1
|
Cattivelli A, Zannini M, D'Ambra K, Trovato R, Minelli G, Musati M, Luciano G, Priolo A, Natalello A, Conte A, Tagliazucchi D, Fiego DPL. Feeding lambs hazelnut skin and linseed decreases meat lipid oxidation during in vitro digestion. Food Chem 2025; 483:144266. [PMID: 40215743 DOI: 10.1016/j.foodchem.2025.144266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
The present study aimed to evaluate the effect of the inclusion in lamb diet of hazelnut skin (H diet), extruded linseed (L diet), or a combination thereof (HL diet) on the oxidative stability of cooked and in vitro digested lamb meat compared to a basal diet (C diet). A significant decrease of 46.1 % and 40.9 % in lipid hydroperoxides was attended after in vitro digestion in lamb meat from the L and H diets with respect to C diet. Moreover, the HL diet was the most effective in decreasing the TBA-RS value after intestinal digestion (23.3 % decrease compared to C diet). Five different phenolic- and four tocopherol-derived metabolites were identified whose amount was greater in meat from supplemented diets. Furthermore, the inclusion of hazelnut skin in the lamb diet resulted in higher amount of endogenous antioxidants (carnosine and reduced glutathione) in raw meat.
Collapse
Affiliation(s)
- Alice Cattivelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Melissa Zannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Katia D'Ambra
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Roberta Trovato
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Giovanna Minelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, P. le Europa, 1, 42124 Reggio Emilia, Italy
| | - Martino Musati
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Giuseppe Luciano
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Alessandro Priolo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Antonio Natalello
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Angela Conte
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, P. le Europa, 1, 42124 Reggio Emilia, Italy.
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, P. le Europa, 1, 42124 Reggio Emilia, Italy
| |
Collapse
|
2
|
Musati M, Bertino A, Cannone MS, Mangano F, Luciano G, Priolo A, Bella MS, Biondi L, Scerra M, Mangione G, Natalello A. Dietary hazelnut skin prevents lipid oxidation in lamb enriched in omega-3 polyunsaturated fatty acids. Meat Sci 2025; 225:109811. [PMID: 40132327 DOI: 10.1016/j.meatsci.2025.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
The aim of this study was to investigate the effect of partially replacing maize with hazelnut skin and linseed, alone or in combination, on the oxidative stability of lamb. Forty lambs were randomly assigned to 4 treatments and fed: a conventional cereal-based diet (C), or the same diet with 15 % of hazelnut skin (HS), or 8 % of extruded linseed (LS), or 7.5 % of hazelnut skin plus 4 % of linseed (H + L) as partial replacement of maize. After 60 days of feeding trial, lambs were slaughtered, and hydrophilic antioxidant capacity and fat-soluble vitamins content were evaluated in fresh meat. Colour stability, lipid and protein oxidation were assessed during 7 days of refrigerated storage. Dietary combination of hazelnut skin and linseed increased the content of tocopherols (P < 0.001) and of n-3 polyunsaturated fatty acids (PUFA n-3; P < 0.001), while reducing lipid oxidation (TBARS value) during 7 days of storage (P < 0.001). Feeding lamb with hazelnut skin and/or linseed did not affect meat hydrophilic antioxidant capacity, colour stability, nor the formation of hydroperoxides, thiols, or carbonyls (P > 0.05). These results suggest that vitamin E provided by hazelnut skin contributed to delay lipid oxidation in meat, despite the higher concentration of n-3 PUFA.
Collapse
Affiliation(s)
- Martino Musati
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Santa Sofia 100, 95123 Catania, Italy
| | - Antonino Bertino
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Santa Sofia 100, 95123 Catania, Italy
| | - Marco Sebastiano Cannone
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Santa Sofia 100, 95123 Catania, Italy
| | - Fabrizio Mangano
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Santa Sofia 100, 95123 Catania, Italy
| | - Giuseppe Luciano
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Santa Sofia 100, 95123 Catania, Italy
| | - Alessandro Priolo
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Santa Sofia 100, 95123 Catania, Italy
| | - Marco Sebastiano Bella
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Santa Sofia 100, 95123 Catania, Italy
| | - Luisa Biondi
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Santa Sofia 100, 95123 Catania, Italy
| | - Manuel Scerra
- Dipartimento di Agraria, Produzioni Animali, University of Reggio Calabria, Via dell'Università, 25, 89124 Reggio Calabria, Italy
| | - Guido Mangione
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Santa Sofia 100, 95123 Catania, Italy.
| | - Antonio Natalello
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Santa Sofia 100, 95123 Catania, Italy
| |
Collapse
|
3
|
Vignesh A, Amal TC, Vasanth K. Food contaminants: Impact of food processing, challenges and mitigation strategies for food security. Food Res Int 2024; 191:114739. [PMID: 39059927 DOI: 10.1016/j.foodres.2024.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Food preparation involves the blending of various food ingredients to make more convenient processed food products. It is a long chain process, where each stage posing a risk of accumulating hazardous contaminants in these food systems. Protecting the public health from contaminated foods has become a demanding task in ensuring food safety. This review focused on the causes, types, and health risks of contaminants or hazardous chemicals during food processing. The impact of cooking such as frying, grilling, roasting, and baking, which may lead to the formation of hazardous by-products, including polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HCAs), acrylamide, advanced glycation end products (AGEs), furan, acrolein, nitrosamines, 5-hydroxymethylfurfural (HMF) and trans-fatty acids (TFAs). Potential health risks such as carcinogenicity, genotoxicity, neurotoxicity, and cardiovascular effects are emerging as a major problem in the modern lifestyle era due to the increased uptakes of contaminants. Effects of curing, smoking, and fermentation of the meat products led to affect the sensory and nutritional characteristics of meat products. Selecting appropriate cooking methods include temperature, time and the consumption of the food are major key factors that should be considered to avoid the excess level intake of hazardous contaminants. Overall, this study underscores the importance of understanding the risks associated with food preparation methods, strategies for minimizing the formation of harmful compounds during food processing and highlights the need for healthy dietary choices to mitigate potential health hazards.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Pollachi 642 001, Tamil Nadu, India.
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore 641 003, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
4
|
Rios-Mera JD, Arteaga H, Ruiz R, Saldaña E, Tello F. Amazon Fruits as Healthy Ingredients in Muscle Food Products: A Review. Foods 2024; 13:2110. [PMID: 38998616 PMCID: PMC11241114 DOI: 10.3390/foods13132110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
When looking for new ingredients to process red meat, poultry, and fish products, it is essential to consider using vegetable resources that can replace traditional ingredients such as animal fat and synthetic antioxidants that may harm health. The Amazon, home to hundreds of edible fruit species, can be a viable alternative for new ingredients in processing muscle food products. These fruits have gained interest for their use as natural antioxidants, fat replacers, colorants, and extenders. Some of the fruits that have been tested include açai, guarana, annatto, cocoa bean shell, sacha inchi oil, and peach palm. Studies have shown that these fruits can be used as dehydrated products or as liquid or powder extracts in doses between 250 and 500 mg/kg as antioxidants. Fat replacers can be added directly as flour or used to prepare emulsion gels, reducing up to 50% of animal fat without any detrimental effects. However, oxidation problems of the gels suggest that further investigation is needed by incorporating adequate antioxidant levels. In low doses, Amazon fruit byproducts such as colorants and extenders have been shown to have positive technological and sensory effects on muscle food products. While evidence suggests that these fruits have beneficial health effects, their in vitro and in vivo nutritional effects should be evaluated in muscle food products containing these fruits. This evaluation needs to be intended to identify safe doses, delay the formation of key oxidation compounds that directly affect health, and investigate other factors related to health.
Collapse
Affiliation(s)
- Juan D. Rios-Mera
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru; (J.D.R.-M.); (H.A.)
| | - Hubert Arteaga
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru; (J.D.R.-M.); (H.A.)
| | - Roger Ruiz
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru;
| | - Erick Saldaña
- Sensory Analysis and Consumer Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Moquegua 18001, Peru;
| | - Fernando Tello
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru;
| |
Collapse
|
5
|
Jutanom M, Kato S, Yamashita S, Toda M, Kinoshita M, Nakagawa K. Analysis of oxidized glucosylceramide and its effects on altering gene expressions of inflammation induced by LPS in intestinal tract cell models. Sci Rep 2023; 13:22537. [PMID: 38110468 PMCID: PMC10728070 DOI: 10.1038/s41598-023-49521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Glucosylceramide (GlcCer) belongs to sphingolipids and is found naturally in plant foods and other sources that humans consume daily. Our previous studies demonstrated that GlcCer prevents inflammatory bowel disease both in vitro and in vivo, whose patients are increasing alarmingly. Although some lipids are vulnerable to oxidation which changes their structure and activities, it is unknown whether oxidative modification of GlcCer affects its activity. In this research, we oxidized GlcCer in the presence of a photosensitizer, analyzed the oxide by mass spectrometric techniques, and examined its anti-inflammatory activity in lipopolysaccharide (LPS)-treated differentiated Caco-2 cells as in vitro model of intestinal inflammation. The results showed that GlcCer is indeed oxidized, producing GlcCer hydroperoxide (GlcCerOOH) as a primary oxidation product. We also found that oxidized GlcCer preserves beneficial functions of GlcCer, suppressing inflammatory-related gene expressions. These findings suggested that GlcCerOOH may perform as an LPS recognition antagonist to discourage inflammation rather than induce inflammation.
Collapse
Affiliation(s)
- Mirinthorn Jutanom
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shunji Kato
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Masako Toda
- Food and Biomolecular Science Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Kiyotaka Nakagawa
- Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan.
| |
Collapse
|
6
|
Kasai H, Kawai K. Formation of the mutagenic DNA lesion 1,N 2-ethenoguanine induced by heated cooking oil and identification of causative agents. Genes Environ 2023; 45:27. [PMID: 37880746 PMCID: PMC10599067 DOI: 10.1186/s41021-023-00284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The DNA-damaging compounds in heated cooking oil were identified as guanosine adducts. Heated vegetable oil was subjected to deep-frying conditions at 170 °C for 45 min, reacted with isopropylidene guanosine (ipG) at pH 7.4, and the resulting compounds were separated by high-performance liquid chromatography (HPLC). RESULTS Two adducts, 8-hydroxy-ipG and 1,N2-etheno-ipG, were identified in the reaction mixture. One of the major components in heated cooking oil, 2,4-heptadienal (HDE), efficiently produced etheno-ipG from ipG in the presence of tBuOOH. An oxidized HDE solution was fractionated using HPLC to identify causative agents, and each fraction was tested for etheno-ipG formation. In addition to the known lipid peroxidation product, 4,5-epoxy-2-heptenal, two unknown polar components with potent etheno-ipG formation activity were discovered. Based on Mass and UV spectra, their structures were identified as 6-oxo- and 6-hydroxy-2,4-HDE. Similarly, 6-oxo- and 6-hydroxy-2,4- decadienal (DDE) were formed from 2,4-DDE. Significant amounts of 6-oxo- and 6-hydroxy-2,4-alkadienal were detected in the heated cooking oil. These compounds induced the formation of 1,N2-ethenoguanine in nucleosides and DNA, especially in the presence of tBuOOH. Moreover, the formation of 6-oxo- and 6-OH-HDE from 2,4-HDE was accelerated in the presence of hemin and tBuOOH. CONCLUSION The results suggest that these compounds are not only generated during the oil heating process but also produced from 2,4-alkadienal through digestion under normal physiological conditions, especially after ingesting heme- and alkyl-OOH-containing diets. Moreover, these compounds can be formed within cells under oxidative stress, potentially linking them to gastrointestinal carcinogenesis.
Collapse
Affiliation(s)
- Hiroshi Kasai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
7
|
Abstract
Oxidative stress is the result of an imbalance between the formation of reactive oxygen species (ROS) and the levels of enzymatic and non-enzymatic antioxidants. The assessment of biological redox status is performed by the use of oxidative stress biomarkers. An oxidative stress biomarker is defined as any physical structure or process or chemical compound that can be assessed in a living being (in vivo) or in solid or fluid parts thereof (in vitro), the determination of which is a reproducible and reliable indicator of oxidative stress. The use of oxidative stress biomarkers allows early identification of the risk of developing diseases associated with this process and also opens up possibilities for new treatments. At the end of the last century, interest in oxidative stress biomarkers began to grow, due to evidence of the association between the generation of free radicals and various pathologies. Up to now, a significant number of studies have been carried out to identify and apply different oxidative stress biomarkers in clinical practice. Among the most important oxidative stress biomarkers, it can be mentioned the products of oxidative modifications of lipids, proteins, nucleic acids, and uric acid as well as the measurement of the total antioxidant capacity of fluids in the human body. In this review, we aim to present recent advances and current knowledge on the main biomarkers of oxidative stress, including the discovery of new biomarkers, with emphasis on the various reproductive complications associated with variations in oxidative stress levels.
Collapse
|
8
|
Borkowska A, Olszewska A, Skarzynska W, Marciniak M, Skrzeszewski M, Kieda C, Was H. High Hemin Concentration Induces Escape from Senescence of Normoxic and Hypoxic Colon Cancer Cells. Cancers (Basel) 2022; 14:cancers14194793. [PMID: 36230727 PMCID: PMC9564005 DOI: 10.3390/cancers14194793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary High red-meat consumption as well as bleeding or bruising can promote oxidative stress and, in consequence, cancer development. However, the mechanism of that phenomenon is not understood. The induction of therapy-induced senescence (TIS) might also be induced by oxidative stress. Recently, TIS cells, despite their inhibited proliferation potential, have been identified as one of the sources of tumor re-growth. Here, with the use of molecular analyses, we found that oxidative stress, promoted by high doses of hemin or H2O2, can trigger TIS escape and cell re-population. It is closely related to the activity of antioxidative enzymes, especially heme oxygenase-1. Hypoxia might accelerate these effects. Therefore, we propose that the prevention of excessive oxidative stress could be a potential target in senolytic therapies. Abstract Hemoglobin from either red meat or bowel bleeding may promote oxidative stress and increase the risk of colorectal cancer (CRC). Additionally, solid cancers or their metastases may be present with localized bruising. Escape from therapy-induced senescence (TIS) might be one of the mechanisms of tumor re-growth. Therefore, we sought to study whether hemin can cause escape from TIS in CRC. To induce senescence, human colon cancer cells were exposed to a chemotherapeutic agent irinotecan (IRINO). Cells treated with IRINO exhibited common hallmarks of TIS. To mimic bleeding, colon cancer cells were additionally treated with hemin. High hemin concentration activated heme oxygenase-1 (HO-1), induced escape from TIS and epithelial-to-mesenchymal transition, and augmented progeny production. The effect was even stronger in hypoxic conditions. Similar results were obtained when TIS cells were treated with another prooxidant agent, H2O2. Silencing of antioxidative enzymes such as catalase (CAT) or glutathione peroxidase-1 (GPx-1) maintained colon cancer cells in a senescent state. Our study demonstrates that a high hemin concentration combined with an increased activity of antioxidative enzymes, especially HO-1, leads to escape from the senescence of colon cancer cells. Therefore, our observations could be used in targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091 Warsaw, Poland
| | - Aleksandra Olszewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091 Warsaw, Poland
| | - Weronika Skarzynska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
| | - Marta Marciniak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
| | - Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
- Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
- Centre for Molecular Biophysics, UPR CNRS 4301, CEDEX 2, 45071 Orléans, France
| | - Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
- Correspondence:
| |
Collapse
|
9
|
Kaczmarek AM, Muzolf-Panek M. Predictive modelling of TBARS changes in the intramuscular lipid fraction of raw ground pork enriched with plant extracts. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1756-1768. [PMID: 35531388 PMCID: PMC9046486 DOI: 10.1007/s13197-021-05187-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023]
Abstract
The aim of the study was to develop and compare the predictive models of lipid oxidation in minced raw pork meat enriched with selected plant extracts (allspice, basil, bay leaf, black seed, cardamom, caraway, cloves, garlic, nutmeg, onion, oregano, rosemary and thyme) by investigation TBARS values changes during storage at different temperatures. Meat samples with extract addition were stored under various temperatures (4, 8, 12, 16, and 20°C). TBARS values changes in samples stored at 12°C were used as external validation dataset. Lipid oxidation was evaluated by the TBARS content. Lipid oxidation increased with storage time and temperature. The dependence of lipid oxidation on temperature was adequately modelled by the Arrhenius and log-logistic equation with high R2 coefficients (0.98–0.99). Kinetic models and artificial neural networks (ANNs) were used to build the predictive models. The obtained result demonstrates that both kinetic Arrhenius (R2 = 0.83) and log-logistic (R2 = 0.84) models as well as ANN (R2 = 0.99) model can predict TBARS changes in raw ground pork meat during storage.
Collapse
Affiliation(s)
- Anna Maria Kaczmarek
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 31, 60-624 Poznań, Poland
| | - Małgorzata Muzolf-Panek
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 31, 60-624 Poznań, Poland
| |
Collapse
|
10
|
Nishizawa H, Yamanaka M, Igarashi K. Ferroptosis: regulation by competition between NRF2 and BACH1 and propagation of the death signal. FEBS J 2022; 290:1688-1704. [PMID: 35107212 DOI: 10.1111/febs.16382] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Ferroptosis is triggered by a chain of intracellular labile iron-dependent peroxidation of cell membrane phospholipids. Ferroptosis is important not only as a cause of ischaemic and neurodegenerative diseases but also as a mechanism of cancer suppression, and a better understanding of its regulatory mechanism is required. It has become clear that ferroptosis is finely controlled by two oxidative stress-responsive transcription factors, NRF2 (NF-E2-related factor 2) and BACH1 (BTB and CNC homology 1). NRF2 and BACH1 inhibit and promote ferroptosis, respectively, by activating or suppressing the expression of genes in the major regulatory pathways of ferroptosis: intracellular labile iron metabolism, the GSH (glutathione) -GPX4 (glutathione peroxidase 4) pathway and the FSP1 (ferroptosis suppressor protein 1)-CoQ (coenzyme Q) pathway. In addition to this, NRF2 and BACH1 control ferroptosis through the regulation of lipid metabolism and cell differentiation. This multifaceted regulation of ferroptosis by NRF2 and BACH1 is considered to have been acquired during the evolution of multicellular organisms, allowing the utilization of ferroptosis for maintaining homeostasis, including cancer suppression. In terms of cell-cell interaction, it has been revealed that ferroptosis has the property of propagating to surrounding cells along with lipid peroxidation. The regulation of ferroptosis by NRF2 and BACH1 and the propagation phenomenon could be used to realize anticancer cell therapy in the future. In this review, these points will be summarized and discussed.
Collapse
Affiliation(s)
- Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mie Yamanaka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Rezende LG, Tasso TT, Candido PHS, Baptista MS. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem Photobiol 2021; 98:572-590. [PMID: 34931324 DOI: 10.1111/php.13582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.
Collapse
Affiliation(s)
- Laura G Rezende
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago T Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H S Candido
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| | - Mauricio S Baptista
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
12
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
13
|
The Role of Dyslipidemia in Colitis-Associated Colorectal Cancer. JOURNAL OF ONCOLOGY 2021; 2021:6640384. [PMID: 33628242 PMCID: PMC7895570 DOI: 10.1155/2021/6640384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Dyslipidemia, characterized by metabolic abnormalities, has become an important participant in colorectal cancer (CRC). Dyslipidemia aggravates intestinal inflammation, destroys the protective mucous layer, and disrupts the balance between injury and recovery. On the other hand, antioxidants induced by oxidative stress enhance glycolysis to maintain the acquisition of ATP allowing epithelial cells with damaged genomes to survive. In the repetitive phase of colitis, survival factors enable these epithelial cells to continuously proliferate. The main purpose is to restore and rebuild damaged mucosa, mainly aiming to recover mucosal damage and reconstruct mucosa, but it is also implicated in the occurrence and malignancy of CRC. The metabolic reprogramming of aerobic glycolysis and lipid synthesis enables these transformed epithelial cells to convert raw carbohydrate and amino acid substrates, thereby synthesizing protein and phospholipid biomass. Stearoyl-CoA desaturase, responsible for the fatty acid desaturation, improves the fluidity and permeability of cell membranes, which is one of the key factors affecting metabolic rate. In response to available fat, tumor cells reprogram their metabolism to better plunder energy-rich lipids and rapidly scavenge these lipids through continuous proliferation. However, lipid metabolic disorders inhibit the function of immune-infiltrating cells in the tumor microenvironment through the cross-talk between tumor cells and immunosuppressive stromal cells, thereby providing opportunities for tumor progress. Nonsteroidal anti-inflammatory drugs and lipid-lowering drugs can decrease the formation of aberrant crypt foci, lower the burden of the adenomatous polyp, and reduce the incidence of CRC. This review provides a comprehensive understanding of dyslipidemia on tumorigenesis and tumor progression and a development prospect of lipid disorders on tumor immunity.
Collapse
|
14
|
Manessis G, Kalogianni AI, Lazou T, Moschovas M, Bossis I, Gelasakis AI. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants (Basel) 2020; 9:E1215. [PMID: 33276503 PMCID: PMC7761563 DOI: 10.3390/antiox9121215] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 01/19/2023] Open
Abstract
The global meat industry is constantly evolving due to changes in consumer preferences, concerns and lifestyles, as well as monetary, geographical, political, cultural and religious factors. Part of this evolution is the introduction of synthetic antioxidants to increase meat and meat products' shelf-life, and reduce meat spoilage due to lipid and protein oxidation. The public perception that natural compounds are safer and healthier per se has motivated the meat industry to replace synthetic antioxidants with plant-derived ones in meat systems. Despite several promising results from in vitro and in situ studies, the effectiveness of plant-derived antioxidants against lipid and protein oxidation has not been fully documented. Moreover, the utility, usability, marketability and potential health benefits of natural antioxidants are not yet fully proven. The present review aims to (i) describe the major chemical groups of plant-derived antioxidants and their courses of action; (ii) present the application of spices, herbs and fruits as antioxidants in meat systems; and (iii) discuss the legislative framework, future trends, challenges and limitations that are expected to shape their acceptance and mass exploitation by the meat industry.
Collapse
Affiliation(s)
- Georgios Manessis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| | - Aphrodite I. Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| | - Thomai Lazou
- Laboratory of Hygiene of Foods of Animal Origin-Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Marios Moschovas
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| |
Collapse
|
15
|
Yang Y, Gao G, Shi J, Zhang J. Increased Blood Lipid Level is Associated with Cancer-Specific Mortality and All-Cause Mortality in Patients with Colorectal Cancer (≥65 Years): A Population-Based Prospective Cohort Study. Risk Manag Healthc Policy 2020; 13:855-863. [PMID: 32801961 PMCID: PMC7399450 DOI: 10.2147/rmhp.s260113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hyperlipidaemia is related to the development of many cancers. The aim of this study was to explore whether blood lipid levels were associated with increased rates of cancer-specific mortality and all-cause mortality in patients with colorectal cancer (CRC). Methods Data on 8504 participants from The Irish Longitudinal Study on Ageing (TILDA) were analysed. A total of 304 participants with CRC who had experienced curative surgery were included. Logistic regression analysis was performed to analyse the relationship between blood lipid levels and CRC severity. Cox regression analysis was performed to assess the association between blood lipid levels and cancer-specific mortality and all-cause mortality in patients with CRC. Results In 304 patients with CRC, the average age was 67.8±5.4 years. The logistic regression analysis indicated that elevated levels of total cholesterol (2.104 [1.358–3.650]; P-trend<0.001), triglycerides (1.665 [1.337–2.076]; P-trend=0.005) and LDL (2.127 [1.446–4.099]; P-trend<0.001) but not HDL (0.688 [0.409–1.252]; P-trend=0.124) were associated with an increased risk of higher CRC stage after adjustments were made for age, sex, marital status, BMI, drinking status, smoking status, education, physical activity, antilipidaemic medications and self-reported CVDs (≥2). Cox proportional hazard analysis showed that higher blood lipid levels of total cholesterol, triglycerides and LDL were independently associated with higher rates of cancer-specific mortality and all-cause mortality. Similar results persisted in the sensitivity analysis using antilipidaemic medications as an additional covariate and the stratification analysis using antilipidaemic medications as a stratified variable. Conclusion Increased blood lipid levels were associated with an increased risk of cancer-specific mortality and all-cause mortality in patients with CRC after adjusting for potential confounding factors. Clinicians should pay more attention to the prognostic value of increased blood lipids in patients with CRC for the risk of death.
Collapse
Affiliation(s)
- Yong Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Ge Gao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Jiangnan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| |
Collapse
|
16
|
Shen CJ, Chang KY, Lin BW, Lin WT, Su CM, Tsai JP, Liao YH, Hung LY, Chang WC, Chen BK. Oleic acid-induced NOX4 is dependent on ANGPTL4 expression to promote human colorectal cancer metastasis. Am J Cancer Res 2020; 10:7083-7099. [PMID: 32641980 PMCID: PMC7330862 DOI: 10.7150/thno.44744] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Colorectal cancer (CRC) progression and related mortality are highly associated with metabolic disorders. However, the molecular mechanism involved in the regulation of hyperlipidemia-associated CRC metastasis remains unclear. This study aimed to investigate the effects of angiopoietin-like 4 (ANGPTL4) on NADPH oxidase 4 (NOX4) expression and reactive oxygen species (ROS) production, which might provide new targets for improving outcomes in patients with hyperlipidemia-associated CRC metastasis. Methods: The clinical relevance of relationship between NOX4 expression and ANGPTL4 was examined in CRC patients by the Oncomine and TCGA data set. Expressions of NOX4, epithelial-mesenchymal transition (EMT) markers, and gene regulation of NOX4 in free fatty acids (FFAs)-treated CRC cells were determined. The FFAs-triggered metastatic ability of CRC cells under treatments of antioxidants or knockdown of NOX4, ANGPTL4, and MMPs was evaluated in vitro and in vivo. In addition, effects of antioxidants and depletion of metastasis-associated molecules on the correlation between ROS production and FFAs-promoted CRC metastasis were also clarified. Results: In this study, we found that the induction of NOX4, followed by the increased ROS was essential for oleic acid (OA)-promoted CRC cell metastasis. The depletion of ANGPTL4 significantly inhibited c-Jun-mediated transactivation of NOX4 expression, accompanied with reduced levels of ROS, MMP-1, and MMP-9, resulting in the disruption of OA-promoted CRC cell metastasis. Moreover, knockdown of ANGPTL4, NOX4, MMP-1, and MMP-9 or the treatment of antioxidants dramatically inhibited circulating OA-enhanced tumor cell extravasation and metastatic seeding of tumor cells in lungs, indicating that the ANGPTL4/NOX4 axis was critical for dyslipidemia-associated tumor metastasis. Conclusion: The coincident expression of NOX4 and ANGPTL4 in CRC tumor specimens provides the insight into the potential therapeutic targets for the treatment of dyslipidemia-associated CRC metastasis.
Collapse
|
17
|
Aghaalikhani N, Zamani M, Allameh A, Mashayekhi A, Shadpour P, Mahmoodi M, Rashtchizadeh N. Involvement of haptoglobin phenotypes and genotypes in non-muscle invasive bladder cancer: A possible prognostic marker for risk stratification. EXCLI JOURNAL 2020; 19:351-359. [PMID: 32256273 PMCID: PMC7105941 DOI: 10.17179/excli2019-1768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/02/2020] [Indexed: 11/10/2022]
Abstract
The association of haptoglobin (Hp) with various cancers has been reported and also it has been documented that the Hp phenotypes/genotypes have different functional ability. So, we examined phenotypes/genotypes of Hp in newly diagnosed, untreated non-muscle invasive bladder cancer (NMIBC) patients and investigated its prognostic value for risk stratification of the cancer. In eighty NMIBC patients and 80 healthy individuals the Hp genotypes and phenotypes were analyzed using polymerase chain reaction (PCR) and two-dimensional gel electrophoresis (2D-GE), respectively. Besides, the presence of the Hpα1, α2, and β chains in the sera was confirmed by Mass Spectrometry (MS). The frequencies of the 1-1 and 2-2 genotypes/phenotypes were respectively higher and lower in healthy subjects compared to the patients. Our results revealed that the 2-2 genotype/phenotype could increase the risk of NMIBC. There was a positive association between the 2-2 genotype/phenotype with the T category/grade of cancer (p<0.05). The present study implied a strong association between the Hp phenotypes and genotypes with NMIBC. It was found that the 2-2 genotype and phenotype could be a risk factor for NMIBC incidence, as well as, progression. This study introduced Hp genotyping as a possible cost-effective and precise method for prognosis of individuals at the risk of NMIBC.
Collapse
Affiliation(s)
- Nazi Aghaalikhani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Zamani
- Department of Agronomy and Plant Breeding, School of Agriculture, University of Tehran, Karaj, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Mashayekhi
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Pejman Shadpour
- Hasheminejad Kidney Center (HKC), Hospital Management Research Center (HMRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Marzieh Mahmoodi
- Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nadereh Rashtchizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Hu Z, Tan S, Chen S, Qin S, Chen H, Qin S, Huang Z, Zhou F, Qin X. Diagnostic value of hematological parameters platelet to lymphocyte ratio and hemoglobin to platelet ratio in patients with colon cancer. Clin Chim Acta 2019; 501:48-52. [PMID: 31809747 DOI: 10.1016/j.cca.2019.11.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 12/09/2022]
Abstract
OBJECTIVE This study was designed to retrospectively analyze the value of the hematological parameter platelet to lymphocyte ratio (PLR) and hemoglobin to platelet ratio (HPR) in patients with colon cancer. METHODS The hematological parameters and clinical data of 354 cases patients with colon cancer, 108 cases patients with benign colon tumors and 123 healthy controls were collected from our hospital electronic medical records. RESULTS Compared with the colon benign tumor group and the healthy control group, the colon cancer group had an increased PLR value and a decreased HPR value. The correlation between the clinicopathological features and the laboratory parameters of colon cancer patients was analyzed, and the results showed that both PLR and HPR were associated with tumor invasion and tumor size. Compared with PLR (AUC = 0.725, 95%CI: 0.682-0.765), HPR (AUC = 0.752, 95%CI: 0.710-0.790) or carcinoembryonic antigen (CEA) (AUC = 0.710, 95%CI: 0.666-0.751) used alone, the combination with PLR and CEA (AUC = 0.790, 95%CI: 0.750-0.826) or with HPR and CEA (AUC = 0.814, 95%CI: 0.775-0.848) can improve specificity and produce greater AUC in differentiating colon cancer from benign colon cancer. CONCLUSION Combined application of PLR, HPR, and CEA may improve the diagnostic efficacy of distinguishing between colon cancer and benign colon tumors.
Collapse
Affiliation(s)
- Zuojian Hu
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shaolin Tan
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Siyuan Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shanzi Qin
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Huaping Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Simeng Qin
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zhili Huang
- Department of Blood Transfusion, Second Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Fengyuan Zhou
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xue Qin
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
19
|
Seiwert N, Heylmann D, Hasselwander S, Fahrer J. Mechanism of colorectal carcinogenesis triggered by heme iron from red meat. Biochim Biophys Acta Rev Cancer 2019; 1873:188334. [PMID: 31783067 DOI: 10.1016/j.bbcan.2019.188334] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the major tumor entities worldwide, with an increasing incidence in younger people. CRC formation is causally linked to various genetic, life-style and dietary risk factors. Among the ladder, the consumption of red meat has emerged as important risk factor contributing to CRC. A large body of evidence shows that heme iron is the critical component of red meat, which promotes colorectal carcinogenesis. In this review, we describe the uptake and cellular fate of both heme and inorganic iron in intestinal epithelial cells. Next, an overview on the DNA damaging properties of heme iron is provided, highlighting the DNA adducts relevant for CRC etiology. Moreover, heme triggered mechanisms leading to colonic hyperproliferation are presented, which are intimately linked to changes in the intestinal microbiota induced by heme. A special focus was set on the impact of heme iron on innate and adaptive immune cells, which could be relevant in the context of CRC. Finally, we recapitulate in vivo studies providing evidence for the tumor-promoting potential of dietary heme iron. Altogether, heme iron affects numerous key pathways involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Nina Seiwert
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
20
|
Domínguez R, Pateiro M, Gagaoua M, Barba FJ, Zhang W, Lorenzo JM. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants (Basel) 2019; 8:E429. [PMID: 31557858 PMCID: PMC6827023 DOI: 10.3390/antiox8100429] [Citation(s) in RCA: 788] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022] Open
Abstract
Meat and meat products are a fundamental part of the human diet. The protein and vitamin content, as well as essential fatty acids, gives them an appropriate composition to complete the nutritional requirements. However, meat constituents are susceptible to degradation processes. Among them, the most important, after microbial deterioration, are oxidative processes, which affect lipids, pigments, proteins and vitamins. During these reactions a sensory degradation of the product occurs, causing consumer rejection. In addition, there is a nutritional loss that leads to the formation of toxic substances, so the control of oxidative processes is of vital importance for the meat industry. Nonetheless, despite lipid oxidation being widely investigated for decades, the complex reactions involved in the process, as well as the different pathways and factors that influenced them, make that lipid oxidation mechanisms have not yet been completely understood. Thus, this article reviews the fundamental mechanisms of lipid oxidation, the most important oxidative reactions, the main factors that influence lipid oxidation, and the routine methods to measure compounds derived from lipid oxidation in meat.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain.
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| |
Collapse
|
21
|
Wang B, Zhang H, An J, Zhang Y, Sun L, Jin Y, Shi J, Li M, Zhang H, Zhang Z. Sequential Intercellular Delivery Nanosystem for Enhancing ROS-Induced Antitumor Therapy. NANO LETTERS 2019; 19:3505-3518. [PMID: 31034238 DOI: 10.1021/acs.nanolett.9b00336] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite recent advances in enhancing photodynamic therapy efficacy, high-efficiency reactive oxygen species (ROS)-based therapy approach, especially in malignancy tumor treatment, remains challenging. Relieving the hypoxia of tumor tissue has been considered to be an attractive strategy for enhancing ROS-based treatment effect. Nevertheless, it is frequently neglected that the hypoxic regions are usually located deep in the tumors and therefore are usually inaccessible. To address these limitations, herein we constructed a sequential intercellular delivery system (MFLs/LAOOH@DOX) that consists of a membrane fusion liposomes (MFLs) doped with linoleic acid hydroperoxide (LAOOH) in the lipid bilayer and antitumor doxorubicin (DOX) encapsulated inside. In this report, LAOOH, one of the primary products of lipid peroxidation in vivo, was selected as ROS-generated agent herein, which depends on Fe2+ rather than oxygen and other external stimuli to produce ROS. Upon the enhanced permeation and retention effect, MFLs/LAOOH@DOX first fused with tumor cell membranes in the perivascular region in synchrony with selective delivery of LAOOH into the plasma membrane and the on-demand intracellular release of DOX. By hitchhiking with extracellular vesicles, LAOOH, as a cell membrane natural ingredient, spread gradually to neighboring cells and throughout the entire tumor eventually. Combined with subsequent administration of nano Fe3O4, ROS was specifically generated on the tumor cell membrane by LAOOH throughout the tumor tissues. This study offers a new method to enhance ROS-based antitumor treatment efficiency.
Collapse
Affiliation(s)
- Binghua Wang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou 450001 , Henan Province , China
| | - Huifang Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Jingyi An
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Yiwen Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Lulu Sun
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Yajie Jin
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Jinjin Shi
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Mengjia Li
- School of Materials Science and Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Hongling Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou 450001 , Henan Province , China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou 450001 , Henan Province , China
| |
Collapse
|
22
|
Barsukova ME, Veselova IA, Shekhovtsova TN. Main Methods and Approaches to the Determination of Markers of Oxidative Stress—Organic Peroxide Compounds and Hydrogen Peroxide. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819020035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019; 119:2043-2086. [DOI: 10.1021/acs.chemrev.8b00554] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
24
|
Sasso A, Latella G. Role of Heme Iron in the Association Between Red Meat Consumption and Colorectal Cancer. Nutr Cancer 2019; 70:1173-1183. [DOI: 10.1080/01635581.2018.1521441] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Arianna Sasso
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giovanni Latella
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
25
|
de Oliveira AAF, de Oliveira TF, Dias MF, Medeiros MHG, Di Mascio P, Veras M, Lemos M, Marcourakis T, Saldiva PHN, Loureiro APM. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM 2.5) from São Paulo city, Brazil. Part Fibre Toxicol 2018; 15:40. [PMID: 30340610 PMCID: PMC6194750 DOI: 10.1186/s12989-018-0276-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.
Collapse
Affiliation(s)
- Antonio Anax Falcão de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Tiago Franco de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
- Present address: Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, Porto Alegre, Rio Grande do Sul CEP 90050-170 Brazil
| | - Michelle Francini Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Marisa Helena Gennari Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Mariana Veras
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Miriam Lemos
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
- Instituto de Estudos Avançados, Universidade de São Paulo, R. do Anfiteatro, 513, São Paulo, CEP 05508060 Brazil
| | - Ana Paula Melo Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| |
Collapse
|
26
|
Shen Y, Wang C, Ren Y, Ye J. A comprehensive look at the role of hyperlipidemia in promoting colorectal cancer liver metastasis. J Cancer 2018; 9:2981-2986. [PMID: 30123367 PMCID: PMC6096362 DOI: 10.7150/jca.25640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most malignant cancers, and it tends to migrate to the liver and has a high mortality rate. Several mechanisms behind the metastasis of CRC have been identified, including hyperlipidemia. For example, hyperlipidemia can lead to enhanced stemness and neutrophil infiltration, which increases CRC metastasis. There are three primary aspects to the relationship between hyperlipidemia and CRC metastasis: hyperlipidemia (1) promotes the initial metastatic properties of CRC, (2) stimulates CRC cells to leave the vasculature, and (3) facilitates the development of CRC metastasis. In this study, we provide a comprehensive overview of the role that hyperlipidemia played in CRC metastasis to help reduce the mortality associated with CRC metastasis from the standpoint of metabolic. We also review cancer metastasis.
Collapse
Affiliation(s)
- Yimin Shen
- 1 Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Caihua Wang
- 2 Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuezhong Ren
- 1 Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jun Ye
- 2 Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
27
|
Morales AM, Mukai R, Murota K, Terao J. Inhibitory effect of catecholic colonic metabolites of rutin on fatty acid hydroperoxide and hemoglobin dependent lipid peroxidation in Caco-2 cells. J Clin Biochem Nutr 2018; 63:175-180. [PMID: 30487666 PMCID: PMC6252304 DOI: 10.3164/jcbn.18-38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 02/05/2023] Open
Abstract
To determine the preventive effect of dietary rutin on oxidative damages occurring in the digestive tract, 13-hydroperoxyoctadecadienoic acid and hemoglobin were exposed to Caco-2 intestinal cells after the pretreatment with colonic rutin metabolites. Among four catechol-type metabolites, quercetin and 3,4-dihydroxytoluene exerted significant protection on 13-hydroperoxyoctadecadienoic and hemoglobin-dependent lipid peroxidation of this epithelial cell. Compared with quercetin, a much lower concentration allowed 3,4-dihydroxytoluene to maximize the protective effect, though it needed a longer pre-incubation period. Neither quercetin nor 3,4-dihydroxytoluene affected the expression of peroxiredoxin-6 protein, which comprises the cellular antioxidant defense system. It is concluded that 3,4-dihydroxytoluene is a plausible rutin colonic metabolite that can suppress oxidative damages of intestinal epithelial cells by directly inhibiting lipid peroxidation. This result may illuminate the preventive role of dietary rutin against colorectal cancer incidence in relation to the consumption of red and processed meat.
Collapse
Affiliation(s)
- Agustin Martin Morales
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Rie Mukai
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kaeko Murota
- Department of Life Sciecne, Faculty of Science and Engeering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Junji Terao
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
28
|
Kruger C, Zhou Y. Red meat and colon cancer: A review of mechanistic evidence for heme in the context of risk assessment methodology. Food Chem Toxicol 2018; 118:131-153. [PMID: 29689357 DOI: 10.1016/j.fct.2018.04.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
Abstract
On October 26, 2015, IARC published a summary of their findings regarding the association of cancer with consumption of red meat or processed meat (IARC 2015; The Lancet Oncology 2015). The Working Group concluded that there is limited evidence in human beings for carcinogenicity from the consumption of red meat and inadequate evidence in experimental animals for the carcinogenicity of consumption of red meat. Nevertheless, the working group concluded that there is strong mechanistic evidence by which ingestion of red meat can be linked to human colorectal cancer and assigned red meat to Group 2A "probably carcinogenic to humans". The Working Group cited supporting mechanistic evidence for multiple meat components, including those formed from meat processing, such as N-nitroso compounds (NOC) and heterocyclic aromatic amines, and the endogenous compound, heme iron. The mechanism of action for each of these components is different and so it is critical to evaluate the evidence for each component separately. Consequently, this review critically examined studies that investigated mechanistic evidence associated with heme iron to assess the weight of the evidence associating exposure to red meat with colorectal cancer. The evidence from in vitro studies utilized conditions that are not necessarily relevant for a normal dietary intake and thus do not provide sufficient evidence that heme exposure from typical red meat consumption would increase the risk of colon cancer. Animal studies utilized models that tested promotion of preneoplastic conditions utilizing diets low in calcium, high in fat combined with exaggerations of heme exposure that in many instances represented intakes that were orders of magnitude above normal dietary consumption of red meat. Finally, clinical evidence suggests that the type of NOC found after ingestion of red meat in humans consists mainly of nitrosyl iron and nitrosothiols, products that have profoundly different chemistries from certain N-nitroso species which have been shown to be tumorigenic through the formation of DNA adducts. In conclusion, the methodologies employed in current studies of heme have not provided sufficient documentation that the mechanisms studied would contribute to an increased risk of promotion of preneoplasia or colon cancer at usual dietary intakes of red meat in the context of a normal diet.
Collapse
Affiliation(s)
- Claire Kruger
- ChromaDex Spherix Consulting, A Business Unit of ChromaDex, Inc., Rockville, MD, United States.
| | - Yuting Zhou
- ChromaDex Spherix Consulting, A Business Unit of ChromaDex, Inc., Rockville, MD, United States
| |
Collapse
|
29
|
Sbardella M, Racanicci AM, Gois FD, de Lima CB, Migotto DL, Costa LB, Miyada VS. Effects of dietary hop (Humulus lupulus L.) β-acids on quality attributes, composition and oxidative stability of pork meat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2385-2392. [PMID: 29023816 DOI: 10.1002/jsfa.8730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The effects of dietary levels of hop β-acids on physical attributes, lipid oxidation and chemical composition of pork meat were evaluated. Thirty-two castrated male pigs obtained from a complete block design feeding experiment (6.23 ± 0.42 kg initial body weight (BW) to 20.45 ± 0.95 kg final BW) and fed diets supplemented with 0, 120, 240 or 360 mg kg-1 hop β-acids during 35 days were slaughtered to sample longissimus dorsi muscle for meat analysis. RESULTS No effects (P > 0.05) of dietary hop β-acids were observed on meat physical attributes. Quadratic effects (P < 0.05) of hop β-acids were observed on lipid and protein contents and on thiobarbituric acid-reactive substance (TBARS) values of meatballs, whose equations allowed the estimation of dietary hop β-acid levels of 176, 169 and 181 mg kg-1 to provide up to 16.20% lipid reduction, 1.95% protein accretion and 23.31% TBARS reduction respectively. CONCLUSION Dietary hop β-acids fed to pigs might reduce lipid, increase protein and reduce lipid oxidation without affecting physical attributes of the pork meat. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maicon Sbardella
- Departamento de Zootecnia, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Aline Mc Racanicci
- Faculdade de Agronomia e Medicina Veterinária (FAV), Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Franz D Gois
- Departamento de Ciências Agrárias e Ambientais (DCAA), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Ba, Brazil
| | - Cristiane B de Lima
- Faculdade de Agronomia e Medicina Veterinária (FAV), Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Dannielle L Migotto
- Faculdade de Agronomia e Medicina Veterinária (FAV), Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Leandro B Costa
- Escola de Ciências da Vida (ECV), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| | - Valdomiro S Miyada
- Departamento de Zootecnia, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| |
Collapse
|
30
|
Protective Effects of ω-3 PUFA in Anthracycline-Induced Cardiotoxicity: A Critical Review. Int J Mol Sci 2017; 18:ijms18122689. [PMID: 29231904 PMCID: PMC5751291 DOI: 10.3390/ijms18122689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022] Open
Abstract
It has been demonstrated that ω-3 polyunsaturated fatty acids (ω-3 PUFA) may exert a beneficial role as adjuvants in the prevention and treatment of many disorders, including cardiovascular diseases and cancer. Particularly, several in vitro and in vivo preclinical studies have shown the antitumor activity of ω-3 PUFA in different kinds of cancers, and several human studies have shown that ω-3 PUFA are able to decrease the risk of a series of cardiovascular diseases. Several mechanisms have been proposed to explain their pleiotropic beneficial effects. ω-3 PUFA have also been shown to prevent harmful side-effects (including cardiotoxicity and heart failure) induced by conventional and innovative anti-cancer drugs in both animals and patients. The available literature regarding the possible protective effects of ω-3 PUFA against anthracycline-induced cardiotoxicity, as well as the mechanisms involved, will be critically discussed herein. The study will analyze the critical role of different levels of ω-3 PUFA intake in determining the results of the combinatory studies with anthracyclines. Suggestions for future research will also be considered.
Collapse
|
31
|
Guéraud F. 4-Hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer. Free Radic Biol Med 2017; 111:196-208. [PMID: 28065782 DOI: 10.1016/j.freeradbiomed.2016.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
4-hydroxy-2-nonenal (HNE) is an amazing reactive compound, originating from lipid peroxidation within cells but also in food and considered as a "second messenger" of oxidative stress. Due to its chemical features, HNE is able to make covalent links with DNA, proteins and lipids. The aim of this review is to give a comprehensive summary of the chemical properties of HNE and of the consequences of its reactivity in relation to cancer development. The formation of exocyclic etheno-and propano-adducts and genotoxic effects are addressed. The adduction to cellular proteins and the repercussions on the regulation of cell signaling pathways involved in cancer development are reviewed, notably on the Nrf2/Keap1/ARE pathway. The metabolic pathways leading to the inactivation/elimination or, on the contrary, to the bioactivation of HNE are considered. A special focus is given on the link between HNE and colorectal cancer development, due to its occurrence in foodstuffs and in the digestive lumen, during digestion.
Collapse
Affiliation(s)
- Françoise Guéraud
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
32
|
Malunga LN, Izydorczyk M, Beta T. Effect of water-extractable arabinoxylans from wheat aleurone and bran on lipid peroxidation and factors influencing their antioxidant capacity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bcdf.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Demeyer D, Mertens B, De Smet S, Ulens M. Mechanisms Linking Colorectal Cancer to the Consumption of (Processed) Red Meat: A Review. Crit Rev Food Sci Nutr 2017; 56:2747-66. [PMID: 25975275 DOI: 10.1080/10408398.2013.873886] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world. The vast majority of CRC cases have been linked to environmental causes rather than to heritable genetic changes. Over the last decades, epidemiological evidence linking the consumption of red and, more convincingly, of processed red meat to CRC has accumulated. In parallel, hypotheses on carcinogenic mechanisms underlying an association between CRC and the intake of red and processed red meat have been proposed and investigated in biological studies. The hypotheses that have received most attention until now include (1) the presence of polycyclic aromatic hydrocarbons and heterocyclic aromatic amines, two groups of compounds recognized as carcinogenic, (2) the enhancing effect of (nitrosyl)heme on the formation of carcinogenic N-nitroso compounds and lipid peroxidation. However, none of these hypotheses completely explains the link between red and processed red meat intake and the CRC risk. Consequently, scientists have proposed additional mechanisms or refined their hypotheses. This review first briefly summarizes the development of CRC followed by an in-depth overview and critical discussion of the different potential carcinogenic mechanisms underlying the increased CRC risk associated with the consumption of red and processed red meat.
Collapse
Affiliation(s)
- Daniel Demeyer
- a Superior Health Council , Brussels , Belgium.,b Laboratory for Animal Nutrition and Animal Product Quality , Faculty of Bioscience Engineering, Ghent University , Melle , Belgium
| | - Birgit Mertens
- a Superior Health Council , Brussels , Belgium.,c Program Toxicology, Department of Food , Medicines and Consumer Safety, Scientific Institute of Public Health (Site Elsene) , Brussels , Belgium
| | - Stefaan De Smet
- a Superior Health Council , Brussels , Belgium.,b Laboratory for Animal Nutrition and Animal Product Quality , Faculty of Bioscience Engineering, Ghent University , Melle , Belgium
| | | |
Collapse
|
34
|
Mandal P. Potential biomarkers associated with oxidative stress for risk assessment of colorectal cancer. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:557-565. [PMID: 28229171 DOI: 10.1007/s00210-017-1352-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Cells are continuously threatened by the damage caused by reactive oxygen/nitrogen species (ROS/RNS), which are produced during physiological oxygen metabolism. In our review, we will summarize the latest reports on the role of oxidative stress and oxidative stress-induced signaling pathways in the etiology of colorectal cancer. The differences in ROS generation may influence the levels of oxidized proteins, lipids, and DNA damage, thus contributing to the higher susceptibility of colon. Reactive species (RS) of various types are formed and are powerful oxidizing agents, capable of damaging DNA and other biomolecules. Increased formation of RS can promote the development of malignancy, and the "normal" rates of RS generation may account for the increased risk of cancer development in the aged. In this review, we focus on the role of oxidative stress in the etiology of colorec-tal cancer and discuss free radicals and free radical-stimulated pathways in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Paramita Mandal
- Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
35
|
Efficiency of Base Excision Repair of Oxidative DNA Damage and Its Impact on the Risk of Colorectal Cancer in the Polish Population. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3125989. [PMID: 26649135 PMCID: PMC4663340 DOI: 10.1155/2016/3125989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
Abstract
DNA oxidative lesions are widely considered as a potential risk factor for colorectal cancer development. The aim of this work was to determine the role of the efficiency of base excision repair, both in lymphocytes and in epithelial tissue, in patients with CRC and healthy subjects. SNPs were identified within genes responsible for steps following glycosylase action in BER, and patients and healthy subjects were genotyped. A radioisotopic BER assay was used for assessing repair efficiency and TaqMan for genotyping. Decreased BER activity was observed in lymphocyte extract from CRC patients and in cancer tissue extract, compared to healthy subjects. In addition, polymorphisms of EXO1, LIG3, and PolB may modulate the risk of colorectal cancer by decreasing (PolB) or increasing (LIG3 and EXO1) the chance of malignant transformation.
Collapse
|
36
|
Genaro-Mattos TC, Queiroz RF, Cunha D, Appolinario PP, Di Mascio P, Nantes IL, Augusto O, Miyamoto S. Cytochrome c Reacts with Cholesterol Hydroperoxides To Produce Lipid- and Protein-Derived Radicals. Biochemistry 2015; 54:2841-50. [DOI: 10.1021/bi501409d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Thiago C. Genaro-Mattos
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Raphael F. Queiroz
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
- Departamento
de Química e Exatas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA 45200-000, Brazil
| | - Daniela Cunha
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Patricia P. Appolinario
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Paolo Di Mascio
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Iseli L. Nantes
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil
| | - Ohara Augusto
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
37
|
Mirlohi S, Duncan SE, Harmon M, Case D, Lesser G, Dietrich AM. Analysis of salivary fluid and chemosensory functions in patients treated for primary malignant brain tumors. Clin Oral Investig 2014; 19:127-37. [PMID: 24595687 PMCID: PMC4156565 DOI: 10.1007/s00784-014-1211-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/05/2014] [Indexed: 12/05/2022]
Abstract
Objectives The frequency and causes of chemosensory (taste and smell) disorders in cancer patients remain under-reported. This study examined the impact of cancer therapy on taste/smell functions and salivary constituents in brain tumor patients. Materials and methods Twenty-two newly diagnosed patients with primary malignant gliomas underwent 6 weeks of combined modality treatment (CMD) with radiation and temozolomide followed by six monthly cycles of temozolomide. Chemosensory functions were assessed at 0, 3, 6, 10, 18, and 30 weeks with paired samples of saliva collected before and after an oral rinse with ferrous-spiked water. Iron (Fe)-induced oxidative stress was measured by salivary lipid oxidation (SLO); salivary proteins, electrolytes, and metals were determined. Parallel salivary analyses were performed on 22 healthy subjects. Results Chemosensory complaints of cancer patients increased significantly during treatment (p = 0.04) except at 30 weeks. Fe-induced SLO increased at 10 and 18 weeks. When compared with healthy subjects, SLO, total protein, Na, K, Cu, P, S, and Mg levels, as averaged across all times, were significantly higher (p < 0.05), whereas salivary Zn, Fe, and oral pH levels were significantly lower in cancer patients (p < 0.05). Neither time nor treatment had a significant impact on these salivary parameters in cancer patients. Conclusions Impact of CMT treatment on chemosensory functions can range from minimal to moderate impairment. Analysis of SLO, metals, and total protein do not provide for reliable measures of chemosensory dysfunctions over time. Clinical relevance Taste and smell functions are relevant in health and diseases; study of salivary constituents may provide clues on the causes of their dysfunctions.
Collapse
Affiliation(s)
- Susan Mirlohi
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | | | | | | | | | | |
Collapse
|
38
|
Libardi SH, Pindstrup H, Amigo JM, Cardoso DR, Skibsted LH. Reduction of ferrylmyoglobin by cysteine as affected by pH. RSC Adv 2014. [DOI: 10.1039/c4ra10562a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein we report the kinetics and mechanism by which hypervalent heme-iron species formed in the gut may be deactivated by thiols like cysteine and glutathione.
Collapse
Affiliation(s)
- S. H. Libardi
- Chemistry Institute at São Carlos
- University of São Paulo
- São Carlos, Brazil
| | - H. Pindstrup
- Department of Food Science
- University of Copenhagen
- Frederiksberg C, Denmark
| | - J. M. Amigo
- Department of Food Science
- University of Copenhagen
- Frederiksberg C, Denmark
| | - D. R. Cardoso
- Chemistry Institute at São Carlos
- University of São Paulo
- São Carlos, Brazil
| | - L. H. Skibsted
- Department of Food Science
- University of Copenhagen
- Frederiksberg C, Denmark
| |
Collapse
|
39
|
Yi G, Haug A, Nyquist NF, Egelandsdal B. Hydroperoxide formation in different lean meats. Food Chem 2013; 141:2656-65. [PMID: 23871008 DOI: 10.1016/j.foodchem.2013.05.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/04/2013] [Accepted: 05/13/2013] [Indexed: 12/01/2022]
Abstract
Peroxide is one of the compounds that are indicated to be toxic in the human digestion system. Lean fresh meat samples were collected from beef, lamb, pork and chicken to investigate their hydroperoxide formation potential. Total peroxides of fresh comminuted raw meat were determined by analysing protein-bound peroxides and hydroperoxide compounds in water-methanol and chloroform extracted phases. The amount of total peroxides was ranked as: beef>pork>lamb>chicken. Hydroperoxide formation was examined at different pH values and at different incubation times, using beef and chicken samples. All peroxides were transient, with a maximum value after 2-4 h of incubation at 37 °C. When pH fell from 7 to 1.5, the different peroxides fell by 10-20%. Non-polar peroxide formation could largely (70%) be described by variation in fatty acid composition and hemin content of the meat, while protein-bound peroxide variation was less explained by these variables. Liposome addition increased (40%) the amount of protein-bound peroxides.
Collapse
Affiliation(s)
- Gu Yi
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway.
| | | | | | | |
Collapse
|
40
|
Perše M. Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? BIOMED RESEARCH INTERNATIONAL 2013; 2013:725710. [PMID: 23762854 PMCID: PMC3666330 DOI: 10.1155/2013/725710] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
There is a growing support for the concept that reactive oxygen species, which are known to be implicated in a range of diseases, may be important progenitors in carcinogenesis, including colorectal cancer (CRC). CRC is one of the most common cancers worldwide, with the highest incidence rates in western countries. Sporadic human CRC may be attributable to various environmental and lifestyle factors, such as dietary habits, obesity, and physical inactivity. In the last decades, association between oxidative stress and CRC has been intensively studied. Recently, numerous genetic and lifestyle factors that can affect an individual's ability to respond to oxidative stress have been identified. The aim of this paper is to review evidence linking oxidative stress to CRC and to provide essential background information for accurate interpretation of future research on oxidative stress and CRC risk. Brief introduction of different endogenous and exogenous factors that may influence oxidative status and modulate the ability of gut epithelial cells to cope with damaging metabolic challenges is also provided.
Collapse
Affiliation(s)
- Martina Perše
- Institute of Pathology, Medical Experimental Centre, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1105 Ljubljana, Slovenia.
| |
Collapse
|
41
|
Bułdak RJ, Bułdak Ł, Polaniak R, Kukla M, Birkner E, Kubina R, Kabała-Dzik A, Duława-Bułdak A, Żwirska-Korczala K. Visfatin affects redox adaptative responses and proliferation in Me45 human malignant melanoma cells: an in vitro study. Oncol Rep 2012; 29:771-8. [PMID: 23232726 DOI: 10.3892/or.2012.2175] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/18/2012] [Indexed: 11/06/2022] Open
Abstract
Visfatin has recently been established as a novel adipokine that is predominantly expressed in subcutaneous and visceral fat. Only few studies have investigated the effect of visfatin on prostate, breast, ovarian cancer as well as on astrocytoma cell biology. There have been no previous studies on antioxidative enzyme activities, proliferation processes or levels of DNA damage in malignant melanoma cells in response to visfatin stimulation. Here, we report that visfatin increases activity of selected antioxidative enzymes (SOD, CAT, GSH-Px) in culture supernatants of Me45 human malignant melanoma cells. Our findings suggest that visfatin triggers a redox adaptation response, leading to an upregulation of antioxidant capacity along with decreased levels of the lipid peroxidation process in Me45 melanoma cells. Moreover, visfatin led to a significantly increased proliferation rate in the study using the [(3)H]thymidine incorporation method. Unlike insulin, visfatin-induced melanoma cell proliferation is not mediated by an insulin receptor. Better understanding of the role of visfatin in melanoma redox states may provide sound insight into the association between obesity-related fat adipokines and the antioxidant defense system in vitro in melanoma progression.
Collapse
Affiliation(s)
- Rafał Jakub Bułdak
- Department of Physiology, Medical University of Silesia, Zabrze, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
He K, Li X, Ye X, Yuan L, Li X, Chen X, Deng Y. A mitochondria-based method for the determination of antioxidant activities using 2′,7′‐dichlorofluorescin diacetate oxidation. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Serum Lipids and the Risk of Gastrointestinal Malignancies in the Swedish AMORIS Study. J Cancer Epidemiol 2012; 2012:792034. [PMID: 22969802 PMCID: PMC3437288 DOI: 10.1155/2012/792034] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022] Open
Abstract
Background. Metabolic syndrome has been linked to an increased cancer risk, but the role of dyslipidaemia in gastrointestinal malignancies is unclear. We aimed to assess the risk of oesophageal, stomach, colon, and rectal cancers using serum levels of lipid components. Methods. From the Swedish Apolipoprotein Mortality Risk (AMORIS) study, we selected 540,309 participants (> 20 years old) with baseline measurements of total cholesterol (TC), triglycerides (TG), and glucose of whom 84,774 had baseline LDL cholesterol (LDL), HDL cholesterol (HDL), apolipoprotein B (apoB), and apolipoprotein A-I (apoA-I). Multivariate Cox proportional hazards regression was used to assess glucose and lipid components in relation to oesophageal, stomach, colon, and rectal cancer risk. Results. An increased risk of oesophageal cancer was observed in persons with high TG (e.g. HR: 2.29 (95% CI: 1.42–3.68) for the 4th quartile compared to the 1st) and low LDL, LDL/HDL ratio, TC/HDL ratio, log (TG/HDL), and apoB/apoA-I ratio. High glucose and TG were linked with an increased colon cancer risk, while high TC levels were associated with an increased rectal cancer risk. Conclusion. The persistent link between TC and rectal cancer risk as well as between TG and oesophageal and colon cancer risk in normoglycaemic individuals may imply their substantiality in gastrointestinal carcinogenesis.
Collapse
|
44
|
Hill S, Lamberson CR, Xu L, To R, Tsui HS, Shmanai VV, Bekish AV, Awad AM, Marbois BN, Cantor CR, Porter NA, Clarke CF, Shchepinov MS. Small amounts of isotope-reinforced polyunsaturated fatty acids suppress lipid autoxidation. Free Radic Biol Med 2012; 53:893-906. [PMID: 22705367 PMCID: PMC3437768 DOI: 10.1016/j.freeradbiomed.2012.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/08/2012] [Accepted: 06/01/2012] [Indexed: 01/13/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) undergo autoxidation and generate reactive carbonyl compounds that are toxic to cells and associated with apoptotic cell death, age-related neurodegenerative diseases, and atherosclerosis. PUFA autoxidation is initiated by the abstraction of bis-allylic hydrogen atoms. Replacement of the bis-allylic hydrogen atoms with deuterium atoms (termed site-specific isotope-reinforcement) arrests PUFA autoxidation due to the isotope effect. Kinetic competition experiments show that the kinetic isotope effect for the propagation rate constant of Lin autoxidation compared to that of 11,11-D(2)-Lin is 12.8 ± 0.6. We investigate the effects of different isotope-reinforced PUFAs and natural PUFAs on the viability of coenzyme Q-deficient Saccharomyces cerevisiae coq mutants and wild-type yeast subjected to copper stress. Cells treated with a C11-BODIPY fluorescent probe to monitor lipid oxidation products show that lipid peroxidation precedes the loss of viability due to H-PUFA toxicity. We show that replacement of just one bis-allylic hydrogen atom with deuterium is sufficient to arrest lipid autoxidation. In contrast, PUFAs reinforced with two deuterium atoms at mono-allylic sites remain susceptible to autoxidation. Surprisingly, yeast treated with a mixture of approximately 20%:80% isotope-reinforced D-PUFA:natural H-PUFA are protected from lipid autoxidation-mediated cell killing. The findings reported here show that inclusion of only a small fraction of PUFAs deuterated at the bis-allylic sites is sufficient to profoundly inhibit the chain reaction of nondeuterated PUFAs in yeast.
Collapse
Affiliation(s)
- Shauna Hill
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Dr. E., Los Angeles, CA 90095-1569
| | | | - Libin Xu
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | - Randy To
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Dr. E., Los Angeles, CA 90095-1569
| | - Hui S. Tsui
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Dr. E., Los Angeles, CA 90095-1569
| | - Vadim V. Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, 13 Surganova Street, Minsk 220072, Belarus
| | - Andrei V. Bekish
- Department of Chemistry, Belarusian State University, Minsk 220020, Belarus
| | - Agape M. Awad
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Dr. E., Los Angeles, CA 90095-1569
| | - Beth N. Marbois
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Dr. E., Los Angeles, CA 90095-1569
| | - Charles R. Cantor
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Retrotope Inc., 12133 Foothill Lane, Los Altos Hills, CA 94022
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Dr. E., Los Angeles, CA 90095-1569
- To whom correspondence should be addressed: Catherine F. Clarke, Tel. 310.825.0771, Fax. 310.206.5213, ; and Mikhail S. Shchepinov, Tel. 650.917.9256, Fax. 650.917.9255,
| | - Mikhail S. Shchepinov
- Retrotope Inc., 12133 Foothill Lane, Los Altos Hills, CA 94022
- To whom correspondence should be addressed: Catherine F. Clarke, Tel. 310.825.0771, Fax. 310.206.5213, ; and Mikhail S. Shchepinov, Tel. 650.917.9256, Fax. 650.917.9255,
| |
Collapse
|
45
|
Current world literature. Curr Opin Cardiol 2012; 27:441-54. [PMID: 22678411 DOI: 10.1097/hco.0b013e3283558773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Tudek B, Speina E. Oxidatively damaged DNA and its repair in colon carcinogenesis. Mutat Res 2012; 736:82-92. [PMID: 22561673 DOI: 10.1016/j.mrfmmm.2012.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/02/2012] [Accepted: 04/16/2012] [Indexed: 12/18/2022]
Abstract
Inflammation, high fat, high red meat and low fiber consumption have for long been known as the most important etiological factors of sporadic colorectal cancers (CRC). Colon cancer originates from neoplastic transformation in a single layer of epithelial cells occupying colonic crypts, in which migration and apoptosis program becomes disrupted. This results in the formation of polyps and metastatic cancers. Mutational program in sporadic cancers involves APC gene, in which mutations occur most abundantly in the early phase of the process. This is followed by mutations in RAS, TP53, and other genes. Progression of carcinogenic process in the colon is accompanied by augmentation of the oxidative stress, which manifests in the increased level of oxidatively damaged DNA both in the colon epithelium, and in blood leukocytes and urine, already at the earliest stages of disease development. Defence mechanisms are deregulated in CRC patients: (i) antioxidative vitamins level in blood plasma declines with the development of disease; (ii) mRNA level of base excision repair enzymes in blood leukocytes of CRC patients is significantly increased; however, excision rate is regulated separately, being increased for 8-oxoGua, while decreased for lipid peroxidation derived ethenoadducts, ɛAde and ɛCyt; (iii) excision rate of ɛAde and ɛCyt in colon tumors is significantly increased in comparison to asymptomatic colon margin, and ethenoadducts level is decreased. This review highlights mechanisms underlying such deregulation, which is the driving force to colon carcinogenesis.
Collapse
Affiliation(s)
- Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|