1
|
Rajasekar P, Hall RJ, Binaya KC, Mahapatra PS, Puppala SP, Thakker D, MacIsaac JL, Lin D, Kobor M, Bolton CE, Sayers I, Hall IP, Clifford RL. Nepalese indoor cookstove smoke extracts alter human airway epithelial gene expression, DNA methylation and hydroxymethylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122561. [PMID: 37742862 DOI: 10.1016/j.envpol.2023.122561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Household air pollution caused by inefficient cooking practices causes 4 million deaths a year worldwide. In Nepal, 86% of the rural population use solid fuels for cooking. Over 25% of premature deaths associated with air pollution are respiratory in nature. Here we aimed to identify molecular signatures of different cookstove and fuel type exposures in human airway epithelial cells, to understand the mechanisms mediating cook stove smoke induced lung disease. Primary human airway epithelial cells in submerged culture were exposed to traditional cook stove (TCS), improved cook stove (ICS) and liquefied petroleum gas (LPG) stove smoke extracts. Changes to gene expression, DNA methylation and hydroxymethylation were measured by bulk RNA sequencing and HumanMethylationEPIC BeadChip following oxidative bisulphite conversion, respectively. TCS smoke extract alone reproducibly caused changes in the expression of 52 genes enriched for oxidative stress pathways. TCS, ICS and LPG smoke extract exposures were associated with distinct changes to DNA methylation and hydroxymethylation. A subset of TCS induced genes were associated with differentially methylated and/or hydroxymethylated CpGs sites, and enriched for the ferroptosis pathway and the upstream regulator NFE2L2. DNA methylation and hydroxymethylation changes not associated with a concurrent change in gene expression, were linked to biological processes and molecular pathways important to airway health, including neutrophil function, transforming growth factor beta signalling, GTPase activity, and cell junction organisation. Our data identified differential impacts of TCS, ICS and LPG cook stove smoke on the human airway epithelium transcriptome, DNA methylome and hydroxymethylome and provide further insight into the association between indoor air pollution exposure and chronic lung disease mechanisms.
Collapse
Affiliation(s)
- Poojitha Rajasekar
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK
| | - Robert J Hall
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK
| | - K C Binaya
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Parth S Mahapatra
- Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Siva P Puppala
- Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Dhruma Thakker
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK
| | - Julia L MacIsaac
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Lin
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Kobor
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte E Bolton
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK
| | - Ian Sayers
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK
| | - Ian P Hall
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK
| | - Rachel L Clifford
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK.
| |
Collapse
|
2
|
Zuchegna C, Porcellini A, Messina S. Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study. Redox Rep 2022; 27:150-157. [PMID: 35822835 PMCID: PMC9291712 DOI: 10.1080/13510002.2022.2094109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although the protooncogenes small GTPases Ras are redox-sensitive proteins, how they are regulated by redox signaling in the central nervous system (CNS) is still poorly understood. Alteration in redox-sensitive targets by redox signaling may have myriad effects on Ras stability, activity and localization. Redox-mediated changes in astrocytic RAS may contribute to the control of redox homeostasis in the CNS that is connected to the pathogenesis of many diseases. RESULTS AND METHODS Here, we investigated the transient physiological induction, at both transcriptional and translational levels, of small GTPases Ras in response to redox stimulation. Cultured astrocytes were treated with hydrogen peroxide as in bolus addition and relative mRNA levels of murine hras and kras genes were detected by qRT-PCR. We found that de novo transcription of hras mRNA in reactive astrocytes is redox-sensitive and mimics the prototypical redox-sensitive gene iNOS. Protein abundance in combination with protein turnover measurements by cycloheximide-chase experiments revealed distinct translation efficiency, GTP-bound enrichment, and protein turnover rates between the two isoforms H-Ras and K-Ras. CONCLUSION Reports from recent years support a significant role of H-Ras in driving redox processes. Beyond its canonical functions, Ras may impact on the core astrocytic cellular machinery that operates during redox stimulation.
Collapse
Affiliation(s)
- Candida Zuchegna
- Dipartimento di Biologia, Complesso Universitario di Monte Sant'Angelo, Università degli Studi di Napoli “Federico II”, Napoli, Italia
| | - Antonio Porcellini
- Dipartimento di Biologia, Complesso Universitario di Monte Sant'Angelo, Università degli Studi di Napoli “Federico II”, Napoli, Italia
| | - Samantha Messina
- Dipartimento di Scienze, Università degli Studi Roma Tre, Roma, Italia
| |
Collapse
|
3
|
Osaka N, Hirota Y, Ito D, Ikeda Y, Kamata R, Fujii Y, Chirasani VR, Campbell SL, Takeuchi K, Senda T, Sasaki AT. Divergent Mechanisms Activating RAS and Small GTPases Through Post-translational Modification. Front Mol Biosci 2021; 8:707439. [PMID: 34307463 PMCID: PMC8295990 DOI: 10.3389/fmolb.2021.707439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
RAS is a founding member of the RAS superfamily of GTPases. These small 21 kDa proteins function as molecular switches to initialize signaling cascades involved in various cellular processes, including gene expression, cell growth, and differentiation. RAS is activated by GTP loading and deactivated upon GTP hydrolysis to GDP. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) accelerate GTP loading and hydrolysis, respectively. These accessory proteins play a fundamental role in regulating activities of RAS superfamily small GTPase via a conserved guanine binding (G)-domain, which consists of five G motifs. The Switch regions lie within or proximal to the G2 and G3 motifs, and undergo dynamic conformational changes between the GDP-bound "OFF" state and GTP-bound "ON" state. They play an important role in the recognition of regulatory factors (GEFs and GAPs) and effectors. The G4 and G5 motifs are the focus of the present work and lie outside Switch regions. These motifs are responsible for the recognition of the guanine moiety in GTP and GDP, and contain residues that undergo post-translational modifications that underlie new mechanisms of RAS regulation. Post-translational modification within the G4 and G5 motifs activates RAS by populating the GTP-bound "ON" state, either through enhancement of intrinsic guanine nucleotide exchange or impairing GAP-mediated down-regulation. Here, we provide a comprehensive review of post-translational modifications in the RAS G4 and G5 motifs, and describe the role of these modifications in RAS activation as well as potential applications for cancer therapy.
Collapse
Affiliation(s)
- Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yoshihisa Hirota
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Doshun Ito
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Ryo Kamata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Venkat R. Chirasani
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Science and Technology, Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Atsuo T. Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Cancer Biology, University of Cincinnati College of Medicine, Columbus, OH, United States
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, United States
| |
Collapse
|
4
|
Kramer-Drauberg M, Ambrogio C. Discoveries in the redox regulation of KRAS. Int J Biochem Cell Biol 2020; 131:105901. [PMID: 33309959 DOI: 10.1016/j.biocel.2020.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Oncogenic KRAS is one of the most common drivers of human cancer. Despite intense research, no effective therapy to directly inhibit oncogenic KRAS has yet been approved and KRAS mutant tumors remain associated with a poor prognosis. This short review discusses the current knowledge of the redox regulation of RAS and examines the newest findings on cysteine 118 (C118) as a potential novel target for KRAS inhibition.
Collapse
Affiliation(s)
- Maximilian Kramer-Drauberg
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Messina S, De Simone G, Ascenzi P. Cysteine-based regulation of redox-sensitive Ras small GTPases. Redox Biol 2019; 26:101282. [PMID: 31386964 PMCID: PMC6695279 DOI: 10.1016/j.redox.2019.101282] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, respectively) activate the redox-sensitive Ras small GTPases. The three canonical genes (HRAS, NRAS, and KRAS) are archetypes of the superfamily of small GTPases and are the most common oncogenes in human cancer. Oncogenic Ras is intimately linked to redox biology, mainly in the context of tumorigenesis. The Ras protein structure is highly conserved, especially in effector-binding regions. Ras small GTPases are redox-sensitive proteins thanks to the presence of the NKCD motif (Asn116-Lys 117-Cys118-Asp119). Notably, the ROS- and RNS-based oxidation of Cys118 affects protein stability, activity, and localization, and protein-protein interactions. Cys residues at positions 80, 181, 184, and 186 may also help modulate these actions. Moreover, oncogenic mutations of Gly12Cys and Gly13Cys may introduce additional oxidative centres and represent actionable drug targets. Here, the pathophysiological involvement of Cys-redox regulation of Ras proteins is reviewed in the context of cancer and heart and brain diseases.
Collapse
Affiliation(s)
- Samantha Messina
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy.
| | - Giovanna De Simone
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| |
Collapse
|
6
|
Conceição PM, Chaves AFA, Navarro MV, Castilho DG, Calado JCP, Haniu AECJ, Xander P, Batista WL. Cross-talk between the Ras GTPase and the Hog1 survival pathways in response to nitrosative stress in Paracoccidioides brasiliensis. Nitric Oxide 2019; 86:1-11. [PMID: 30772503 DOI: 10.1016/j.niox.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
Paracoccidioides brasiliensis is a temperature-dependent dimorphic fungus that cause paracoccidioidomycosis (PCM), the major systemic mycosis in Latin America. The capacity to evade the innate immune response of the host is due to P. brasiliensis ability to respond and to survive the nitrosative stress caused by phagocytic cells. However, the regulation of signal transduction pathways associated to nitrosative stress response are poorly understood. Ras GTPase play an important role in the various cellular events in many fungi. Ras, in its activated form (Ras-GTP), interacts with effector proteins and can initiate a kinase cascade. In this report, we investigated the role of Ras GTPase in P. brasiliensis after in vitro stimulus with nitric oxide (NO). We observed that low concentrations of NO induced cell proliferation in P. brasiliensis, while high concentrations promoted decrease in fungal viability, and both events were reversed in the presence of a NO scavenger. We observed that high levels of NO induced Ras activation and its S-nitrosylation. Additionally, we showed that Ras modulated the expression of antioxidant genes in response to nitrosative stress. We find that the Hog1 MAP kinase contributed to nitrosative stress response in P. brasiliensis in a Ras-dependent manner. Taken together, our data demonstrate the relationship between Ras-GTPase and Hog1 MAPK pathway allowing for the P. brasiliensis adaptation to nitrosative stress.
Collapse
Affiliation(s)
- Palloma Mendes Conceição
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Campus Diadema, SP, Brazil
| | - Alison Felipe Alencar Chaves
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Marina Valente Navarro
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Daniele Gonçalves Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Juliana Cristina P Calado
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Ana Eliza Coronel Janu Haniu
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Patricia Xander
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Campus Diadema, SP, Brazil
| | - Wagner L Batista
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Campus Diadema, SP, Brazil; Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
8
|
Abstract
Thiyl radicals are important intermediates in the redox biology and chemistry of thiols. These radicals can react via hydrogen transfer with various C-H bonds in peptides and proteins, leading to the generation of carbon-centered radicals, and, potentially, to irreversible protein damage. This review summarizes quantitative information on reaction kinetics and product formation, and discusses the significance of these reactions for protein degradation induced by thiyl radical formation.
Collapse
Affiliation(s)
- Christian Schöneich
- a Department of Pharmaceutical Chemistry , The University of Kansas , Lawrence , KS 66047 , USA
| |
Collapse
|
9
|
Jin R, Gao Y, Zhang S, Teng F, Xu X, Aili A, Wang Y, Sun X, Pang X, Ge Q, Zhang Y. Trx1/TrxR1 system regulates post-selected DP thymocytes survival by modulating ASK1-JNK/p38 MAPK activities. Immunol Cell Biol 2015; 93:744-52. [PMID: 25753394 DOI: 10.1038/icb.2015.36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/06/2015] [Accepted: 02/25/2015] [Indexed: 12/26/2022]
Abstract
A key process in the development of T lymphocyte in the thymus is T-cell receptor (TCR) selection. It is controlled by complex signaling pathways that contain redox-sensitive molecules. However, the redox status early after TCR selection and how redox regulators promote the survival of post-selected DP thymocytes has not been directly addressed. The present study demonstrated that the transition from pre- to post-selected double-positive (DP) stages was accompanied with an increase of reactive oxygen species (ROS) and a transient surge in the expression of a variety of redox regulators. Among them, the thioredoxin (Trx)1/thioredoxin reductase (TrxR)1 system was found to be critically involved in the regulation of cell survival of DP thymocytes, especially that of post-selected CD69(+) subset, as its inhibition caused a specific reduction of these cells both in vitro and in vivo, most likely owing to increased apoptosis. Suppression of the glutathione-dependent redox system, on the other hand, showed no obvious impact. Biochemically, treatment of DP thymcoytes with TrxR1 inhibitor alone or in conjunction with anti-CD3 resulted in enhanced phosphorylation of redox-sensitive ASK-1, JNK and p38 MAPK, and upregulated expression of Bim. Taken together, the data presented here suggest that the timely upregulation of Trx1/TrxR1 and the active control of intracellular redox status is critical for the survival of thymocytes during and short after positive selection.
Collapse
Affiliation(s)
- Rong Jin
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Yuhan Gao
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Shusong Zhang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Fei Teng
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Xi Xu
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Abudureyimujiang Aili
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Yuqing Wang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Xiuyuan Sun
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Xuewen Pang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Qing Ge
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Yu Zhang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| |
Collapse
|
10
|
Nauser T, Koppenol WH, Schöneich C. Protein thiyl radical reactions and product formation: a kinetic simulation. Free Radic Biol Med 2015; 80:158-63. [PMID: 25499854 PMCID: PMC5118936 DOI: 10.1016/j.freeradbiomed.2014.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
Protein thiyl radicals are important intermediates generated in redox processes of thiols and disulfides. Thiyl radicals efficiently react with glutathione and ascorbate, and the common notion is that these reactions serve to eliminate thiyl radicals before they can enter potentially hazardous processes. However, over the past years increasing evidence has been provided for rather efficient intramolecular hydrogen transfer processes of thiyl radicals in proteins and peptides. Based on rate constants published for these processes, we have performed kinetic simulations of protein thiyl radical reactivity. Our simulations suggest that protein thiyl radicals enter intramolecular hydrogen transfer reactions to a significant extent even under physiologic conditions, i.e., in the presence of 30 µM oxygen, 1 mM ascorbate, and 10 mM glutathione. At lower concentrations of ascorbate and glutathione, frequently observed when tissue is exposed to oxidative stress, the extent of irreversible protein thiyl radical-dependent protein modification increases.
Collapse
Affiliation(s)
- Thomas Nauser
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Willem H Koppenol
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
11
|
Lv C, Qin W, Zhu T, Wei S, Hong K, Zhu W, Chen R, Huang C. Ophiobolin O isolated from Aspergillus ustus induces G1 arrest of MCF-7 cells through interaction with AKT/GSK3β/cyclin D1 signaling. Mar Drugs 2015; 13:431-43. [PMID: 25603341 PMCID: PMC4306945 DOI: 10.3390/md13010431] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 11/26/2014] [Indexed: 12/29/2022] Open
Abstract
Ophiobolin O is a member of ophiobolin family, which has been proved to be a potent anti-tumor drug candidate for human breast cancer. However, the anti-tumor effect and the mechanism of ophiobolin O remain unclear. In this study, we further verified ophiobolin O-induced G1 phase arrest in human breast cancer MCF-7 cells, and found that ophiobolin O reduced the phosphorylation level of AKT and GSK3β, and induced down-regulation of cyclin D1. The inverse docking (INVDOCK) analysis indicated that ophiobolin O could bind to GSK3β, and GSK3β knockdown abolished cyclin D1 degradation and G1 phase arrest. Pre-treatment with phosphatase inhibitor sodium or thovanadate halted dephosphorylation of AKT and GSK3β, and blocked ophiobolin O-induced G1 phase arrest. These data suggest that ophiobolin O may induce G1 arrest in MCF-7 cells through interaction with AKT/GSK3β/cyclin D1 signaling. In vivo, ophiobolin O suppressed tumor growth and showed little toxicity in mouse xenograft models. Overall, these findings provide theoretical basis for the therapeutic use of ophiobolin O.
Collapse
Affiliation(s)
- Cuiting Lv
- Department of Biochemistry and Molecular Biology, College of Basic Medical Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | - Wenxing Qin
- Teaching Management Department, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, Shanghai 200090, China.
| | - Tonghan Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Shanjian Wei
- Department of Biochemistry and Molecular Biology, College of Basic Medical Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Ruohua Chen
- VIP Medicine Department, Changhai Hospital, Shanghai 200433, China.
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
12
|
Wolff G, Balke JE, Andras IE, Park M, Toborek M. Exercise modulates redox-sensitive small GTPase activity in the brain microvasculature in a model of brain metastasis formation. PLoS One 2014; 9:e97033. [PMID: 24804765 PMCID: PMC4013134 DOI: 10.1371/journal.pone.0097033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/14/2014] [Indexed: 12/26/2022] Open
Abstract
Tumor cell extravasation into the brain requires passage through the blood-brain barrier (BBB). There is evidence that exercise can alter the oxidation status of the brain microvasculature and protect against tumor cell invasion into the brain, although the mechanisms are not well understood. In the current study, we focused on the role of microenvironment generated by exercise and metastasizing tumor cells at the levels of brain microvessels, influencing oxidative stress-mediated responses and activation of redox-sensitive small GTPases. Mature male mice were exercised for four weeks using a running wheel with the average voluntary running distance 9.0 ± 0.3 km/day. Mice were then infused with 1.0 × 10(6) D122 (murine Lewis lung carcinoma) cells into the brain microvasculature, and euthanized either 48 hours (in short-term studies) or 2-3 weeks (in long-term studies) post tumor cell administration. A significant increase in the level of reactive oxygen species was observed following 48 hours or 3 weeks of tumor cells growth, which was accompanied by a reduction in MnSOD expression in the exercised mice. Activation of the small GTPase Rho was negatively correlated with running distance in the tumor cell infused mice. Together, these data suggest that exercise may play a significant role during aggressive metastatic invasion, especially at higher intensities in pre-trained individuals.
Collapse
Affiliation(s)
- Gretchen Wolff
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Jordan E. Balke
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Ibolya E. Andras
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida, United States of America
- Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
13
|
Abstract
Redox agents have been historically considered pathological agents which can react with and damage many biological macromolecules including DNA, proteins, and lipids. However, a growing number of reports have suggested that mammalian cells can rapidly respond to ligand stimulation with a change in intracellular ROS thus indicating that the production of intracellular redox agents is tightly regulated and that they serve as intracellular signaling molecules being involved in a variety of cell signaling pathways. Numerous observations have suggested that some members of the Ras GTPase superfamily appear to regulate the production of redox agents and that oxidants can function as effector molecules for the small GTPases, thus contributing to their overall biological function. In addition, many of the Ras superfamily small GTPases have been shown to be redox sensitive, thanks to the presence of redox-sensitive sequences in their primary structure. The action of redox agents on these redox-sensitive GTPases is similar to that of guanine nucleotide exchange factors in that they perturb GTPase nucleotide-binding interactions that result in the enhancement of the guanine nucleotide exchange of small GTPases. Thus, Ras GTPases may act both as upstream regulators and downstream effectors of redox agents. Here we overview current understanding concerning the interplay between Ras GTPases and redox agents, also taking into account pathological implications of misregulation of this cross talk and highlighting the potentiality of these cellular pathways as new therapeutical targets for different pathologies.
Collapse
|
14
|
Hobbs GA, Gunawardena HP, Campbell SL. Biophysical and proteomic characterization strategies for cysteine modifications in Ras GTPases. Methods Mol Biol 2014; 1120:75-96. [PMID: 24470020 DOI: 10.1007/978-1-62703-791-4_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cysteine is one of the most reactive amino acids and is modified by a number of oxidants. The reactivity of cysteines is dependent on the thiol pK a; however, measuring cysteine pK a values is nontrivial. Ras family GTPases have been shown to contain a free cysteine that is sensitive to oxidation, and free radical-mediated oxidation of this cysteine has been shown to be activating. Here, we present a new technique that allows for measuring cysteine pK a values using a fluorescent detection system with the molecule 4-fluoro-7-aminosulfonylbenzofurazan (ABD-F). In addition, we also describe how to generate several oxidants. Lastly, we describe several mass spectrometry-based experiments and the necessary adjustments to the experiments to detect cysteine oxidation.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
15
|
Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway. Cell Death Dis 2013; 4:e952. [PMID: 24309939 PMCID: PMC3877555 DOI: 10.1038/cddis.2013.484] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023]
Abstract
Chemotherapy remains the common therapeutic for patients with lung cancer. Novel, selective antitumor agents are pressingly needed. This study is the first to investigate a different, however, effective antitumor drug candidate Wentilactone A (WA) for its development as a novel agent. In NCI-H460 and NCI-H446 cell lines, WA triggered G2/M phase arrest and mitochondrial-related apoptosis, accompanying the accumulation of reactive oxygen species (ROS). It also induced activation of mitogen-activated protein kinase and p53 and increased expression of p21. When we pre-treated cells with ERK, JNK, p38, p53 inhibitor or NAC followed by WA treatment, only ERK and p53 inhibitors blocked WA-induced apoptosis and G2/M arrest. We further observed Ras (HRas, KRas and NRas) and Raf activation, and found that WA treatment increased HRas–Raf activation. Knockdown of HRas by using small interfering RNA (siRNA) abolished WA-induced apoptosis and G2/M arrest. HRas siRNA also halted Raf, ERK, p53 activation and p21 accumulation. Molecular docking analysis suggested that WA could bind to HRas-GTP, causing accumulation of Ras-GTP and excessive activation of Raf/ERK/p53-p21. The direct binding affinity was confirmed by surface plasmon resonance (SPR). In vivo, WA suppressed tumor growth without adverse toxicity and presented the same mechanism as that in vitro. Taken together, these findings suggest WA as a promising novel, potent and selective antitumor drug candidate for lung cancer.
Collapse
|
16
|
Camargo LDL, Babelova A, Mieth A, Weigert A, Mooz J, Rajalingam K, Heide H, Wittig I, Lopes LR, Brandes RP. Endo-PDI is required for TNFα-induced angiogenesis. Free Radic Biol Med 2013; 65:1398-1407. [PMID: 24103565 DOI: 10.1016/j.freeradbiomed.2013.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/08/2013] [Accepted: 09/29/2013] [Indexed: 12/20/2022]
Abstract
Protein disulfide isomerase (PDI) and its homologs are oxidoreductases facilitating protein folding in the ER. Endo-PDI (also termed ERp46) is highly expressed in endothelial cells. It belongs to the PDI family but its physiological function is largely unknown. We studied the role of Endo-PDI in endothelial angiogenic responses. Stimulation of human umbilical vein endothelial cells (with TNFα (10ng/ml) increased ERK1/2 phosphorylation. This effect was largely attenuated by Endo-PDI siRNA, whereas JNK and p38 MAP kinase phosphorylation was Endo-PDI independent. Similarly, TNFα-stimulated NF-κB signaling determined by IκBα degradation as well as TNFα-induced ICAM expression was unaffected by Endo-PDI siRNA. The action of Endo-PDI was not mediated by extracellular thiol exchange or cell surface PDI as demonstrated by nonpermeative inhibitors and PDI-neutralizing antibody. Moreover, exogenously added PDI failed to restore ERK1/2 activation after Endo-PDI knockdown. This suggests that Endo-PDI acts intracellularly potentially by maintaining the Ras/Raf/MEK/ERK pathway. Indeed, knockdown of Endo-PDI attenuated Ras activation measured by G-LISA and Raf phosphorylation. ERK activation influences gene expression by the transcriptional factor AP-1, which controls MMP-9 and cathepsin B, two proteases required for angiogenesis. TNFα-stimulated MMP-9 and cathepsin B induction was reduced by silencing of Endo-PDI. Accordingly, inhibition of cathepsin B or Endo-PDI siRNA blocked the TNFα-stimulated angiogenic response in the spheroid outgrowth assays. Moreover ex vivo tube formation and in vivo Matrigel angiogenesis in response to TNFα were attenuated by Endo-PDI siRNA. In conclusion, our study establishes Endo-PDI as a novel, important mediator of AP-1-driven gene expression and endothelial angiogenic function.
Collapse
Affiliation(s)
- Livia de Lucca Camargo
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, 60590 Frankfurt am Main, Germany; Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrea Babelova
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, 60590 Frankfurt am Main, Germany
| | - Anja Mieth
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, 60590 Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute for Biochemistry I, Goethe-Universität, 60590 Frankfurt am Main, Germany
| | - Juliane Mooz
- Institute for Biochemistry II, Goethe-Universität, 60590 Frankfurt am Main, Germany
| | | | - Heinrich Heide
- Functional Proteomics, SFB815 Core Unit, Goethe-Universität, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB815 Core Unit, Goethe-Universität, 60590 Frankfurt am Main, Germany
| | - Lucia Rossetti Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Low concentrations of hydrogen peroxide or nitrite induced of Paracoccidioides brasiliensis cell proliferation in a Ras-dependent manner. PLoS One 2013; 8:e69590. [PMID: 23922749 PMCID: PMC3726682 DOI: 10.1371/journal.pone.0069590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/10/2013] [Indexed: 01/27/2023] Open
Abstract
Paracoccidioides brasiliensis, a causative agent of paracoccidioidomycosis (PCM), should be able to adapt to dramatic environmental changes inside the infected host after inhalation of air-borne conidia and transition to pathogenic yeasts. Proteins with antioxidant functions may protect fungal cells against reactive oxygen (ROS) and nitrogen (RNS) species generated by phagocytic cells, thus acting as potential virulence factors. Ras GTPases are involved in stress responses, cell morphology, and differentiation in a range of organisms. Ras, in its activated form, interacts with effector proteins and can initiate a kinase cascade. In lower eukaryotes, Byr2 kinase represents a Ras target. The present study investigated the role of Ras in P. brasiliensis after in vitro stimulus with ROS or RNS. We have demonstrated that low concentrations of H2O2 (0.1 mM) or NO2 (0.1–0.25 µM) stimulated P. brasiliensis yeast cell proliferation and that was not observed when yeast cells were pre-incubated with farnesyltransferase inhibitor. We constructed an expression plasmid containing the Byr2 Ras-binding domain (RBD) fused with GST (RBD-Byr2-GST) to detect the Ras active form. After stimulation with low concentrations of H2O2 or NO2, the Ras active form was observed in fungal extracts. Besides, NO2 induced a rapid increase in S-nitrosylated Ras levels. This alternative posttranslational modification of Ras, probably in residue Cys123, would lead to an exchange of GDP for GTP and consequent GTPase activation in P. brasiliensis. In conclusion, low concentrations of H2O2 or NO2 stimulated P. brasiliensis proliferation through Ras activation.
Collapse
|
18
|
Hobbs GA, Bonini MG, Gunawardena HP, Chen X, Campbell SL. Glutathiolated Ras: characterization and implications for Ras activation. Free Radic Biol Med 2013; 57:221-9. [PMID: 23123410 PMCID: PMC3985386 DOI: 10.1016/j.freeradbiomed.2012.10.531] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/05/2012] [Accepted: 10/08/2012] [Indexed: 01/02/2023]
Abstract
Ras GTPases cycle between active GTP-bound and inactive GDP-bound forms to regulate a multitude of cellular processes, including cell growth, differentiation, and apoptosis. The activation state of Ras is regulated by protein modulatory agents that accelerate the slow intrinsic rates of GDP dissociation and GTP hydrolysis. Similar to the action of guanine-nucleotide exchange factors, the rate of GDP dissociation can be greatly enhanced by the reaction of Ras with small-molecule redox agents, such as nitrogen dioxide, which can promote Ras activation. Nitrogen dioxide is an autoxidation product of nitric oxide and can react with an accessible cysteine of Ras to cause oxidation of the bound guanine nucleotide to facilitate Ras guanine nucleotide dissociation. Glutathione has also been reported to modify Ras and alter its activity. To elucidate the mechanism by which glutathione alters Ras guanine nucleotide binding properties, we performed NMR, top-down and bottom-up mass spectrometry, and biochemical analyses of glutathiolated Ras. We determined that treatment of H-Ras, lacking the nonconserved hypervariable region, with oxidized glutathione results in glutathiolation specifically at cysteine 118. However, glutathiolation does not alter Ras structure or biochemical properties. Rather, changes in guanine nucleotide binding properties and Ras activity occur upon exposure of Ras to free radicals, presumably through the generation of a cysteine 118 thiyl radical. Interestingly, Ras glutathiolation protects Ras from further free radical-mediated activation events. Therefore, glutathiolation does not affect Ras activity unless Ras is modified by glutathione through a radical-mediated mechanism.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
19
|
Mitchell L, Hobbs GA, Aghajanian A, Campbell SL. Redox regulation of Ras and Rho GTPases: mechanism and function. Antioxid Redox Signal 2013; 18:250-8. [PMID: 22657737 PMCID: PMC3518547 DOI: 10.1089/ars.2012.4687] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Oxidation and reduction events are critical to physiological and pathological processes and are highly regulated. Herein, we present evidence for the role of Ras and Rho GTPases in controlling these events and the unique underlying mechanisms. Evidence for redox regulation of Ras GTPases that contain a redox-sensitive cysteine (X) in the conserved NKXD motif is presented, and a growing consensus supports regulation by a thiyl radical-mediated oxidation mechanism. We also discuss the debate within the literature regarding whether 2e(-) oxidation mechanisms also regulate Ras GTPase activity. RECENT ADVANCES We examine the increasing in vitro and cell-based data supporting oxidant-mediated activation of Rho GTPases that contain a redox-sensitive cysteine at the end of the conserved phosphoryl-binding loop (p-loop) motif (GXXXXG[S/T]C). While this motif is distinct from Ras, these data suggest a similar 1e(-) oxidation-mediated activation mechanism. CRITICAL ISSUES We also review the data showing that the unique p-loop placement of the redox-sensitive cysteine in Rho GTPases supports activation by 2e(-) cysteine oxidation. Finally, we examine the role that Ras and Rho GTPases play in controlling key oxidant-regulating enzymes in the cell, and we speculate on a feedback mechanism. FUTURE DIRECTIONS Given that these GTPases and redox-regulating enzymes are involved in multiple physiological and pathological processes, we discuss future experiments that may clarify the interplay between them.
Collapse
Affiliation(s)
- Lauren Mitchell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
20
|
Davis MF, Zhou L, Ehrenshaft M, Ranguelova K, Gunawardena HP, Chen X, Bonini M, Mason RP, Campbell SL. Detection of Ras GTPase protein radicals through immuno-spin trapping. Free Radic Biol Med 2012; 53:1339-45. [PMID: 22819983 PMCID: PMC3549333 DOI: 10.1016/j.freeradbiomed.2012.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/27/2012] [Accepted: 07/10/2012] [Indexed: 01/05/2023]
Abstract
Over the past decade immuno-spin trapping (IST) has been used to detect and identify protein radical sites in numerous heme and metalloproteins. To date, however, the technique has had little application toward nonmetalloproteins. In this study, we demonstrate the successful application of IST in a system free of transition metals and present the first conclusive evidence of (•)NO-mediated protein radical formation in the HRas GTPase. HRas is a nonmetalloprotein that plays a critical role in regulating cell-growth control. Protein radical formation in Ras GTPases has long been suspected of initiating premature release of bound guanine nucleotide. This action results in altered Ras activity both in vitro and in vivo. As described herein, successful application of IST may provide a means for detecting and identifying radical-mediated Ras activation in many different cancers and disease states in which Ras GTPases play an important role.
Collapse
Affiliation(s)
- Michael F. Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Li Zhou
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Marilyn Ehrenshaft
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, P.O. Box 12233, MD F0-01, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709
| | - Kalina Ranguelova
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, P.O. Box 12233, MD F0-01, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709
| | - Harsha P. Gunawardena
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Marcelo Bonini
- UIC Section of Cardiology, University of Illinois at Chicago, Chicago IL 60612
| | - Ronald P. Mason
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, P.O. Box 12233, MD F0-01, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709
| | - Sharon L. Campbell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
21
|
Miller MS, Miller LD. RAS Mutations and Oncogenesis: Not all RAS Mutations are Created Equally. Front Genet 2012; 2:100. [PMID: 22303394 PMCID: PMC3262225 DOI: 10.3389/fgene.2011.00100] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/13/2011] [Indexed: 12/28/2022] Open
Abstract
Mutation in RAS proteins is one of the most common genetic alterations observed in human and experimentally induced rodent cancers. In vivo, oncogenic mutations have been shown to occur at exons 12, 13, and 61, resulting in any 1 of 19 possible point mutations in a given tumor for a specific RAS isoform. While some studies have suggested a possible role of different mutant alleles in determining tumor severity and phenotype, no general consensus has emerged on the oncogenicity of different mutant alleles in tumor formation and progression. Part of this may be due to a lack of a single, signature pathway that shows significant alterations between different mutations. Rather, it is likely that subtle differences in the activation, or lack thereof, of downstream effectors by different RAS mutant alleles may determine the eventual outcome in terms of tumor phenotype. This paper reviews our current understanding of the potential role of different RAS mutations on tumorigenesis, highlights studies in model cell culture and in vivo systems, and discusses the potential of expression array and computational network modeling to dissect out differences in activated RAS genes in conferring a transforming phenotype.
Collapse
Affiliation(s)
- Mark Steven Miller
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of MedicineWinston-Salem, NC, USA
| | - Lance D. Miller
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of MedicineWinston-Salem, NC, USA
| |
Collapse
|