone Schiff base ligands and characterized them. Four of these compounds showed very high cytotoxicity to cancer cell lines in vitro. These Cu(II) compounds strongly promoted the apoptosis of BEL-7404 cells and had a capacity to arrest the cell cycle at S phase of those cells. Furthermore, reactive oxygen species (ROS), mitochondrial membrane potential and Western blot analyses revealed that these Cu(II) compounds exert their cytotoxicity through an ROS-mediated intrinsic mitochondrial pathway accompanied by the regulation of Bcl-2 family proteins.
Collapse
Affiliation(s)
- Zhenlei Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Yi Gou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Jun Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Kun Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Jinxu Qi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Pharmaceutical Biotechnology, Guangxi Normal University, Guilin, Guangxi, China
| | - Shichu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Feng Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
47
|
Increased generation of intracellular reactive oxygen species initiates selective cytotoxicity against the MCF-7 cell line resultant from redox active combination therapy using copper–thiosemicarbazone complexes. J Biol Inorg Chem 2016; 21:407-19. [DOI: 10.1007/s00775-016-1350-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/19/2016] [Indexed: 01/09/2023]
|
48
|
Pastuch-Gawołek G, Malarz K, Mrozek-Wilczkiewicz A, Musioł M, Serda M, Czaplinska B, Musiol R. Small molecule glycoconjugates with anticancer activity. Eur J Med Chem 2016; 112:130-144. [PMID: 26890119 DOI: 10.1016/j.ejmech.2016.01.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/12/2016] [Accepted: 01/30/2016] [Indexed: 11/18/2022]
Abstract
Glycoconjugates are combinations of sugar moieties with organic compounds. Due to their biological resemblance, such structures often have properties that are desirable for drugs. In this study we designed and synthesised several glycoconjugates from small molecular quinolines and substituted gluco- and galactopyranosyl amines. Although the parent quinoline compounds were inactive in affordable concentrations, the glycoconjugates that were obtained appeared to be cytotoxic against cancer cells at the micromolar level. When combined with copper ions, their activity increased even further. Their mechanism of action is connected to the formation of reactive oxygen species and the intercalation of DNA.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Silesian University of Technology, Faculty of Chemistry, Chair of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Katarzyna Malarz
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Marta Musioł
- Silesian University of Technology, Faculty of Chemistry, Chair of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Maciej Serda
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland
| | - Barbara Czaplinska
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland
| | - Robert Musiol
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland.
| |
Collapse
|
49
|
You GR, Park GJ, Lee JJ, Kim C. A colorimetric sensor for the sequential detection of Cu(2+) and CN(-) in fully aqueous media: practical performance of Cu(2+). Dalton Trans 2016; 44:9120-9. [PMID: 25900000 DOI: 10.1039/c5dt00772k] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new highly selective colorimetric chemosensor 1 (E)-9-(((5-mercapto-1,3,4-thiadiazol-2-yl)imino)methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol was designed and synthesized for the sequential detection of Cu(2+) and CN(-). This sensor 1 exhibited an obvious color change from yellow to orange in the presence of Cu(2+) in a fully aqueous solution. The detection limit (0.9 μM) of 1 for Cu(2+) is far lower than the WHO limit (31.5 μM) for drinking water. In addition, the resulting Cu(2+)-2· 1 complex can be further used to detect toxic cyanide through a color change from orange to yellow, indicating the recovery of 1 from Cu(2+)-2·1. Importantly, chemosensor 1 could be used to detect and quantify Cu(2+) in water samples, and a colorimetric test strip of 1 for the detection of Cu(2+) could be useful for all practical purposes.
Collapse
Affiliation(s)
- Ga Rim You
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea.
| | | | | | | |
Collapse
|
50
|
Ryu KY, Lee JJ, Kim JA, Park DY, Kim C. Colorimetric chemosensor for multiple targets, Cu2+, CN−and S2−. RSC Adv 2016. [DOI: 10.1039/c5ra27553a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
New Schiff-base was developed as colorimetric sensor for Cu2+, CN−and S2−with the detection limits lower than the given guidelines.
Collapse
Affiliation(s)
- Ka Young Ryu
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| | - Jae Jun Lee
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| | - Jin Ah Kim
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| | - Dae Yul Park
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| | - Cheal Kim
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| |
Collapse
|