1
|
Keeney MT, Rocha EM, Hoffman EK, Farmer K, Di Maio R, Weir J, Wagner WG, Hu X, Clark CL, Castro SL, Scheirer A, Fazzari M, De Miranda BR, Pintchovski SA, Shrader WD, Pagano PJ, Hastings TG, Greenamyre JT. LRRK2 regulates production of reactive oxygen species in cell and animal models of Parkinson's disease. Sci Transl Med 2024; 16:eadl3438. [PMID: 39356746 DOI: 10.1126/scitranslmed.adl3438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Oxidative stress has long been implicated in Parkinson's disease (PD) pathogenesis, although the sources and regulation of reactive oxygen species (ROS) production are poorly defined. Pathogenic mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are associated with increased kinase activity and a greater risk of PD. The substrates and downstream consequences of elevated LRRK2 kinase activity are still being elucidated, but overexpression of mutant LRRK2 has been associated with oxidative stress, and antioxidants reportedly mitigate LRRK2 toxicity. Here, using CRISPR-Cas9 gene-edited HEK293 cells, RAW264.7 macrophages, rat primary ventral midbrain cultures, and PD patient-derived lymphoblastoid cells, we found that elevated LRRK2 kinase activity was associated with increased ROS production and lipid peroxidation and that this was blocked by inhibitors of either LRRK2 kinase or NADPH oxidase 2 (NOX2). Oxidative stress induced by the pesticide rotenone was ameliorated by LRRK2 kinase inhibition and was absent in cells devoid of LRRK2. In a rat model of PD induced by rotenone, a LRRK2 kinase inhibitor prevented the lipid peroxidation and NOX2 activation normally seen in nigral dopaminergic neurons in this model. Mechanistically, LRRK2 kinase activity was shown to regulate phosphorylation of serine-345 in the p47phox subunit of NOX2. This, in turn, led to translocation of p47phox from the cytosol to the membrane-associated gp91phox (NOX2) subunit, activation of the NOX2 enzyme complex, and production of ROS. Thus, LRRK2 kinase activity may drive cellular ROS production in PD through the regulation of NOX2 activity.
Collapse
Affiliation(s)
- Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric K Hoffman
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle Farmer
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie Weir
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weston G Wagner
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaoping Hu
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Courtney L Clark
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sandra L Castro
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abigail Scheirer
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Rauf A, Khalil AA, Awadallah S, Khan SA, Abu‐Izneid T, Kamran M, Hemeg HA, Mubarak MS, Khalid A, Wilairatana P. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors-A review. Food Sci Nutr 2024; 12:675-693. [PMID: 38370049 PMCID: PMC10867483 DOI: 10.1002/fsn3.3784] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 02/20/2024] Open
Abstract
Reactive oxygen species (ROS) are produced under normal physiological conditions and may have beneficial and harmful effects on biological systems. ROS are involved in many physiological processes such as differentiation, proliferation, necrosis, autophagy, and apoptosis by acting as signaling molecules or regulators of transcription factors. In this case, maintaining proper cellular ROS levels is known as redox homeostasis. Oxidative stress occurs because of the imbalance between the production of ROS and antioxidant defenses. Sources of ROS include the mitochondria, auto-oxidation of glucose, and enzymatic pathways such as nicotinamide adenine dinucleotide phosphate reduced (NAD[P]H) oxidase. The possible ROS pathways are NF-κB, MAPKs, PI3K-Akt, and the Keap1-Nrf2-ARE signaling pathway. This review covers the literature pertaining to the possible ROS pathways and strategies to inhibit them. Additionally, this review summarizes the literature related to finding ROS inhibitors.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of ChemistryUniversity of SwabiAnbarPakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical SciencesZarqa UniversityZarqaJordan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural SciencesNational University of Science and Technology (NUST)IslamabadPakistan
| | - Tareq Abu‐Izneid
- Pharmaceutical Sciences, College of PharmacyAl Ain UniversityAl Ain, Abu DhabiUAE
| | - Muhammad Kamran
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Hassan A. Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical SciencesTaibah UniversityAl‐Medinah Al‐MonawaraSaudi Arabia
| | | | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| |
Collapse
|
3
|
Maqbool A, Viswambharan H, Skromna A, Makava N, Shawer H, Bridge K, Muminov SK, Imrie H, Griffin K, Wheatcroft SB, Sukumar P, Cubbon RM, Kearney MT, Yuldasheva NY. Whole-body insulin resistance leads to accelerated atherosclerosis: role for Nox2 NADPH oxidase. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2024; 6:e230018. [PMID: 39401163 PMCID: PMC11623257 DOI: 10.1530/vb-23-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/11/2024] [Indexed: 11/09/2024]
Abstract
Insulin resistance underpins the progression of type 2 diabetes mellitus and leads to a collection of risk factors for the development of atherosclerosis. Whether or not insulin resistance at a whole-body level per se leads to accelerated atherosclerosis is unclear. To answer this question, we generated atherosclerosis-prone mice with whole-body insulin resistance secondary to haploinsufficiency of the insulin receptor (IR+/-) deficient in ApoE-/- (IR+/-/ApoE-/-). IR+/-/ApoE-/- and ApoE-/- littermates had similar weight, lipids, and glucose tolerance at baseline. After 12 weeks of Western high-cholesterol diet, IR+/-/ApoE-/- had significantly more atherosclerosis in the thoracoabdominal aorta and at the level of the aortic sinus than ApoE-/- littermates. Excess Nox2 NADPH oxidase (Nox2) derived superoxide has been suggested to underpin diabetes-related atherosclerosis. In IR+/-/ApoE-/- we examined the effect of inhibiting Nox2 using genetic or pharmacological approaches on the development of atherosclerosis. To genetically delete Nox2, we generated IR+/-/ApoE-/-/Nox2-/y and to inhibit Nox2 pharmacologically, we treated IR+/-/ApoE-/- with the peptide Nox2 inhibitor gp91dstat. IR+/-/ApoE-/-/Nox2-/y had significant disruption of the aortic wall with increased thoracoabdominal atherosclerosis when compared to IR+/-/ApoE-/-/Nox2+/y littermates. Inhibition of Nox2 using gp91dstat reduced atherosclerosis in the thoracoabdominal aorta of IR+/-/ApoE-/-. Whole-body insulin resistance accelerates the development of atherosclerosis. Genetic inhibition of Nox2 leads to disruption of the aortic wall in IR+/-/ApoE-/- mice with accelerated atherosclerosis, whereas pharmacological Nox2 inhibition reduces atherosclerosis in IR+/-/ApoE-/- without disruption of the arterial wall.
Collapse
Affiliation(s)
- Azhar Maqbool
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Hema Viswambharan
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Anna Skromna
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Natallia Makava
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Heba Shawer
- The Welcome Trust Centre for Human Genetics, University of Oxford, UK
| | - Katherine Bridge
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | | | - Helen Imrie
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Kathryn Griffin
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Stephen B Wheatcroft
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Piruthivi Sukumar
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Richard M Cubbon
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | | |
Collapse
|
4
|
Cheng PF, Yuan-He, Ge MM, Ye DW, Chen JP, Wang JX. Targeting the Main Sources of Reactive Oxygen Species Production: Possible Therapeutic Implications in Chronic Pain. Curr Neuropharmacol 2024; 22:1960-1985. [PMID: 37921169 PMCID: PMC11333790 DOI: 10.2174/1570159x22999231024140544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 11/04/2023] Open
Abstract
Humans have long been combating chronic pain. In clinical practice, opioids are firstchoice analgesics, but long-term use of these drugs can lead to serious adverse reactions. Finding new, safe and effective pain relievers that are useful treatments for chronic pain is an urgent medical need. Based on accumulating evidence from numerous studies, excess reactive oxygen species (ROS) contribute to the development and maintenance of chronic pain. Some antioxidants are potentially beneficial analgesics in the clinic, but ROS-dependent pathways are completely inhibited only by scavenging ROS directly targeting cellular or subcellular sites. Unfortunately, current antioxidant treatments do not achieve this effect. Furthermore, some antioxidants interfere with physiological redox signaling pathways and fail to reverse oxidative damage. Therefore, the key upstream processes and mechanisms of ROS production that lead to chronic pain in vivo must be identified to discover potential therapeutic targets related to the pathways that control ROS production in vivo. In this review, we summarize the sites and pathways involved in analgesia based on the three main mechanisms by which ROS are generated in vivo, discuss the preclinical evidence for the therapeutic potential of targeting these pathways in chronic pain, note the shortcomings of current research and highlight possible future research directions to provide new targets and evidence for the development of clinical analgesics.
Collapse
Affiliation(s)
- Peng-Fei Cheng
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuan-He
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Ping Chen
- Department of Pain Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jin-Xi Wang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
5
|
Zang J, Peters F, Cambet Y, Cifuentes-Pagano E, Hissabu MMS, Dustin CM, Svensson LH, Olesen MM, Poulsen MFL, Jacobsen S, Tuelung PS, Narayanan D, Langkilde AE, Gajhede M, Pagano PJ, Jaquet V, Vilhardt F, Bach A. Targeting NOX2 with Bivalent Small-Molecule p47phox-p22phox Inhibitors. J Med Chem 2023; 66:14963-15005. [PMID: 37857466 DOI: 10.1021/acs.jmedchem.3c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase isoform 2 (NOX2) is an enzymatic complex whose function is the regulated generation of reactive oxygen species (ROS). NOX2 activity is central to redox signaling events and antibacterial response, but excessive ROS production by NOX2 leads to oxidative stress and inflammation in a range of diseases. The protein-protein interaction between the NOX2 subunits p47phox and p22phox is essential for NOX2 activation, thus p47phox is a potential drug target. Previously, we identified 2-aminoquinoline as a fragment hit toward p47phoxSH3A-B and converted it to a bivalent small-molecule p47phox-p22phox inhibitor (Ki = 20 μM). Here, we systematically optimized the bivalent compounds by exploring linker types and positioning as well as substituents on the 2-aminoquinoline part and characterized the bivalent binding mode with biophysical methods. We identified several compounds with submicromolar binding affinities and cellular activity and thereby demonstrated that p47phox can be targeted by potent small molecules.
Collapse
Affiliation(s)
- Jie Zang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Felix Peters
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Yves Cambet
- READS unit, Centre Médical Universitaire, University of Geneva, Geneva CH-1211, Switzerland
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmacology and ChemicalBiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Munira Mohamed Shishay Hissabu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christopher M Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmacology and ChemicalBiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Lars Henrik Svensson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Martin Mariboe Olesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mathias Feldt Lomholt Poulsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Stig Jacobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Pernille Sønderby Tuelung
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Patrick J Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmacology and ChemicalBiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Vincent Jaquet
- READS unit, Centre Médical Universitaire, University of Geneva, Geneva CH-1211, Switzerland
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva CH-1211, Switzerland
| | - Frederik Vilhardt
- Institute of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Sytha SP, Bray JF, Heaps CL. Exercise induces superoxide and NOX4 contribution in endothelium-dependent dilation in coronary arterioles from a swine model of chronic myocardial ischemia. Microvasc Res 2023; 150:104590. [PMID: 37481160 PMCID: PMC10538397 DOI: 10.1016/j.mvr.2023.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Exercise training is an effective, nonpharmacologic therapy and preventative measure for ischemic heart disease. While recent studies have examined reactive oxygen species (ROS) as mediators of exercise training-enhanced coronary blood flow, specific oxidants and their sources have yet to be fully elucidated. We investigated the hypothesis that NADPH oxidase (NOX)-derived superoxide anion would contribute to vasodilation effects in the coronary microcirculation of swine and that these effects would be impaired by chronic ischemia and rescued with exercise training. Adult Yucatan miniature swine were instrumented with an ameroid occluder around the proximal left circumflex coronary artery, resulting in a collateral-dependent myocardial region. Eight weeks post-operatively, swine were randomly assigned to either a sedentary or exercise training (treadmill run; 5 days/week for 14 weeks) protocol. Coronary arterioles were isolated from nonoccluded and collateral-dependent myocardial regions and pressure myography was performed. Exercise training resulted in enhanced endothelium-dependent dilation after occlusion. Scavenging of superoxide via the superoxide dismutase (SOD)-mimetic, tempol, attenuated dilation in both nonoccluded and collateral-dependent arterioles of exercise-trained, but not sedentary swine. NOX1/4 inhibition with GKT136901 attenuated dilation after exercise training but only in collateral-dependent arterioles. High performance liquid chromatography revealed that neither ischemia nor exercise training significantly altered basal or bradykinin-stimulated superoxide levels. Furthermore, superoxide production was not attributable to NOX isoforms nor mitochondria. Immunoblot analyses revealed significantly decreased NOX2 protein after exercise with no differences in NOX1, NOX4, p22phox, SOD proteins. Taken together, these data provide evidence that superoxide and NOX4 independently contribute to enhanced endothelium-dependent dilation following exercise training.
Collapse
Affiliation(s)
| | - Jeff F Bray
- Department of Physiology and Pharmacology, USA
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, USA; Michael E. DeBakey Institute for Comparative Cardiovascular Science & Biomedical Devices, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem 2023; 66:11632-11655. [PMID: 37650225 PMCID: PMC10510401 DOI: 10.1021/acs.jmedchem.3c00770] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/01/2023]
Abstract
NADPH oxidases (NOXs) form a family of electron-transporting membrane enzymes whose main function is reactive oxygen species (ROS) generation. Strong evidence suggests that ROS produced by NOX enzymes are major contributors to oxidative damage under pathologic conditions. Therefore, blocking the undesirable actions of these enzymes is a therapeutic strategy for treating various pathological disorders, such as cardiovascular diseases, inflammation, and cancer. To date, identification of selective NOX inhibitors is quite challenging, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. The aim of this Perspective is to furnish an updated outlook about the small-molecule NOX inhibitors described over the last two decades. Structures, activities, and in vitro/in vivo specificity are discussed, as well as the main biological assays used.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
8
|
Structure, Activation, and Regulation of NOX2: At the Crossroad between the Innate Immunity and Oxidative Stress-Mediated Pathologies. Antioxidants (Basel) 2023; 12:antiox12020429. [PMID: 36829988 PMCID: PMC9952346 DOI: 10.3390/antiox12020429] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multisubunit enzyme complex that participates in the generation of superoxide or hydrogen peroxide (H2O2) and plays a key role in several biological functions. Among seven known NOX isoforms, NOX2 was the first identified in phagocytes but is also expressed in several other cell types including endothelial cells, platelets, microglia, neurons, and muscle cells. NOX2 has been assigned multiple roles in regulating many aspects of innate and adaptive immunity, and human and mouse models of NOX2 genetic deletion highlighted this key role. On the other side, NOX2 hyperactivation is involved in the pathogenesis of several diseases with different etiologies but all are characterized by an increase in oxidative stress and inflammatory process. From this point of view, the modulation of NOX2 represents an important therapeutic strategy aimed at reducing the damage associated with its hyperactivation. Although pharmacological strategies to selectively modulate NOX2 are implemented thanks to new biotechnologies, this field of research remains to be explored. Therefore, in this review, we analyzed the role of NOX2 at the crossroads between immunity and pathologies mediated by its hyperactivation. We described (1) the mechanisms of activation and regulation, (2) human, mouse, and cellular models studied to understand the role of NOX2 as an enzyme of innate immunity, (3) some of the pathologies associated with its hyperactivation, and (4) the inhibitory strategies, with reference to the most recent discoveries.
Collapse
|
9
|
Singh PK, Saadi A, Sheeni Y, Shekh-Ahmad T. Specific inhibition of NADPH oxidase 2 modifies chronic epilepsy. Redox Biol 2022; 58:102549. [PMID: 36459714 PMCID: PMC9712695 DOI: 10.1016/j.redox.2022.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Recent work by us and others has implicated NADPH oxidase (NOX) enzymes as main producers of reactive oxygen species (ROS) following a brain insult such as status epilepticus, contributing to neuronal damage and development of epilepsy. Although several NOX isoforms have been examined in the context of epilepsy, most attention has focused on NOX2. In this present study, we demonstrate the effect of gp91ds-tat, a specific competitive inhibitor of NOX2, in in vitro epileptiform activity model as well as in temporal lobe epilepsy (TLE) model in rats. We showed that in in vitro seizure model, gp91ds-tat modulated Ca2+ oscillation, prevented epileptiform activity-induced ROS generation, mitochondrial depolarization, and neuronal death. Administration of gp91ds-tat 1 h after kainic acid-induced status epilepticus significantly decreased the expression of NOX2, as well as the overall NOX activity in the cortex and the hippocampus. Finally, we showed that upon continuous intracerebroventricular administration to epileptic rats, gp91ds-tat significantly reduced the seizure frequency and the total number of seizures post-treatment compared to the scrambled peptide-treated animals. The results of the study suggest that NOX2 may have an important effect on modulation of epileptiform activity and has a critical role in mediating seizure-induced NOX activation, ROS generation and oxidative stress in the brain, and thus significantly contributes to development of epilepsy following a brain insult.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- Corresponding author. The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
10
|
Anwar MM, Sah R, Shrestha S, Ozaki A, Roy N, Fathah Z, Rodriguez-Morales AJ. Disengaging the COVID-19 Clutch as a Discerning Eye Over the Inflammatory Circuit During SARS-CoV-2 Infection. Inflammation 2022; 45:1875-1894. [PMID: 35639261 PMCID: PMC9153229 DOI: 10.1007/s10753-022-01674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the cytokine release syndrome (CRS) and leads to multiorgan dysfunction. Mitochondrial dynamics are fundamental to protect against environmental insults, but they are highly susceptible to viral infections. Defective mitochondria are potential sources of reactive oxygen species (ROS). Infection with SARS-CoV-2 damages mitochondria, alters autophagy, reduces nitric oxide (NO), and increases both nicotinamide adenine dinucleotide phosphate oxidases (NOX) and ROS. Patients with coronavirus disease 2019 (COVID-19) exhibited activated toll-like receptors (TLRs) and the Nucleotide-binding and oligomerization domain (NOD-), leucine-rich repeat (LRR-), pyrin domain-containing protein 3 (NLRP3) inflammasome. The activation of TLRs and NLRP3 by SARS-CoV-2 induces interleukin 6 (IL-6), IL-1β, IL-18, and lactate dehydrogenase (LDH). Herein, we outline the inflammatory circuit of COVID-19 and what occurs behind the scene, the interplay of NOX/ROS and their role in hypoxia and thrombosis, and the important role of ROS scavengers to reduce COVID-19-related inflammation.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Ranjit Sah
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Sunil Shrestha
- Department of Pharmaceutical and Health Service Research, Nepal Health Research and Innovation Foundation, Lalitpur, Nepal
| | - Akihiko Ozaki
- Department of Breast Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki, Japan
- Medical Governance Research Institute, Tokyo, Japan
| | - Namrata Roy
- SRM University, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Zareena Fathah
- Kings College London, London, UK
- College of Medicine and Health Sciences, United Arab University, Abu Dhabi, United Arab Emirates
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de Las Americas, Pereira, Risaralda, Colombia.
- Institución Universitaria Visión de Las Americas, Pereira, Risaralda, Colombia.
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|
11
|
Keeney MT, Hoffman EK, Farmer K, Bodle CR, Fazzari M, Zharikov A, Castro SL, Hu X, Mortimer A, Kofler JK, Cifuentes-Pagano E, Pagano PJ, Burton EA, Hastings TG, Greenamyre JT, Di Maio R. NADPH oxidase 2 activity in Parkinson's disease. Neurobiol Dis 2022; 170:105754. [PMID: 35577065 PMCID: PMC9284948 DOI: 10.1016/j.nbd.2022.105754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are strongly implicated in Parkinson's disease (PD) pathogenesis and there is evidence that mitochondrially-generated superoxide can activate NADPH oxidase 2 (NOX2). Although NOX2 has been examined in the context of PD, most attention has focused on glial NOX2, and the role of neuronal NOX2 in PD remains to be defined. Additionally, pharmacological NOX2 inhibitors have typically lacked specificity. Here we devised and validated a proximity ligation assay for NOX2 activity and demonstrated that in human PD and two animal models thereof, both neuronal and microglial NOX2 are highly active in substantia nigra under chronic conditions. However, in acute and sub-acute PD models, we observed neuronal, but not microglial NOX2 activation, suggesting that neuronal NOX2 may play a primary role in the early stages of the disease. Aberrant NOX2 activity is responsible for the formation of oxidative stress-related post-translational modifications of α-synuclein, and impaired mitochondrial protein import in vitro in primary ventral midbrain neuronal cultures and in vivo in nigrostriatal neurons in rats. In a rat model, administration of a brain-penetrant, highly specific NOX2 inhibitor prevented NOX2 activation in nigrostriatal neurons and its downstream effects in vivo, such as activation of leucine-rich repeat kinase 2 (LRRK2). We conclude that NOX2 is an important enzyme that contributes to progressive oxidative damage which in turn can lead to α-synuclein accumulation, mitochondrial protein import impairment, and LRRK2 activation. In this context, NOX2 inhibitors hold potential as a disease-modifying therapy in PD.
Collapse
Affiliation(s)
- Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eric K Hoffman
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kyle Farmer
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christopher R Bodle
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alevtina Zharikov
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sandra L Castro
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoping Hu
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amanda Mortimer
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
NADPH Oxidases in Pain Processing. Antioxidants (Basel) 2022; 11:antiox11061162. [PMID: 35740059 PMCID: PMC9219759 DOI: 10.3390/antiox11061162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammation or injury to the somatosensory nervous system may result in chronic pain conditions, which affect millions of people and often cause major health problems. Emerging lines of evidence indicate that reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, are produced in the nociceptive system during chronic inflammatory and neuropathic pain and act as specific signaling molecules in pain processing. Among potential ROS sources in the somatosensory system are NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. Interestingly, the expression and relevant function of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system have been demonstrated. Studies using knockout mice or specific knockdown of these isoforms indicate that Nox1, Nox2, and Nox4 specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. As selective Nox inhibitors are currently being developed and investigated in various physiological and pathophysiological settings, targeting Nox1, Nox2, and/or Nox4 could be a novel strategy for the treatment of chronic pain. Here, we summarize the distinct roles of Nox1, Nox2, and Nox4 in inflammatory and neuropathic processing and discuss the effectiveness of currently available Nox inhibitors in the treatment of chronic pain conditions.
Collapse
|
13
|
Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, Batra S. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol 2022; 19:660-686. [PMID: 35585127 DOI: 10.1038/s41423-022-00858-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.
Collapse
Affiliation(s)
- Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Abubakar Abdulkadir
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
14
|
Fan LM, Liu F, Du J, Geng L, Li JM. Inhibition of endothelial Nox2 activation by LMH001 protects mice from angiotensin II-induced vascular oxidative stress, hypertension and aortic aneurysm. Redox Biol 2022; 51:102269. [PMID: 35276443 PMCID: PMC8908273 DOI: 10.1016/j.redox.2022.102269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Endothelial oxidative stress and inflammation attributable to the activation of a Nox2-NADPH oxidase are key features of many cardiovascular diseases. Here, we report a novel small chemical compound (LMH001, MW = 290.079), by blocking phosphorylated p47phox interaction with p22phox, inhibited effectively angiotensin II (AngII)-induced endothelial Nox2 activation and superoxide production at a small dose (IC50 = 0.25 μM) without effect on peripheral leucocyte oxidative response to pathogens. The therapeutic potential of LMH001 was tested using a mouse model (C57BL/6J, 7-month-old) of AngII infusion (0.8 mg/kg/d, 14 days)-induced vascular oxidative stress, hypertension and aortic aneurysm. Age-matched littermates of p47phox knockout mice were used as controls of Nox2 inhibition. LMH001 (2.5 mg/kg/d, ip. once) showed no effect on control mice, but inhibited completely AngII infusion-induced excess ROS production in vital organs, hypertension, aortic walls inflammation and reduced incidences of aortic aneurysm. LMH001 effects on reducing vascular oxidative stress was due to its inhibition of Nox2 activation and was abrogated by knockout of p47phox. LMH001 has the potential to be developed as a novel drug candidate to treat oxidative stress-related cardiovascular diseases.
Collapse
Affiliation(s)
- Lampson M Fan
- Department of Cardiology, Royal Wolverhampton NHS Trust, UK
| | - Fangfei Liu
- School of Biological Sciences, University of Reading, UK
| | - Junjie Du
- Department of Cardiovascular Surgery, Nanjing Medical University, PR China; Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Li Geng
- School of Biological Sciences, University of Reading, UK; Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Jian-Mei Li
- School of Biological Sciences, University of Reading, UK; Faculty of Health and Medical Sciences, University of Surrey, UK.
| |
Collapse
|
15
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
16
|
Liu F, Fan LM, Geng L, Li JM. p47 phox-Dependent Oxidant Signalling through ASK1, MKK3/6 and MAPKs in Angiotensin II-Induced Cardiac Hypertrophy and Apoptosis. Antioxidants (Basel) 2021; 10:1363. [PMID: 34572995 PMCID: PMC8468498 DOI: 10.3390/antiox10091363] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
The p47phox is a key regulatory subunit of Nox2-containing NADPH oxidase (Nox2) that by generating reactive oxygen species (ROS) plays an important role in Angiotensin II (AngII)-induced cardiac hypertrophy and heart failure. However, the signalling pathways of p47phox in the heart remains unclear. In this study, we used wild-type (WT) and p47phox knockout (KO) mice (C57BL/6, male, 7-month-old, n = 9) to investigate p47phox-dependent oxidant-signalling in AngII infusion (0.8 mg/kg/day, 14 days)-induced cardiac hypertrophy and cardiomyocyte apoptosis. AngII infusion resulted in remarkable high blood pressure and cardiac hypertrophy in WT mice. However, these AngII-induced pathological changes were significantly reduced in p47phox KO mice. In WT hearts, AngII infusion increased significantly the levels of superoxide production, the expressions of Nox subunits, the expression of PKCα and C-Src and the activation of ASK1 (apoptosis signal-regulating kinase 1), MKK3/6, ERK1/2, p38 MAPK and JNK signalling pathways together with an elevated expression of apoptotic markers, i.e., γH2AX and p53 in the cardiomyocytes. However, in the absence of p47phox, although PKCα expression was increased in the hearts after AngII infusion, there was no significant activation of ASK1, MKK3/6 and MAPKs signalling pathways and no increase in apoptosis biomarker expression in cardiomyocytes. In conclusion, p47phox-dependent redox-signalling through ASK1, MKK3/6 and MAPKs plays a crucial role in AngII-induced cardiac hypertrophy and cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Fangfei Liu
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK; (F.L.); (L.G.)
| | - Lampson M. Fan
- The Royal Wolverhampton NHS Trust, Wolverhampton WV10 0QP, UK;
| | - Li Geng
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK; (F.L.); (L.G.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Jian-Mei Li
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK; (F.L.); (L.G.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
17
|
Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol 2021; 12:670076. [PMID: 34017260 PMCID: PMC8129499 DOI: 10.3389/fphar.2021.670076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS), a complex of interrelated risk factors for cardiovascular disease and diabetes, is comprised of central obesity (increased waist circumference), hyperglycemia, dyslipidemia (high triglyceride blood levels, low high-density lipoprotein blood levels), and increased blood pressure. Oxidative stress, caused by the imbalance between pro-oxidant and endogenous antioxidant systems, is the primary pathological basis of MetS. The major sources of reactive oxygen species (ROS) associated with MetS are nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases and mitochondria. In this review, we summarize the current knowledge regarding the generation of ROS from NADPH oxidases and mitochondria, discuss the NADPH oxidase- and mitochondria-derived ROS signaling and pathophysiological effects, and the interplay between these two major sources of ROS, which leads to chronic inflammation, adipocyte proliferation, insulin resistance, and other metabolic abnormalities. The mechanisms linking MetS and chronic kidney disease are not well known. The role of NADPH oxidases and mitochondria in renal injury in the setting of MetS, particularly the influence of the pyruvate dehydrogenase complex in oxidative stress, inflammation, and subsequent renal injury, is highlighted. Understanding the molecular mechanism(s) underlying MetS may lead to novel therapeutic approaches by targeting the pyruvate dehydrogenase complex in MetS and prevent its sequelae of chronic cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Pedro A Jose
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
18
|
Fragoso-Morales LG, Correa-Basurto J, Rosales-Hernández MC. Implication of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Its Inhibitors in Alzheimer's Disease Murine Models. Antioxidants (Basel) 2021; 10:antiox10020218. [PMID: 33540840 PMCID: PMC7912941 DOI: 10.3390/antiox10020218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the main human dementias around the world which is constantly increasing every year due to several factors (age, genetics, environment, etc.) and there are no prevention or treatment options to cure it. AD is characterized by memory loss associated with oxidative stress (OS) in brain cells (neurons, astrocytes, microglia, etc.). OS can be produced by amyloid beta (Aβ) protein aggregation and its interaction with metals, mitochondrial damage and alterations between antioxidants and oxidant enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. NADPH oxidase produces reactive oxygen species (ROS) and it is overexpressed in AD, producing large amounts of superoxide anions and hydrogen peroxide which damage brain cells and the vasculature. In addition, it has been reported that NADPH oxidase causes an imbalance of pH which could also influence in the amyloid beta (Aβ) production. Therefore, NADPH oxidase had been proposed as a therapeutic target in AD. However, there are no drugs for AD treatment such as an NADPH oxidase inhibitor despite great efforts made to stabilize the ROS production using antioxidant molecules. So, in this work, we will focus our attention on NADPH oxidase (NOX2 and NOX4) in AD as well as in AD models and later discuss the use of NADPH oxidase inhibitor compounds in AD.
Collapse
Affiliation(s)
- Leticia Guadalupe Fragoso-Morales
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Mexico City 11340, Mexico;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico;
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Mexico City 11340, Mexico;
- Correspondence: ; Tel.: +(55)-572-960-00 (ext. 62767 & 62809)
| |
Collapse
|
19
|
Pagano PJ, Cifuentes-Pagano E. The Enigmatic Vascular NOX: From Artifact to Double Agent of Change: Arthur C. Corcoran Memorial Lecture - 2019. Hypertension 2021; 77:275-283. [PMID: 33390049 DOI: 10.1161/hypertensionaha.120.13897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NOXs (NADPH oxidases) comprise a family of proteins whose primary function is the production of reactive oxygen species, namely, superoxide anion and hydrogen peroxide. The prototype first being discovered and characterized in neutrophils, multiple NOXs are now known to be broadly expressed in cell and organ systems and whose phylogeny spans countless life forms beginning with prokaryotes. This long-enduring evolutionary conservation underscores the importance of fundamental NOX functions. This review chronicles a personal perspective of the field beginning with the discovery of NOXs in the vasculature and the advances achieved through the years as to our understanding of their mechanisms of action and role in oxidative stress and disease. Furthermore, applications of isoform-selective inhibitors to dissect the role of NOX isozymes in vascular biology, focusing on inflammation, pulmonary hypertension, and aging are described.
Collapse
Affiliation(s)
- Patrick J Pagano
- Department of Pharmacology and Chemical Biology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|
20
|
Hord JM, Garcia MM, Farris KR, Guzzoni V, Lee Y, Lawler MS, Lawler JM. Nox2 signaling and muscle fiber remodeling are attenuated by losartan administration during skeletal muscle unloading. Physiol Rep 2021; 9:e14606. [PMID: 33400850 PMCID: PMC7785102 DOI: 10.14814/phy2.14606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
Reduced mechanical loading results in atrophy of skeletal muscle fibers. Increased reactive oxygen species (ROS) are causal in sarcolemmal dislocation of nNOS and FoxO3a activation. The Nox2 isoform of NADPH oxidase and mitochondria release ROS during disuse in skeletal muscle. Activation of the angiotensin II type 1 receptor (AT1R) can elicit Nox2 complex formation. The AT1R blocker losartan was used to test the hypothesis that AT1R activation drives Nox2 assembly, nNOS dislocation, FoxO3a activation, and thus alterations in morphology in the unloaded rat soleus. Male Fischer 344 rats were divided into four groups: ambulatory control (CON), ambulatory + losartan (40 mg kg-1 day-1 ) (CONL), 7 days of tail-traction hindlimb unloading (HU), and HU + losartan (HUL). Losartan attenuated unloading-induced loss of muscle fiber cross-sectional area (CSA) and fiber-type shift. Losartan mitigated unloading-induced elevation of ROS levels and upregulation of Nox2. Furthermore, AT1R blockade abrogated nNOS dislocation away from the sarcolemma and elevation of nuclear FoxO3a. We conclude that AT1R blockade attenuates disuse remodeling by inhibiting Nox2, thereby lessening nNOS dislocation and activation of FoxO3a.
Collapse
Affiliation(s)
- Jeffrey M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marcela M Garcia
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Katherine R Farris
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Vinicius Guzzoni
- Department of Cellular and Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Yang Lee
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station/Temple, TX, USA
| | - Matthew S Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
21
|
Teixeira-Santos L, Albino-Teixeira A, Pinho D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: Focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol Res 2020; 162:105280. [PMID: 33161139 DOI: 10.1016/j.phrs.2020.105280] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Neuropathic pain (NP) is a chronic condition that results from a lesion or disease of the nervous system, greatly impacting patients' quality of life. Current pharmacotherapy options deliver inadequate and/or insufficient responses and thus a significant unmet clinical need remains for alternative treatments in NP. Neuroinflammation, oxidative stress and their reciprocal relationship are critically involved in NP pathophysiology. In this context, new pharmacological approaches, aiming at enhancing the resolution phase of inflammation and/or restoring redox balance by targeting specific reactive oxygen species (ROS) sources, are emerging as potential therapeutic strategies for NP, with improved efficacy and safety profiles. Several reports have demonstrated that administration of exogenous specialized pro-resolving mediators (SPMs) ameliorates NP pathophysiology. Likewise, deletion or inhibition of the ROS-generating enzyme NADPH oxidase (NOX), particularly its isoforms 2 and 4, results in beneficial effects in NP models. Notably, SPMs also modulate oxidative stress and NOX also regulates neuroinflammation. By targeting neuroinflammatory and oxidative pathways, both SPMs analogues and isoform-specific NOX inhibitors are promising therapeutic strategies for NP.
Collapse
Affiliation(s)
- Luísa Teixeira-Santos
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - António Albino-Teixeira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - Dora Pinho
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| |
Collapse
|
22
|
Bode K, Bujupi F, Link C, Hein T, Zimmermann S, Peiris D, Jaquet V, Lepenies B, Weyd H, Krammer PH. Dectin-1 Binding to Annexins on Apoptotic Cells Induces Peripheral Immune Tolerance via NADPH Oxidase-2. Cell Rep 2020; 29:4435-4446.e9. [PMID: 31875551 DOI: 10.1016/j.celrep.2019.11.086] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/18/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022] Open
Abstract
Uptake of apoptotic cells (ACs) by dendritic cells (DCs) and induction of a tolerogenic DC phenotype is an important mechanism for establishing peripheral tolerance to self-antigens. The receptors involved and underlying signaling pathways are not fully understood. Here, we identify Dectin-1 as a crucial tolerogenic receptor binding with nanomolar affinity to the core domain of several annexins (annexin A1, A5, and A13) exposed on ACs. Annexins bind to Dectin-1 on a site distinct from the interaction site of pathogen-derived β-glucans. Subsequent tolerogenic signaling induces selective phosphorylation of spleen tyrosine kinase (SYK), causing activation of NADPH oxidase-2 and moderate production of reactive oxygen species. Thus, mice deficient for Dectin-1 develop autoimmune pathologies (autoantibodies and splenomegaly) and generate stronger immune responses (cytotoxic T cells) against ACs. Our data describe an important immunological checkpoint system and provide a link between immunosuppressive signals of ACs and maintenance of peripheral immune tolerance.
Collapse
Affiliation(s)
- Kevin Bode
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Fatmire Bujupi
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Corinna Link
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Tobias Hein
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Stephanie Zimmermann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Diluka Peiris
- Attana AB, Greta Arwidssons v. 21, 11419 Stockholm, Sweden
| | - Vincent Jaquet
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Heiko Weyd
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Peter H Krammer
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Vara D, Tarafdar A, Celikag M, Patinha D, Gulacsy CE, Hounslea E, Warren Z, Ferreira B, Koeners MP, Caggiano L, Pula G. NADPH oxidase 1 is a novel pharmacological target for the development of an antiplatelet drug without bleeding side effects. FASEB J 2020; 34:13959-13977. [PMID: 32851720 DOI: 10.1096/fj.202001086rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Growing evidence supports a central role of NADPH oxidases (NOXs) in the regulation of platelets, which are circulating cells involved in both hemostasis and thrombosis. Here, the use of Nox1-/- and Nox1+/+ mice as experimental models of human responses demonstrated a critical role of NOX1 in collagen-dependent platelet activation and pathological arterial thrombosis, as tested in vivo by carotid occlusion assays. In contrast, NOX1 does not affect platelet responses to thrombin and normal hemostasis, as assayed in tail bleeding experiments. Therefore, as NOX1 inhibitors are likely to have antiplatelet effects without associated bleeding risks, the NOX1-selective inhibitor 2-acetylphenothiazine (2APT) and a series of its derivatives generated to increase inhibitory potency and drug bioavailability were tested. Among the 2APT derivatives, 1-(10H-phenothiazin-2-yl)vinyl tert-butyl carbonate (2APT-D6) was selected for its high potency. Both 2APT and 2APT-D6 inhibited collagen-dependent platelet aggregation, adhesion, thrombus formation, superoxide anion generation, and surface activation marker expression, while responses to thrombin or adhesion to fibrinogen were not affected. In vivo administration of 2APT or 2APT-D6 led to the inhibition of mouse platelet aggregation, oxygen radical output, and thrombus formation, and carotid occlusion, while tail hemostasis was unaffected. Differently to in vitro experiments, 2APT-D6 and 2APT displayed similar potency in vivo. In summary, NOX1 inhibition with 2APT or its derivative 2APT-D6 is a viable strategy to control collagen-induced platelet activation and reduce thrombosis without deleterious effects on hemostasis. These compounds should, therefore, be considered for the development of novel antiplatelet drugs to fight cardiovascular diseases in humans.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Anuradha Tarafdar
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Meral Celikag
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Daniela Patinha
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | - Ellie Hounslea
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Zach Warren
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Barbara Ferreira
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Maarten P Koeners
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Lorenzo Caggiano
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Abstract
Significance: The primary function of NADPH oxidases (NOX1-5 and dual oxidases DUOX1/2) is to produce reactive oxygen species (ROS). If inadequately regulated, NOX-associated ROS can promote oxidative stress, aberrant signaling, and genomic instability. Correspondingly, NOX isoforms are known to be overexpressed in multiple malignancies, thus constituting potential therapeutic targets in cancer. Recent Advances: Multiple genetic studies aimed at suppressing the expression of NOX proteins in cellular and animal models of cancer have provided support for the notion that NOXs play a pro-tumorigenic role. Further, large drug screens and rational design efforts have yielded inhibitor compounds, such as the diphenylene iodonium (DPI) analog series developed by our group, with increased selectivity and potency over "first generation" NOX inhibitors such as apocynin and DPI. Critical Issues: The precise role of NOX enzymes in tumor biology remains poorly defined. The tumorigenic properties of NOXs vary with cancer type, and precise tools, such as selective inhibitors, are needed to deconvolute NOX contribution to cancer development. Most NOX inhibitors developed to date are unspecific, and/or their mechanistic and pharmacological characteristics are not well defined. A lack of high-resolution crystal structures for NOX functional domains has hindered the development of potent and selective inhibitors. Future Directions: In-depth studies of NOX interactions with the tumor microenvironment (e.g., cytokines, cell-surface antigens) will help identify new approaches for NOX inhibition in cancer.
Collapse
Affiliation(s)
- Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Abstract
Significance: The oxidative stress, resulting from an imbalance in the production and scavenging of reactive oxygen species (ROS), is known to be involved in the development and progression of several pathologies. The excess of ROS production is often due to an overactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and for this reason these enzymes became promising therapeutic targets. However, even if NOX are now well characterized, the development of new therapies is limited by the lack of highly isoform-specific inhibitors. Recent Advances: In the past decade, several groups and laboratories have screened thousands of molecules to identify new specific inhibitors with low off-target effects. These works have led to the characterization of several new potent NOX inhibitors; however, their specificity varies a lot depending on the molecules. Critical Issues: Here, we are reviewing more than 25 known NOX inhibitors, focusing mainly on the newly identified ones such as APX-115, NOS31, Phox-I1 and 2, GLX7013114, and GSK2795039. To have a better overall view of these molecules, the inhibitors were classified according to their specificity, from pan-NOX inhibitors to highly isoform-specific ones. We are also presenting the use of these compounds both in vitro and in vivo. Future Directions: Several of these new molecules are potent and very specific inhibitors that could be good candidates for the development of new drugs. Even if the results are very promising, most of these compounds were only validated in vitro or in mice models and further investigations will be required before using them as potential therapies.
Collapse
Affiliation(s)
- Mathieu Chocry
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| | - Ludovic Leloup
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| |
Collapse
|
26
|
Schröder K. NADPH oxidases: Current aspects and tools. Redox Biol 2020; 34:101512. [PMID: 32480354 PMCID: PMC7262010 DOI: 10.1016/j.redox.2020.101512] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Reactive oxygen species (ROS) have been shown or at least suggested to play an essential role for cellular signaling as second messengers. NADPH oxidases represent a source of controlled ROS formation. Accordingly, understanding the role of individual NADPH oxidases bears potential to interfere with intracellular signaling cascades without disturbing the signaling itself. Many tools have been developed to study or inhibit the functions and roles of the NADPH oxidases. This short review summarizes diseases, potentially associated with NADPH oxidases, genetically modified animals, and inhibitors.
Collapse
Affiliation(s)
- Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern Kai 7, 60590, Frankfurt, Germany. https://
| |
Collapse
|
27
|
Nocella C, Cammisotto V, Bartimoccia S, Castellani V, Loffredo L, Pastori D, Pignatelli P, Sanguigni V, Violi F, Carnevale R. A novel role of MMP2 in regulating platelet NOX2 activation. Free Radic Biol Med 2020; 152:355-362. [PMID: 32268176 DOI: 10.1016/j.freeradbiomed.2020.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
NOX2 has a key role for cellular production of reactive oxidant species (ROS) and although the mechanism of its activation is well known, little is known about its regulation. Metallo-proteinases (MMPs) regulate numerous protein activities both in physiological and pathological conditions but their interplay with NOX2 and ROS formation is still unclear. We performed experimental studies in human platelets and polymorphonuclear leukocytes (PMNs) to investigate the interplay of MMP2 with NOX2 activity. In collagen-stimulated platelets and in PMA-stimulated PMNs from healthy subjects, an immediate burst of ROS was detected at 10 min to then decline at 20 min. Coincidentally, sNOX2-dp, a split-off product of NOX2, increased and peaked at 10 min. ROS production was persistent whereas sNOX2dp is not released in cells treated with MMP2 inhibitor compared to other MMPs inhibitors. Western blot analysis showed the highest MMP2 expression on the cell membrane 10 min after stimulation. Moreover, the co-immunoprecipitation assay confirms the interaction between MMP2 and NOX2 that formed an active immuno-complex. Treating cells with NOX2ds-tat, an inhibitor of NADPH oxidase, significantly reduced ROS formation, sNOX2-dp, MMP2 expression and MMP2-NOX2-complex, which were all restored if cells were added with H2O2. The study provides the first evidence that MMP2 has a key role in blunting platelet NOX2 activity and eventually ROS formation.
Collapse
Affiliation(s)
- Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, 00161, Rome, Italy
| | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Valentina Castellani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Daniele Pastori
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy; Mediterranea, Cardiocentro, 80122, Napoli, Italy
| | - Valerio Sanguigni
- Department of Internal Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy; Mediterranea, Cardiocentro, 80122, Napoli, Italy
| | - Roberto Carnevale
- Mediterranea, Cardiocentro, 80122, Napoli, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, Italy.
| |
Collapse
|
28
|
Maqbool A, Watt NT, Haywood N, Viswambharan H, Skromna A, Makava N, Visnagri A, Shawer HM, Bridge K, Muminov SK, Griffin K, Beech DJ, Wheatcroft SB, Porter KE, Simmons KJ, Sukumar P, Shah AM, Cubbon RM, Kearney MT, Yuldasheva NY. Divergent effects of genetic and pharmacological inhibition of Nox2 NADPH oxidase on insulin resistance-related vascular damage. Am J Physiol Cell Physiol 2020; 319:C64-C74. [PMID: 32401607 PMCID: PMC7468885 DOI: 10.1152/ajpcell.00389.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance leads to excessive endothelial cell (EC) superoxide generation and accelerated atherosclerosis. The principal source of superoxide from the insulin-resistant endothelium is the Nox2 isoform of NADPH oxidase. Here we examine the therapeutic potential of Nox2 inhibition on superoxide generation in saphenous vein ECs (SVECs) from patients with advanced atherosclerosis and type 2 diabetes and on vascular function, vascular damage, and lipid deposition in apolipoprotein E-deficient (ApoE−/−) mice with EC-specific insulin resistance (ESMIRO). To examine the effect of genetic inhibition of Nox2, ESMIRO mice deficient in ApoE−/− and Nox2 (ESMIRO/ApoE−/−/Nox2−/y) were generated and compared with ESMIRO/ApoE−/−/Nox2+/y littermates. To examine the effect of pharmacological inhibition of Nox2, we administered gp91dstat or scrambled peptide to ESMIRO/ApoE−/− mice. SVECs from diabetic patients had increased expression of Nox2 protein with concomitant increase in superoxide generation, which could be reduced by the Nox2 inhibitor gp91dstat. After 12 wk Western diet, ESMIRO/ApoE−/−/Nox2−/y mice had reduced EC superoxide generation and greater aortic relaxation to acetylcholine. ESMIRO/ApoE−/−/Nox2−/y mice developed more lipid deposition in the thoraco-abdominal aorta with multiple foci of elastin fragmentation at the level of the aortic sinus and greater expression of intercellular adhesion molecule-1 (ICAM-1). Gp91dstat reduced EC superoxide and lipid deposition in the thoraco-abdominal aorta of ESMIRO/ApoE−/− mice without causing elastin fragmentation or increased ICAM-1 expression. These results demonstrate that insulin resistance is characterized by increased Nox2-derived vascular superoxide. Complete deletion of Nox2 in mice with EC insulin resistance exacerbates, whereas partial pharmacological Nox2 inhibition protects against, insulin resistance-induced vascular damage.
Collapse
Affiliation(s)
- Azhar Maqbool
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Nicole T Watt
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Natalie Haywood
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Hema Viswambharan
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Anna Skromna
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Natalia Makava
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Asjad Visnagri
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Heba M Shawer
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Bridge
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Kathryn Griffin
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Karen E Porter
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katie J Simmons
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Piruthivi Sukumar
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Ajay M Shah
- British Heart Foundation, Centre of Research Excellence, King's College London, London, United Kingdom
| | - Richard M Cubbon
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Nadira Y Yuldasheva
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
29
|
Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator. Immunol Lett 2020; 221:39-48. [DOI: 10.1016/j.imlet.2020.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
|
30
|
Plaza-Briceño W, Estay SF, de la Fuente-Ortega E, Gutiérrez C, Sánchez G, Hidalgo C, Chávez AE, Haeger PA. N-Methyl-d-Aspartate Receptor Modulation by Nicotinamide Adenine Dinucleotide Phosphate Oxidase Type 2 Drives Synaptic Plasticity and Spatial Memory Impairments in Rats Exposed Pre- and Postnatally to Ethanol. Antioxid Redox Signal 2020; 32:602-617. [PMID: 31880947 DOI: 10.1089/ars.2019.7787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aims: Pre- and/or early postnatal ethanol exposure (prenatal alcohol exposure [PAE]) impairs synaptic plasticity as well as memory formation, but the mechanisms underlying these effects remain unclear. Both long-term potentiation (LTP) and spatial memory formation in the hippocampus involve the nicotinamide adenine dinucleotide phosphate oxidase type 2 (NOX2) enzyme. Previous studies have reported that N-methyl-d-aspartate receptor (NMDAR) activation increases NOX2-mediated superoxide generation, resulting in inhibition of NMDAR function, but whether NOX2 impacts NMDAR function in PAE animals leading to impaired LTP and memory formation remains unknown. We aim to evaluate whether the NOX2-NMDAR complex is involved in the long-lasting deleterious effects of PAE on hippocampal LTP and memory formation. Results: Here we provide novel evidence that PAE animals display impaired NMDAR-dependent LTP in the cornus ammonis field 1 (CA1) and NMDAR-mediated LTP in the dentate gyrus (DG). Moreover, PAE rats displayed increased NMDAR-mediated transmission in both hippocampal areas. Interestingly, NOX2 pharmacological inhibition restored NMDAR-mediated transmission and LTP in the CA1, but not in the DG. PAE also induced overexpression of NOX2 and CaMKII isoforms, but did not modify the content or the redox state of the N-methyl-d-aspartate receptor subunit-1 (NR1) subunit of NMDAR in both areas of the hippocampus. In addition, adolescent PAE rats orally fed the antioxidant and free radical scavenger apocynin exhibited significantly improved spatial memory acquisition. Innovation and Conclusion: By showing in PAE animals NOX2 overexpression and increased NMDAR-mediated transmission, which might lead to impaired synaptic plasticity and memory formation in a region-specific manner, we provide an important advance to our current understanding of the cellular mechanisms underlying PAE-dependent defective hippocampal function.
Collapse
Affiliation(s)
- Wladimir Plaza-Briceño
- Departamento de Ciencias Biomédicas, Facultad De Medicina, Universidad Católica Del Norte, Coquimbo, Chile.,Programa de Magíster en Ciencias Biológicas mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Sebastián F Estay
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Erwin de la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad De Medicina, Universidad Católica Del Norte, Coquimbo, Chile
| | - Camilo Gutiérrez
- Departamento de Ciencias Biomédicas, Facultad De Medicina, Universidad Católica Del Norte, Coquimbo, Chile
| | - Gina Sánchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,CEMC, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- CEMC, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés E Chávez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad De Medicina, Universidad Católica Del Norte, Coquimbo, Chile
| |
Collapse
|
31
|
Abstract
A growing appreciation of NADPH oxidases (NOXs) as mediators of fundamental physiological processes and as important players in myriad diseases has led many laboratories on a search for specific inhibitors to help dissect the role in a given pathway or pathological condition. To date, there are only a few available inhibitors with a demonstrated specificity for a given isozyme. Among those, peptidic inhibitors have the advantage of being designed to target very specific protein-protein interactions that are essential for NOX activity. Herein, we provide the techniques to deliver these inhibitors both in cell culture as well as in vivo.
Collapse
|
32
|
Norton CE, Sheak JR, Yan S, Weise-Cross L, Jernigan NL, Walker BR, Resta TC. Augmented Pulmonary Vasoconstrictor Reactivity after Chronic Hypoxia Requires Src Kinase and Epidermal Growth Factor Receptor Signaling. Am J Respir Cell Mol Biol 2020; 62:61-73. [PMID: 31264901 PMCID: PMC6938133 DOI: 10.1165/rcmb.2018-0106oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic hypoxia augments pressure- and agonist-induced pulmonary vasoconstriction through myofilament calcium sensitization. NADPH oxidases contribute to the development of pulmonary hypertension, and both epidermal growth factor receptor and Src kinases can regulate NADPH oxidase. We tested the hypothesis that Src-epidermal growth factor receptor (EGFR) signaling mediates enhanced vasoconstrictor sensitivity after chronic hypoxia through NADPH oxidase-derived superoxide generation. Protocols employed pharmacological inhibitors in isolated, pressurized rat pulmonary arteries to examine the contribution of a variety of signaling moieties to enhanced vascular tone after chronic hypoxia. Superoxide generation in pulmonary arterial smooth muscle cells was assessed using the fluorescent indicator dihydroethidium. Indices of pulmonary hypertension were measured in rats treated with the EGFR inhibitor gefitinib. Inhibition of NADPH oxidase, Rac1 (Ras-related C3 botulinum toxin substrate 1), and EGFR abolished pressure-induced pulmonary arterial tone and endothelin-1 (ET-1)-dependent calcium sensitization and vasoconstriction after chronic hypoxia. Consistently, chronic hypoxia augmented ET-1-induced superoxide production through EGFR signaling, and rats treated chronically with gefitinib displayed reduced right ventricular pressure and diminished arterial remodeling. Src kinases were also activated by ET-1 after chronic hypoxia and contributed to enhanced basal arterial tone and vasoconstriction in response to ET-1. A role for matrix metalloproteinase 2 to mediate Src-dependent EGFR activation is further supported by our findings. Our studies support a novel role for an Src kinase-EGFR-NADPH oxidase signaling axis to mediate enhanced pulmonary vascular smooth muscle Ca2+ sensitization, vasoconstriction, and pulmonary hypertension after chronic hypoxia.
Collapse
Affiliation(s)
- Charles E Norton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Joshua R Sheak
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Simin Yan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
33
|
Abstract
The superoxide (O2·-)-generating NADPH oxidase complex of phagocytes comprises a membrane-associated heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of NOX2 and p22phox) and four cytosolic regulatory proteins, p47phox, p67phox, p40phox, and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2·- generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome, a process known as NADPH oxidase assembly. A consequent conformational change in NOX2 initiates the electron flow along a redox gradient, from NADPH to molecular oxygen (O2), leading to the one-electron reduction of O2 to O2·-. Historically, methodological difficulties in the study of the assembled complex derived from stimulated cells, due to its lack of stability, led to the design of "cell-free" systems (also known as "broken cells" or in vitro systems). In a major paradigm shift, the cell-free systems have as their starting point NADPH oxidase components derived from resting (unstimulated) phagocytes, or as in the predominant method at present, recombinant proteins representing the components of the NADPH oxidase complex. In cell-free systems, membrane receptor stimulation and the signal transduction sequence are absent, the accent being placed on the actual process of assembly, all of which takes place in vitro. Thus, a mixture of the individual components of the NADPH oxidase is exposed in vitro to an activating agent, the most common being anionic amphiphiles, resulting in the formation of a complex between cytochrome b 558 and the cytosolic components and O2·- generation in the presence of NADPH. Alternative activating pathways require posttranslational modification of oxidase components or modifying the phospholipid milieu surrounding cytochrome b 558. Activation is commonly quantified by measuring the primary product of the reaction, O2·-, trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of rates of O2·- production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the performance of structure-function studies, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
|
34
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
35
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
36
|
Di Maio R, Hoffman EK, Rocha EM, Keeney MT, Sanders LH, De Miranda BR, Zharikov A, Van Laar A, Stepan AF, Lanz TA, Kofler JK, Burton EA, Alessi DR, Hastings TG, Greenamyre JT. LRRK2 activation in idiopathic Parkinson's disease. Sci Transl Med 2019; 10:10/451/eaar5429. [PMID: 30045977 DOI: 10.1126/scitranslmed.aar5429] [Citation(s) in RCA: 340] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/22/2018] [Indexed: 11/02/2022]
Abstract
Missense mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease (PD). However, a potential role of wild-type LRRK2 in idiopathic PD (iPD) remains unclear. Here, we developed proximity ligation assays to assess Ser1292 phosphorylation of LRRK2 and, separately, the dissociation of 14-3-3 proteins from LRRK2. Using these proximity ligation assays, we show that wild-type LRRK2 kinase activity was selectively enhanced in substantia nigra dopamine neurons in postmortem brain tissue from patients with iPD and in two different rat models of the disease. We show that this occurred through an oxidative mechanism, resulting in phosphorylation of the LRRK2 substrate Rab10 and other downstream consequences including abnormalities in mitochondrial protein import and lysosomal function. Our study suggests that, independent of mutations, wild-type LRRK2 plays a role in iPD. LRRK2 kinase inhibitors may therefore be useful for treating patients with iPD who do not carry LRRK2 mutations.
Collapse
Affiliation(s)
- Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Ri.MED Foundation, Palermo, Italy
| | - Eric K Hoffman
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Laurie H Sanders
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, Duke University, Durham, NC 27710, USA
| | - Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alevtina Zharikov
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amber Van Laar
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Antonia F Stepan
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | - Thomas A Lanz
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Units, University of Dundee, Dundee, Scotland
| | - Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA. .,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
37
|
DeVallance E, Li Y, Jurczak MJ, Cifuentes-Pagano E, Pagano PJ. The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology. Antioxid Redox Signal 2019; 31:687-709. [PMID: 31250671 PMCID: PMC6909742 DOI: 10.1089/ars.2018.7674] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Highly prevalent in Western cultures, obesity, metabolic syndrome, and diabetes increase the risk of cardiovascular morbidity and mortality and cost health care systems billions of dollars annually. At the cellular level, obesity, metabolic syndrome, and diabetes are associated with increased production of reactive oxygen species (ROS). Increased levels of ROS production in key organ systems such as adipose tissue, skeletal muscle, and the vasculature cause disruption of tissue homeostasis, leading to increased morbidity and risk of mortality. More specifically, growing evidence implicates the nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzymes in these pathologies through impairment of insulin signaling, inflammation, and vascular dysfunction. The NOX family of enzymes is a major driver of redox signaling through its production of superoxide anion, hydrogen peroxide, and attendant downstream metabolites acting on redox-sensitive signaling molecules. Recent Advances: The primary goal of this review is to highlight recent advances and survey our present understanding of cell-specific NOX enzyme contributions to metabolic diseases. Critical Issues: However, due to the short half-lives of individual ROS and/or cellular defense systems, radii of ROS diffusion are commonly short, often restricting redox signaling and oxidant stress to localized events. Thus, special emphasis should be placed on cell type and subcellular location of NOX enzymes to better understand their role in the pathophysiology of metabolic diseases. Future Directions: We discuss the targeting of NOX enzymes as potential therapy and bring to light potential emerging areas of NOX research, microparticles and epigenetics, in the context of metabolic disease.
Collapse
Affiliation(s)
- Evan DeVallance
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yao Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Vara D, Cifuentes-Pagano E, Pagano PJ, Pula G. A novel combinatorial technique for simultaneous quantification of oxygen radicals and aggregation reveals unexpected redox patterns in the activation of platelets by different physiopathological stimuli. Haematologica 2019; 104:1879-1891. [PMID: 30679320 PMCID: PMC6717585 DOI: 10.3324/haematol.2018.208819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/18/2019] [Indexed: 01/12/2023] Open
Abstract
The regulation of platelets by oxidants is critical for vascular health and may explain thrombotic complications in diseases such as diabetes and dementia, but remains poorly understood. Here, we describe a novel technique combining electron paramagnetic resonance spectroscopy and turbidimetry, which has been utilized to monitor simultaneously platelet activation and oxygen radical generation. This technique has been used to investigate the redox-dependence of human and mouse platelets. Using selective peptide inhibitors of NADPH oxidases (NOXs) on human platelets and genetically modified mouse platelets (NOX1-/- or NOX2-/-), we discovered that: 1) intracellular but not extracellular superoxide anion generated by NOX is critical for platelet activation by collagen; 2) superoxide dismutation to hydrogen peroxide is required for thrombin-dependent activation; 3) NOX1 is the main source of oxygen radicals in response to collagen, while NOX2 is critical for activation by thrombin; 4) two platelet modulators, namely oxidized low density lipoproteins (oxLDL) and amyloid peptide β (Aβ), require activation of both NOX1 and NOX2 to pre-activate platelets. This study provides new insights into the redox dependence of platelet activation. It suggests the possibility of selectively inhibiting platelet agonists by targeting either NOX1 (for collagen) or NOX2 (for thrombin). Selective inhibition of either NOX1 or NOX2 impairs the potentiatory effect of tested platelet modulators (oxLDL and Aβ), but does not completely abolish platelet hemostatic function. This information offers new opportunities for the development of disease-specific antiplatelet drugs with limited bleeding side effects by selectively targeting one NOX isoenzyme.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giordano Pula
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
39
|
Li Y, Cifuentes-Pagano E, DeVallance ER, de Jesus DS, Sahoo S, Meijles DN, Koes D, Camacho CJ, Ross M, St Croix C, Pagano PJ. NADPH oxidase 2 inhibitors CPP11G and CPP11H attenuate endothelial cell inflammation & vessel dysfunction and restore mouse hind-limb flow. Redox Biol 2019; 22:101143. [PMID: 30897521 PMCID: PMC6435978 DOI: 10.1016/j.redox.2019.101143] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
First described as essential to the phagocytic activity of leukocytes, Nox2-derived ROS have emerged as mediators of a range of cellular and tissue responses across species from salubrious to deleterious consequences. Knowledge of their role in inflammation is limited, however. We postulated that TNFα-induced endothelial reactive oxygen species (ROS) generation and pro-inflammatory signaling would be ameliorated by targeting Nox2. Herein, we in silico-modelled two first-in-class Nox2 inhibitors developed in our laboratory, explored their cellular mechanism of action and tested their efficacy in in vitro and mouse in vivo models of inflammation. Our data show that these inhibitors (CPP11G and CPP11H) disrupted canonical Nox2 organizing factor, p47phox, translocation to Nox2 in the plasma membrane; and abolished ROS production, markedly attenuated stress-responsive MAPK signaling and downstream AP-1 and NFκB nuclear translocation in human cells. Consequently, cell adhesion molecule expression and monocyte adherence were significantly inhibited by both inhibitors. In vivo, TNFα-induced ROS and inflammation were ameliorated by targeted Nox2 inhibition, which, in turn, improved hind-limb blood flow. These studies identify a proximal role for Nox2 in propagated inflammatory signaling and support therapeutic value of Nox2 inhibitors in inflammatory disease.
Collapse
Affiliation(s)
- Y Li
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - E Cifuentes-Pagano
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - E R DeVallance
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - D S de Jesus
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - S Sahoo
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | | | - D Koes
- Computational and Systems Biology, University of Pittsburgh, USA
| | - C J Camacho
- Computational and Systems Biology, University of Pittsburgh, USA
| | - M Ross
- Center for Biologic Imaging, University of Pittsburgh, PA, 15261, USA
| | - C St Croix
- Center for Biologic Imaging, University of Pittsburgh, PA, 15261, USA
| | - P J Pagano
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA.
| |
Collapse
|
40
|
Gonzalez-Perilli L, Prolo C, Álvarez MN. Arachidonic Acid and Nitroarachidonic: Effects on NADPH Oxidase Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:85-95. [PMID: 31140173 DOI: 10.1007/978-3-030-11488-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arachidonic acid (AA) is a polyunsaturated fatty acid that participates in the inflammatory response mainly through bioactive-lipids formation in macrophages and also in the phagocytic NADPH oxidase 2 (NOX2) activation. NOX2 is the enzyme responsible for a huge superoxide formation in macrophages, essential to eliminate pathogens inside the phagosome. The oxidase is an enzymatic complex comprised of a membrane-bound flavocytochrome b 558 (gp91phox/p22phox), three cytosolic subunits (p47phox, p40phox and p67phox) and a Rac-GTPase. The enzyme becomes active when macrophages are exposed to appropriate stimuli that trigger the phosphorylation of cytosolic subunits and its migration to plasmatic membrane to form the active complex. It is proposed that AA stimulates NOX2 activity through AA interaction with different components of the NADPH oxidase complex. In inflammatory conditions, there is an increase in reactive oxygen and nitrogen species that results in the production of nitrated derivatives of AA, such as nitroarachidonic acid (NO2-AA). NO2-AA is capable to inhibit NOX2 activity by interfering with p47phox migration to the membrane without affecting phosphorylation of cytosolic proteins. Also, NO2-AA is capable to interact with protein disulfide isomerase (PDI), which is involved on NOX2 active complex formation. It has been demonstrated that NO2-AA forms a covalent adduct with PDI that could prevent the interaction with NOX2 and it would explain the inhibitory effects of the fatty acid upon NOX2. Together, current data indicate that AA is an important activator of NOX2 formed in the early events of the inflammatory response, leading to a massive production of oxidants that may, in turn, promote NO2-AA formation and shutting down the oxidative burst. Hence, AA and its derivatives could have antagonistic roles on NOX2 activity regulation.
Collapse
Affiliation(s)
- Lucía Gonzalez-Perilli
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay
| | - Carolina Prolo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
41
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci 2018; 19:ijms19123824. [PMID: 30513656 PMCID: PMC6321244 DOI: 10.3390/ijms19123824] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
For a number of years, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) was synonymous with NOX2/gp91phox and was considered to be a peculiarity of professional phagocytic cells. Over the last decade, several more homologs have been identified and based on current research, the NOX family consists of NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2 enzymes. NOXs are electron transporting membrane proteins that are responsible for reactive oxygen species (ROS) generation-primarily superoxide anion (O₂●-), although hydrogen peroxide (H₂O₂) can also be generated. Elevated ROS leads to oxidative stress (OS), which has been associated with a myriad of inflammatory and degenerative pathologies. Interestingly, OS is also the commonality in the pathophysiology of neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). NOX enzymes are expressed in neurons, glial cells and cerebrovascular endothelial cells. NOX-mediated OS is identified as one of the main causes of cerebrovascular damage in neurodegenerative diseases. In this review, we will discuss recent developments in our understanding of the mechanisms linking NOX activity, OS and neurodegenerative diseases, with particular focus on the neurovascular component of these conditions. We conclude highlighting current challenges and future opportunities to combat age-related neurodegenerative disorders by targeting NOXs.
Collapse
|
43
|
Burg AR, Tse HM. Redox-Sensitive Innate Immune Pathways During Macrophage Activation in Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1373-1398. [PMID: 29037052 PMCID: PMC6166692 DOI: 10.1089/ars.2017.7243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Type 1 diabetes (T1D) is an autoimmune disease resulting in β-cell destruction mediated by islet-infiltrating leukocytes. The role of oxidative stress in human and murine models of T1D is highly significant as these noxious molecules contribute to diabetic complications and β-cell lysis, but their direct impact on dysregulated autoimmune responses is highly understudied. Pro-inflammatory macrophages play a vital role in the initiation and effector phases of T1D by producing free radicals and pro-inflammatory cytokines to facilitate β-cell destruction and to present antigen to autoreactive T cells. Recent Advances: Redox modulation of macrophage functions may play critical roles in autoimmunity. These include enhancing pro-inflammatory innate immune signaling pathways in response to environmental triggers, enforcing an M1 macrophage differentiation program, controlling antigen processing, and altering peptide recognition by oxidative post-translational modification. Therefore, an oxidative environment may act on multiple macrophage functions to orchestrate T1D pathogenesis. CRITICAL ISSUES Mechanisms involved in the initiation of T1D remain unclear, making preventive and early therapeutics difficult to develop. Although many of these advances in the redox regulation of macrophages are in their infancy, they provide insight into how oxidative stress aids in the precipitating event of autoimmune activation. FUTURE DIRECTIONS Future studies should be aimed at mechanistically determining which redox-regulated macrophage functions are pertinent in T1D pathogenesis, as well as at investigating potential targetable therapeutics to halt and/or dampen innate immune activation in T1D.
Collapse
Affiliation(s)
- Ashley R Burg
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
44
|
Ma MW, Wang J, Dhandapani KM, Wang R, Brann DW. NADPH oxidases in traumatic brain injury - Promising therapeutic targets? Redox Biol 2018; 16:285-293. [PMID: 29571125 PMCID: PMC5952873 DOI: 10.1016/j.redox.2018.03.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Despite intense investigation, no neuroprotective agents for TBI have yet translated to the clinic. Recent efforts have focused on identifying potential therapeutic targets that underlie the secondary TBI pathology that evolves minutes to years following the initial injury. Oxidative stress is a key player in this complex cascade of secondary injury mechanisms and prominently contributes to neurodegeneration and neuroinflammation. NADPH oxidase (NOX) is a family of enzymes whose unique function is to produce reactive oxygen species (ROS). Human post-mortem and animal studies have identified elevated NOX2 and NOX4 levels in the injured brain, suggesting that these two NOXs are involved in the pathogenesis of TBI. In support of this, NOX2 and NOX4 deletion studies have collectively revealed that targeting NOX enzymes can reduce oxidative stress, attenuate neuroinflammation, promote neuronal survival, and improve functional outcomes following TBI. In addition, NOX inhibitor studies have confirmed these findings and demonstrated an extended critical window of efficacious TBI treatment. Finally, the translational potential, caveats, and future directions of the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Merry W Ma
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
45
|
Rudolf J, Raad H, Taieb A, Rezvani HR. NADPH Oxidases and Their Roles in Skin Homeostasis and Carcinogenesis. Antioxid Redox Signal 2018; 28:1238-1261. [PMID: 28990413 DOI: 10.1089/ars.2017.7282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Skin protects the body from dehydration, pathogens, and external mutagens. NADPH oxidases are central components for regulating the cellular redox balance. There is increasing evidence indicating that reactive oxygen species (ROS) generated by members of this enzyme family play important roles in the physiology and pathophysiology of the skin. Recent Advances: NADPH oxidases are active producers of ROS such as superoxide and hydrogen peroxide. Different isoforms are found in virtually all tissues. They play pivotal roles in normal cell homeostasis and in the cellular responses to various stressors. In particular, these enzymes are integral parts of redox-sensitive prosurvival and proapoptotic signaling pathways, in which they act both as effectors and as modulators. However, continuous (re)activation of NADPH oxidases can disturb the redox balance of cells, in the worst-case scenario in a permanent manner. Abnormal NADPH oxidase activity has been associated with a wide spectrum of diseases, as well as with aging and carcinogenesis. CRITICAL ISSUES Sunlight with its beneficial and deleterious effects induces the activation of NADPH oxidases in the skin. Evidence for the important roles of this enzyme family in skin cancer and skin aging, as well as in many chronic skin diseases, is now emerging. FUTURE DIRECTIONS Understanding the precise roles of NADPH oxidases in normal skin homeostasis, in the cellular responses to solar radiation, and during carcinogenesis will pave the way for their validation as therapeutic targets not only for the prevention and treatment of skin cancers but also for many other skin-related disorders. Antioxid. Redox Signal. 28, 1238-1261.
Collapse
Affiliation(s)
- Jana Rudolf
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France
| | - Houssam Raad
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France
| | - Alain Taieb
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France .,3 Service de Dermatologie Adulte et Pédiatrique , CHU de Bordeaux, Bordeaux, France .,4 Centre de Référence des Maladies Rares de la Peau , CHU de Bordeaux, Bordeaux, France
| | - Hamid Reza Rezvani
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France .,4 Centre de Référence des Maladies Rares de la Peau , CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
46
|
Vara D, Watt JM, Fortunato TM, Mellor H, Burgess M, Wicks K, Mace K, Reeksting S, Lubben A, Wheeler-Jones CPD, Pula G. Direct Activation of NADPH Oxidase 2 by 2-Deoxyribose-1-Phosphate Triggers Nuclear Factor Kappa B-Dependent Angiogenesis. Antioxid Redox Signal 2018; 28:110-130. [PMID: 28793782 PMCID: PMC5725637 DOI: 10.1089/ars.2016.6869] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells. RESULTS Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting, gene silencing of different NADPH oxidases (NOXs), and their regulatory cosubunits by small interfering RNA (siRNA) transfection, and experiments with inhibitors of the sugar transporter glucose transporter 1 (GLUT1) were utilized to demonstrate that dRP acts intracellularly by directly activating the endothelial NOX2 complex, but not NOX4. Increased reactive oxygen species generation in response to NOX2 activity leads to redox-dependent activation of the transcription factor nuclear factor kappa B (NF-κB), which, in turn, induces vascular endothelial growth factor receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, gene silencing by siRNA, and antibody-based receptor inhibition, we demonstrate that the activation of NF-κB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The upregulation of VEGFR2 and NOX2-dependent stimulation of angiogenesis by dRP were confirmed in excisional wound and Matrigel plug vascularization assays in vivo using NOX2-/- mice. INNOVATION For the first time, we demonstrate that dRP acts intracellularly and stimulates superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex. CONCLUSIONS This study describes a novel molecular mechanism underlying the proangiogenic activity of dRP, which involves the sequential activation of NOX2 and NF-κB and upregulation of VEGFR2. Antioxid. Redox Signal. 28, 110-130.
Collapse
Affiliation(s)
- Dina Vara
- 1 Institute of Biomedical and Clinical Science, University of Exeter Medical School , Exeter, United Kingdom
| | - Joanna M Watt
- 2 Department of Pharmacy and Pharmacology, University of Bath , Bath, United Kingdom
| | - Tiago M Fortunato
- 3 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Harry Mellor
- 4 Department of Biochemistry, University of Bristol , Bristol, United Kingdom
| | - Matthew Burgess
- 5 The Healing Foundation Centre, University of Manchester , Manchester, United Kingdom
| | - Kate Wicks
- 5 The Healing Foundation Centre, University of Manchester , Manchester, United Kingdom
| | - Kimberly Mace
- 5 The Healing Foundation Centre, University of Manchester , Manchester, United Kingdom
| | - Shaun Reeksting
- 6 Mass Spectrometry Service and Chemical Characterisation and Analysis Facility, University of Bath , Bath, United Kingdom
| | - Anneke Lubben
- 6 Mass Spectrometry Service and Chemical Characterisation and Analysis Facility, University of Bath , Bath, United Kingdom
| | | | - Giordano Pula
- 1 Institute of Biomedical and Clinical Science, University of Exeter Medical School , Exeter, United Kingdom
| |
Collapse
|
47
|
Meijles DN, Sahoo S, Al Ghouleh I, Amaral JH, Bienes-Martinez R, Knupp HE, Attaran S, Sembrat JC, Nouraie SM, Rojas MM, Novelli EM, Gladwin MT, Isenberg JS, Cifuentes-Pagano E, Pagano PJ. The matricellular protein TSP1 promotes human and mouse endothelial cell senescence through CD47 and Nox1. Sci Signal 2017; 10:eaaj1784. [PMID: 29042481 PMCID: PMC5679204 DOI: 10.1126/scisignal.aaj1784] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Senescent cells withdraw from the cell cycle and do not proliferate. The prevalence of senescent compared to normally functioning parenchymal cells increases with age, impairing tissue and organ homeostasis. A contentious principle governing this process has been the redox theory of aging. We linked matricellular protein thrombospondin 1 (TSP1) and its receptor CD47 to the activation of NADPH oxidase 1 (Nox1), but not of the other closely related Nox isoforms, and associated oxidative stress, and to senescence in human cells and aged tissue. In human endothelial cells, TSP1 promoted senescence and attenuated cell cycle progression and proliferation. At the molecular level, TSP1 increased Nox1-dependent generation of reactive oxygen species (ROS), leading to the increased abundance of the transcription factor p53. p53 mediated a DNA damage response that led to senescence through Rb and p21cip, both of which inhibit cell cycle progression. Nox1 inhibition blocked the ability of TSP1 to increase p53 nuclear localization and p21cip abundance and its ability to promote senescence. Mice lacking TSP1 showed decreases in ROS production, p21cip expression, p53 activity, and aging-induced senescence. Conversely, lung tissue from aging humans displayed increases in the abundance of vascular TSP1, Nox1, p53, and p21cip Finally, genetic ablation or pharmacological blockade of Nox1 in human endothelial cells attenuated TSP1-mediated ROS generation, restored cell cycle progression, and protected against senescence. Together, our results provide insights into the functional interplay between TSP1 and Nox1 in the regulation of endothelial senescence and suggest potential targets for controlling the aging process at the molecular level.
Collapse
Affiliation(s)
- Daniel N Meijles
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sanghamitra Sahoo
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jefferson H Amaral
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raquel Bienes-Martinez
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heather E Knupp
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shireen Attaran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John C Sembrat
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Seyed M Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mauricio M Rojas
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Enrico M Novelli
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Gladwin
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jeffrey S Isenberg
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J Pagano
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
48
|
Li Y, Pagano PJ. Microvascular NADPH oxidase in health and disease. Free Radic Biol Med 2017; 109:33-47. [PMID: 28274817 PMCID: PMC5482368 DOI: 10.1016/j.freeradbiomed.2017.02.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
The systemic and cerebral microcirculation contribute critically to regulation of local and global blood flow and perfusion pressure. Microvascular dysfunction, commonly seen in numerous cardiovascular pathologies, is associated with alterations in the oxidative environment including potentiated production of reactive oxygen species (ROS) and subsequent activation of redox signaling pathways. NADPH oxidases (Noxs) are a primary source of ROS in the vascular system and play a central role in cardiovascular health and disease. In this review, we focus on the roles of Noxs in ROS generation in resistance arterioles and capillaries, and summarize their contributions to microvascular physiology and pathophysiology in both systemic and cerebral microcirculation. In light of the accumulating evidence that Noxs are pivotal players in vascular dysfunction of resistance arterioles, selectively targeting Nox isozymes could emerge as a novel and effective therapeutic strategy for preventing and treating microvascular diseases.
Collapse
Affiliation(s)
- Yao Li
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
49
|
Endothelial Nox1 oxidase assembly in human pulmonary arterial hypertension; driver of Gremlin1-mediated proliferation. Clin Sci (Lond) 2017; 131:2019-2035. [PMID: 28522681 DOI: 10.1042/cs20160812] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rapidly degenerating and devastating disease of increased pulmonary vessel resistance leading to right heart failure. Palliative modalities remain limited despite recent endeavors to investigate the mechanisms underlying increased pulmonary vascular resistance (PVR), i.e. aberrant vascular remodeling and occlusion. However, little is known of the molecular mechanisms responsible for endothelial proliferation, a root cause of PAH-associated vascular remodeling. Lung tissue specimens from PAH and non-PAH patients and hypoxia-exposed human pulmonary artery endothelial cells (ECs) (HPAEC) were assessed for mRNA and protein expression. Reactive oxygen species (ROS) were measured using cytochrome c and Amplex Red assays. Findings demonstrate for the first time an up-regulation of NADPH oxidase 1 (Nox1) at the transcript and protein level in resistance vessels from PAH compared with non-PAH patients. This coincided with an increase in ROS production and expression of bone morphogenetic protein (BMP) antagonist Gremlin1 (Grem1). In HPAEC, hypoxia induced Nox1 subunit expression, assembly, and oxidase activity leading to elevation in sonic hedgehog (SHH) and Grem1 expression. Nox1 gene silencing abrogated this cascade. Moreover, loss of either Nox1, SHH or Grem1 attenuated hypoxia-induced EC proliferation. Together, these data support a Nox1-SHH-Grem1 signaling axis in pulmonary vascular endothelium that is likely to contribute to pathophysiological endothelial proliferation and the progression of PAH. These findings also support targeting of Nox1 as a viable therapeutic option to combat PAH.
Collapse
|
50
|
Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017; 24:42. [PMID: 28688452 PMCID: PMC5502081 DOI: 10.1186/s12929-017-0346-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|