1
|
Moomivand S, Nikbakht M, Majd A, Bikhof Torbati M, Mousavi SA. Combining Chemotherapy Agents and Autophagy Modulators for Enhanced Breast Cancer Cell Death. Adv Pharm Bull 2024; 14:908-917. [PMID: 40190668 PMCID: PMC11970493 DOI: 10.34172/apb.42733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose Autophagy, governed by genes with dual roles in cell death and survival, plays a crucial role in cancer persistence. Arsenic trioxide (ATO), carboplatin (CP), and cyclophosphamide (CY) are used to treat various cancers. ATO impedes cell proliferation and triggers apoptosis in cancer cells. CP, a platinum-based drug, damages cancer cell DNA, while CY acts as an alkylating agent, disrupting cell proliferation. This study investigates the combined effects of ATO, CP, and CY on inducing apoptosis and modulating autophagy in triple-negative breast cancer (TNBC) cell lines, BT-20 and MDA-MB-231. Methods The cytotoxic effects of ATO, CP, and CY, alone and in combination, were evaluated using the MTT assay on BT-20 and MDA-MB-231 cells. Apoptosis and cell cycle progression were analyzed by annexin-V FITC/PI staining and flow cytometry. Gene expression of autophagy-and apoptosis-related markers, including Beclin 1, LC3, caspase 3, and BCL2, was quantified using RT-PCR. Data were analyzed using GraphPad Prism 4.0 with one-way ANOVA followed by Dunnett's test. Results The combination of ATO, CP, and CY significantly reduced cell viability and enhanced apoptosis, evidenced by increased caspase-3 activity and reduced BCL2 expression. Cell cycle arrest in the G1 phase was observed, alongside elevated autophagy markers Beclin 1 and LC3. Conclusion The combination of ATO, CP, and CY induces synergistic effects in promoting apoptosis and autophagy in TNBC cell lines. These findings suggest that this combination therapy could be a promising approach to enhancing treatment efficacy in aggressive breast cancers, offering new insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Soraya Moomivand
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikbakht
- Research Institute for Oncology, Hematology and Cell Therapy Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Bikhof Torbati
- Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahre rey branch, Islamic Azad University, Tehran, Iran
| | - Seyed Asadoullah Mousavi
- Research Institute for Oncology, Hematology and Cell Therapy Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Li Z, Li H, Wang D, Peng X, Syed BM, Liu Q. S-glutathionylation in hepatocytes is involved in arsenic-induced liver fibrosis through activation of the NLRP3 inflammasome, an effect alleviated by NAC. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174534. [PMID: 38986690 DOI: 10.1016/j.scitotenv.2024.174534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Arsenic, a toxicant widely distributed in the environment, is considered as a risk factor for liver fibrosis. At present, the underlying mechanism still needs to be explored. In the present study, we found that, for mice, chronic exposure to arsenic induced liver fibrosis, activated the NLRP3 inflammasome, and increased the levels of reactive oxygen species (ROS). After hepatocytes were co-cultured with hepatic stellate cells (HSCs), we observed the arsenic-activated NLRP3 inflammasome in hepatocytes, and the co-cultured HSCs were activated. Further, we found that, in livers of mice, arsenic disturbed GSH metabolism and promoted protein S-glutathionylation. A 3D molecular docking simulation suggested that NLRP3 binds with GSH, which was confirmed by immunoprecipitation experiments. N-acetylcysteine (NAC) increased the levels of GSH in hepatocytes, which suppressed the S-glutathionylation of NLRP3 and blocked arsenic-induced activation of the NLRP3 inflammasome. Mechanistically, an imbalance of the redox state induced by arsenic promotes the S-glutathionylation of NLRP3, which regulates activation of the NLRP3 inflammasome, leading into the activation of HSCs. Moreover, NAC increases the levels of GSH to block arsenic-induced S-glutathionylation of NLRP3, thereby blocking arsenic-induced liver fibrosis. Thus, via activating HSCs, the S-glutathionylation of NLRP3 in hepatocytes is involved in arsenic-induced liver fibrosis, and, for hepatocytes, NAC alleviates these effects by increasing the levels of GSH. These results reveal a new mechanism and provide a possible therapeutic target for the liver fibrosis induced by environmental factors.
Collapse
Affiliation(s)
- Zhenyang Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Xiaoshan Peng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro 76090, Sindh, Pakistan
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Zhou Y, Guo Y, Ran M, Shan W, Granchi C, Giovannetti E, Minutolo F, Peters GJ, Tam KY. Combined inhibition of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase a induces metabolic and signaling reprogramming and enhances lung adenocarcinoma cell killing. Cancer Lett 2023; 577:216425. [PMID: 37805163 DOI: 10.1016/j.canlet.2023.216425] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/27/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent and aggressive types of lung cancer. Metabolic reprogramming plays a critical role in the development and progression of LUAD. Pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA) are two key enzymes involved in glucose metabolism, whilst their aberrant expressions are often associated with tumorigenesis. Herein, we investigated the anticancer effects of combined inhibition of PDK1 and LDHA in LUAD in vitro and in vivo and its underlying mechanisms of action. The combination of a PDK1 inhibitor, 64, and a LDHA inhibitor, NHI-Glc-2, led to a synergistic growth inhibition in 3 different LUAD cell lines and more than additively suppressed tumor growth in the LUAD xenograft H1975 model. This combination also inhibited cellular migration and colony formation, while it induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) resulting in mitochondrial depolarization and apoptosis in LUAD cells. These effects were related to modulation of multiple cell signaling pathways, including AMPK, RAS/ERK, and AKT/mTOR. Our findings demonstrate that simultaneous inhibition of multiple glycolytic enzymes (PDK1 and LDHA) is a promising novel therapeutic approach for LUAD.
Collapse
Affiliation(s)
- Yan Zhou
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Yizhen Guo
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Maoxin Ran
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wenying Shan
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, 56126, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081, HV Amsterdam, the Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, 56126, Pisa, Italy
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, 80-210, Gdańsk, Poland; Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081, HV Amsterdam, the Netherlands
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
4
|
Juan W, Mu Y, Wang C, So E, Lee Y, Lin S, Huang B. Arsenic compounds activate MAPK and inhibit Akt pathways to induce apoptosis in MA-10 mouse Leydig tumor cells. Cancer Med 2022; 12:3260-3275. [PMID: 36000705 PMCID: PMC9939220 DOI: 10.1002/cam4.5068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Arsenic compounds have been applied treating acute promyelocytic 1eukemia and solid tumors with brief mechanism investigations. In fact, we have demonstrated that sodium arsenite plus dimethylarsenic acid could activate apoptosis in MA-10 mouse Leydig tumor cells by inducing caspase pathways. However, detail underlying mechanisms how caspase cascade is regulated remains elusive. Therefore, the apoptotic mechanism of sodium arsenite plus dimethylarsenic acid were examined in MA-10 cells in this study. Our results reveal that Fas/FasL protein expressions were stimulated by sodium arsenite plus dimethylarsenic acid in MA-10 cells. In addition, reactive oxygen species (ROS) generation, cytochrome C release, Bid truncation, and Bax translocation were induced in MA-10 cells by arsenic compounds. Moreover, activation of p38, JNK and ERK1/2, MAPK pathways was stimulated while Akt phosphorylated levels and Akt expression were decreased by sodium arsenite plus dimethylarsenic in MA-10 cells. In conclusion, sodium arsenite and dimethylarsenic acid did activate MAPK pathway plus ROS generation, but suppress Akt pathway, to modulate caspase pathway and then induce MA-10 cell apoptosis.
Collapse
Affiliation(s)
- Wei‐Sheng Juan
- Department of Neurosurgery, An Nan HospitalChina Medical UniversityTainan CityTaiwan
| | - Yi‐Fen Mu
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chia‐Yih Wang
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Edmund‐Cheung So
- Department of Anesthesia & Medical Research, An Nan HospitalChina Medical UniversityTainan CityTaiwan
| | - Yi‐Ping Lee
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Sheng‐Che Lin
- Department of Plastic Surgical, An Nan HospitalChina Medical UniversityTainan CityTaiwan
| | - Bu‐Miin Huang
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan,Department of Medical Research, China Medical University HospitalChina Medical UniversityTaichungTaiwan, Republic of China
| |
Collapse
|
5
|
Inanc ME, Gungor S, Yeni D, Avdatek F, İpek V, Türkmen R, Çorum O, Karaca H, Ata A. Protective role of the dried white mulberry extract on the reproductive damage and fertility in rats treated with carmustine. Food Chem Toxicol 2022; 163:112979. [PMID: 35398183 DOI: 10.1016/j.fct.2022.112979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022]
Abstract
The present study investigated the protective effect of dried white Mulberry extract (DWME) against carmustine (Crm) induced biochemical alterations and spermatological, histopathological, and fertility damage in Wistar albino rats. Male rats were divided into four groups (control, Crm, Crm + DWME, and DWME group). It was found that Crm decreased the motility. Crm decreased the concentration (not different from control group) compared to DWME groups. Total blood MDA levels were reduced during the recovery period. Also, the recovery period reduced the MDA levels in the Crm group/testicular tissue. The GSH levels in the Crm + DWME group were the highest among all groups in the testicular tissue/experiment period. In the immunohistochemical evaluation of the testicular tissue, a high level of caspase-3 was observed in the cells that underwent meiosis in the Crm group. The most pronounced DNA damage was also detected in the Crm group. The Crm + DWME group showed the highest number of offspring born during recovery period. In conclusion, dried white mulberry extract protects against the spermatological damages caused by carmustine. Moreover, recovery period played a positive effect on spermatological parameters and fertility.
Collapse
Affiliation(s)
- Muhammed Enes Inanc
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Burdur, Turkey.
| | - Sukru Gungor
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Burdur, Turkey
| | - Deniz Yeni
- Afyon Kocatepe University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Afyonkarahisar, Turkey
| | - Fatih Avdatek
- Afyon Kocatepe University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Afyonkarahisar, Turkey
| | - Volkan İpek
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Pathology, Burdur, Turkey
| | - Ruhi Türkmen
- Afyon Kocatepe University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyonkarahisar, Turkey
| | - Orhan Çorum
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Hatay, Turkey
| | - Harun Karaca
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Burdur, Turkey
| | - Ayhan Ata
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Burdur, Turkey
| |
Collapse
|
6
|
Tang YC, Hsiao JR, Jiang SS, Chang JY, Chu PY, Liu KJ, Fang HL, Lin LM, Chen HH, Huang YW, Chen YT, Tsai FY, Lin SF, Chuang YJ, Kuo CC. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics 2021; 11:5232-5247. [PMID: 33859744 PMCID: PMC8039948 DOI: 10.7150/thno.53417] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: NRF2, a redox sensitive transcription factor, is up-regulated in head and neck squamous cell carcinoma (HNSCC), however, the associated impact and regulatory mechanisms remain unclear. Methods: The protein expression of NRF2 in HNSCC specimens was examined by IHC. The regulatory effect of c-MYC on NRF2 was validated by ChIP-qPCR, RT-qPCR and western blot. The impacts of NRF2 on malignant progression of HNSCC were determined through genetic manipulation and pharmacological inhibition in vitro and in vivo. The gene-set enrichment analysis (GSEA) on expression data of cDNA microarray combined with ChIP-qPCR, RT-qPCR, western blot, transwell migration/ invasion, cell proliferation and soft agar colony formation assays were used to investigate the regulatory mechanisms of NRF2. Results: NRF2 expression is positively correlated with malignant features of HNSCC. In addition, carcinogens, such as nicotine and arecoline, trigger c-MYC-directed NRF2 activation in HNSCC cells. NRF2 reprograms a wide range of cancer metabolic pathways and the most notable is the pentose phosphate pathway (PPP). Furthermore, glucose-6-phosphate dehydrogenase (G6PD) and transketolase (TKT) are critical downstream effectors of NRF2 that drive malignant progression of HNSCC; the coherently expressed signature NRF2/G6PD/TKT gene set is a potential prognostic biomarker for prediction of patient overall survival. Notably, G6PD- and TKT-regulated nucleotide biosynthesis is more important than redox regulation in determining malignant progression of HNSCC. Conclusions: Carcinogens trigger c-MYC-directed NRF2 activation. Over-activation of NRF2 promotes malignant progression of HNSCC through reprogramming G6PD- and TKT-mediated nucleotide biosynthesis. Targeting NRF2-directed cellular metabolism is an effective strategy for development of novel treatments for head and neck cancer.
Collapse
|
7
|
Chaiyawat P, Settakorn J, Sangsin A, Teeyakasem P, Klangjorhor J, Soongkhaw A, Pruksakorn D. Exploring targeted therapy of osteosarcoma using proteomics data. Onco Targets Ther 2017; 10:565-577. [PMID: 28203090 PMCID: PMC5295800 DOI: 10.2147/ott.s119993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite multimodal therapeutic treatments of osteosarcoma (OS), some patients develop resistance to currently available regimens and eventually end up with recurrent or metastatic outcomes. Many attempts have been made to discover effective drugs for improving outcome; however, due to the heterogeneity of the disease, new therapeutic options have not yet been identified. This study aims to explore potential targeted therapy related to protein profiles of OS. In this review of proteomics studies, we extracted data on differentially expressed proteins (DEPs) from archived literature in PubMed and our in-house repository. The data were divided into three experimental groups, DEPs in 1) OS/OB: OS vs osteoblastic (OB) cells, 2) metastasis: metastatic vs non-metastatic sublines plus fresh tissues from primary OS with and without pulmonary metastasis, and 3) chemoresistance: spheroid (higher chemoresistance) vs monolayer cells plus fresh tissues from biopsies from good and poor responders. All up-regulated protein entities in the list of DEPs were sorted and cross-referenced with identifiers of targets of US Food and Drug Administration (FDA)-approved agents and chemical inhibitors. We found that many targets of FDA-approved antineoplastic agents, mainly a group of epigenetic regulators, kinases, and proteasomes, were highly expressed in OS cells. Additionally, some overexpressed proteins were targets of FDA-approved non-cancer drugs, including immunosuppressive and antiarrhythmic drugs. The resulting list of chemical agents showed that some transferase enzyme inhibitors might have anticancer activity. We also explored common targets of OS/OB and metastasis groups, including amidophosphoribosyltransferase (PPAT), l-lactate dehydrogenase B chain (LDHB), and pyruvate kinase M2 (PKM2) as well as the common target of all categories, cathepsin D (CTSD). This study demonstrates the benefits of a text mining approach to exploring therapeutic targets related to protein expression patterns. These results suggest possible repurposing of some FDA-approved medicines for the treatment of OS and using chemical inhibitors in drug screening tests.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics
| | | | - Apiruk Sangsin
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics
| | - Pimpisa Teeyakasem
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics
| | | | | | - Dumnoensun Pruksakorn
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics; Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Tse AKW, Chen YJ, Fu XQ, Su T, Li T, Guo H, Zhu PL, Kwan HY, Cheng BCY, Cao HH, Lee SKW, Fong WF, Yu ZL. Sensitization of melanoma cells to alkylating agent-induced DNA damage and cell death via orchestrating oxidative stress and IKKβ inhibition. Redox Biol 2017; 11:562-576. [PMID: 28107677 PMCID: PMC5247288 DOI: 10.1016/j.redox.2017.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 01/22/2023] Open
Abstract
Nitrosourea represents one of the most active classes of chemotherapeutic alkylating agents for metastatic melanoma. Treatment with nitrosoureas caused severe systemic side effects which hamper its clinical use. Here, we provide pharmacological evidence that reactive oxygen species (ROS) induction and IKKβ inhibition cooperatively enhance nitrosourea-induced cytotoxicity in melanoma cells. We identified SC-514 as a ROS-inducing IKKβ inhibitor which enhanced the function of nitrosoureas. Elevated ROS level results in increased DNA crosslink efficiency triggered by nitrosoureas and IKKβ inhibition enhances DNA damage signals and sensitizes nitrosourea-induced cell death. Using xenograft mouse model, we confirm that ROS-inducing IKKβ inhibitor cooperates with nitrosourea to reduce tumor size and malignancy in vivo. Taken together, our results illustrate a new direction in nitrosourea treatment, and reveal that the combination of ROS-inducing IKKβ inhibitors with nitrosoureas can be potentially exploited for melanoma therapy.
Collapse
Affiliation(s)
- Anfernee Kai-Wing Tse
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pei-Li Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hiu-Yee Kwan
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Brian Chi-Yan Cheng
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hui-Hui Cao
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Sally Kin-Wah Lee
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Wang-Fun Fong
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
9
|
ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 2016; 7:e2253. [PMID: 27277675 PMCID: PMC5143371 DOI: 10.1038/cddis.2016.105] [Citation(s) in RCA: 810] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023]
Abstract
Tumor cells harbor genetic alterations that promote a continuous and elevated production of reactive oxygen species. Whereas such oxidative stress conditions would be harmful to normal cells, they facilitate tumor growth in multiple ways by causing DNA damage and genomic instability, and ultimately, by reprogramming cancer cell metabolism. This review outlines the metabolic-dependent mechanisms that tumors engage in when faced with oxidative stress conditions that are critical for cancer progression by producing redox cofactors. In particular, we describe how the mitochondria has a key role in regulating the interplay between redox homeostasis and metabolism within tumor cells. Last, we will discuss the potential therapeutic use of agents that directly or indirectly block metabolism.
Collapse
|
10
|
Subbarayan PR, Ardalan B. In the war against solid tumors arsenic trioxide needs partners. J Gastrointest Cancer 2015; 45:363-71. [PMID: 24825822 DOI: 10.1007/s12029-014-9617-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the past decade, the therapeutic potential of arsenic trioxide (ATO) in the treatment of acute promyelocytic leukemia (APL) was recognized. This encouraged other investigators to test the efficacy of ATO in the management of other hematological and solid tumor malignancies. Notably, as a single agent, arsenic trioxide did not benefit patients diagnosed with solid tumors. However, when it was combined with other agents, treatment benefit emerged. In this article, we have summarized the outcome of clinical trials that used arsenic trioxide as a single agent as well as in combination settings in patients diagnosed with solid tumors. We have also reviewed possible additional mechanisms by which ATO may be useful as a chemosensitizer in combination therapy. We hope that our review will encourage clinical investigators to rationally combine ATO with additional chemotherapeutic agents in treating patients diagnosed with solid tumors.
Collapse
Affiliation(s)
- Pochi R Subbarayan
- Department of Medicine, University of Miami Miller School of Medicine, 1550 NW 10th Avenue, FOX 431A, Miami, FL, 33136, USA
| | | |
Collapse
|
11
|
Wang X, Feng Y, Wang N, Cheung F, Tan HY, Zhong S, Li C, Kobayashi S. Chinese medicines induce cell death: the molecular and cellular mechanisms for cancer therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:530342. [PMID: 25379508 PMCID: PMC4212527 DOI: 10.1155/2014/530342] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and Methods. Chinese medicines (including Chinese medicinal herbs, animal parts, and minerals) were used in the study. The key words including "cancer", "cell death", "apoptosis", "autophagy," "necrosis," and "Chinese medicine" were used in retrieval of related information from PubMed and other databases. Results. The cell death induced by Chinese medicines is described as apoptotic, autophagic, or necrotic cell death and other types with an emphasis on their mechanisms of anticancer action. The relationship among different types of cell death induced by Chinese medicines is critically reviewed and discussed. Conclusions. This review summarizes that CMs treatment could induce multiple pathways leading to cancer cell death, in which apoptosis is the dominant type. To apply these preclinical researches to clinic application will be a key issue in the future.
Collapse
Affiliation(s)
- Xuanbin Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
- Laboratory of Chinese Herbal Pharmacology, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Sen Zhong
- Laboratory of Chinese Herbal Pharmacology, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Charlie Li
- California Department of Public Health, 850 Marina Bay Parkway, G365, Richmond, CA 94804, USA
| | - Seiichi Kobayashi
- Faculty of Healthy Science, Hokkaido University, Kita 15, Nishi 7 Kita-ku, Sapporo, Japan
| |
Collapse
|
12
|
Udensi UK, Tackett AJ, Byrum S, Avaritt NL, Sengupta D, Moreland LW, Tchounwou PB, Isokpehi RD. Proteomics-Based Identification of Differentially Abundant Proteins from Human Keratinocytes Exposed to Arsenic Trioxide. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2014; 7:166-178. [PMID: 25419056 PMCID: PMC4240501 DOI: 10.4172/jpb.1000317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Arsenic is a widely distributed environmental toxicant that can cause multi-tissue pathologies. Proteomic assays allow for the identification of biological processes modulated by arsenic in diverse tissue types. METHOD The altered abundance of proteins from HaCaT human keratinocyte cell line exposed to arsenic was quantified using a label-free LC-MS/MS mass spectrometry workflow. Selected proteomics results were validated using western blot and RT-PCR. A functional annotation analytics strategy that included visual analytical integration of heterogeneous data sets was developed to elucidate functional categories. The annotations integrated were mainly tissue localization, biological process and gene family. RESULT The abundance of 173 proteins was altered in keratinocytes exposed to arsenic; in which 96 proteins had increased abundance while 77 proteins had decreased abundance. These proteins were also classified into 69 Gene Ontology biological process terms. The increased abundance of transferrin receptor protein (TFRC) was validated and also annotated to participate in response to hypoxia. A total of 33 proteins (11 increased abundance and 22 decreased abundance) were associated with 18 metabolic process terms. The Glutamate--cysteine ligase catalytic subunit (GCLC), the only protein annotated with the term sulfur amino acid metabolism process, had increased abundance while succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial precursor (SDHB), a tumor suppressor, had decreased abundance. CONCLUSION A list of 173 differentially abundant proteins in response to arsenic trioxide was grouped using three major functional annotations covering tissue localization, biological process and protein families. A possible explanation for hyperpigmentation pathologies observed in arsenic toxicity is that arsenic exposure leads to increased iron uptake in the normally hypoxic human skin. The proteins mapped to metabolic process terms and differentially abundant are candidates for evaluating metabolic pathways perturbed by arsenicals.
Collapse
Affiliation(s)
- Udensi K Udensi
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
| | - Alan J Tackett
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Stephanie Byrum
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Nathan L Avaritt
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Deepanwita Sengupta
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Linley W Moreland
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
| | - Raphael D Isokpehi
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
- Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach FL 32114, USA
| |
Collapse
|
13
|
Naik SK, Mohanty S, Padhi A, Pati R, Sonawane A. Evaluation of antibacterial and cytotoxic activity of Artemisia nilagirica and Murraya koenigii leaf extracts against mycobacteria and macrophages. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:87. [PMID: 24597853 PMCID: PMC3975858 DOI: 10.1186/1472-6882-14-87] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/25/2014] [Indexed: 12/20/2022]
Abstract
Background Artemisia nilagirica (Asteraceae) and Murraya koenigii (Rutaceae) are widely distributed in eastern region of India. Leaves of Artemisia nilagirica plant are used to treat cold and cough by the local tribal population in east India. Murraya koenigii is an edible plant previously reported to have an antibacterial activity. Pathogenic strains of mycobacteria are resistant to most of the conventional antibiotics. Therefore, it is imperative to identify novel antimycobacterial molecules to treat mycobacterial infection. Methods In this study, ethanol, petroleum ether and water extracts of Artemisia nilagirica and Murraya koenigii were tested for antibacterial activity against Mycobacterium smegmatis and Mycobacterium bovis BCG in synergy with first line anti-tuberculosis (TB) drugs, and for cytotoxic activities on mouse macrophage RAW264.7 cells. Antibacterial activity was determined by colony forming unit (CFU) assay. Intracellular survival assay was performed by infecting RAW264.7 cells with M. smegmatis before and after treatment with plant extracts. Cytotoxity was checked by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay. Genotoxicity was studied by DAPI staining and COMET assay using mouse macrophage RAW264.7 cell line. Cell apoptosis was checked by Annexin-V/FITC dual staining method. Reactive oxygen species and nitric oxide production was checked by DCFH staining and Griess reagent, respectively. Results Ethanol extracts of A. nilagirica (IC50 300 μg/ml) and M. koenigii (IC50 400 μg/ml) were found to be more effective against Mycobacterium smegmatis as compared to petroleum ether and water extracts. M. koenigii extract showed maximum activity against M. bovis BCG in combination with a first line anti-TB drug rifampicin. M. koenigii leaf extract also exerted more cytototoxic (IC50 20 μg/ml), genotoxic and apoptosis in mouse macrophage RAW 264.7 cell line. Treatment of mouse macrophages with A. nilagirica extract increased intracellular killing of M. smegmatis by inducing production of reactive oxygen species and nitric oxide. Conclusions Ethanol extracts of A. nilagirica and M. koenigii were found to be more effective against mycobacteria. As compared to A. nilagirica, M. koenigii ethanol extract exhibited significant synergistic antibacterial activity against M. smegmatis and M. bovis BCG in combination with anti-tuberculosis drug rifampicin, and also showed increased cytotoxicity, DNA damage and apoptosis in mouse macrophages.
Collapse
|
14
|
Mechanical regulation of cancer cell apoptosis and autophagy: Roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3124-3133. [DOI: 10.1016/j.bbamcr.2013.08.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 12/15/2022]
|
15
|
Das D, Preet R, Mohapatra P, Satapathy SR, Kundu CN. 1,3-Bis(2-chloroethyl)-1-nitrosourea enhances the inhibitory effect of Resveratrol on 5-fluorouracil sensitive/resistant colon cancer cells. World J Gastroenterol 2013; 19:7374-7388. [PMID: 24259968 PMCID: PMC3831219 DOI: 10.3748/wjg.v19.i42.7374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/22/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the mechanism of 5-fluorouracil (5-FU) resistance in colon cancer cells and to develop strategies for overcoming such resistance by combination treatment.
METHODS: We established and characterized a 5-FU resistance (5-FU-R) cell line derived from continuous exposure (25 μmol/L) to 5-FU for 20 wk in 5-FU sensitive HCT-116 cells. The proliferation and expression of different representative apoptosis and anti-apoptosis markers in 5-FU sensitive and 5-FU resistance cells were measured by the MTT assay and by Western blotting, respectively, after treatment with Resveratrol (Res) and/or 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU). Apoptosis and cell cycle arrest was measured by 4',6'-diamidino-2-phenylindole hydrochloride staining and fluorescence-activated cell sorting analysis, respectively. The extent of DNA damage was measured by the Comet assay. We measured the visible changes in the DNA damage/repair cascade by Western blotting.
RESULTS: The widely used chemotherapeutic agents BCNU and Res decreased the growth of 5-FU sensitive HCT-116 cells in a dose dependent manner. Combined application of BCNU and Res caused more apoptosis in 5-FU sensitive cells in comparison to individual treatment. In addition, the combined application of BCNU and Res caused a significant decrease of major DNA base excision repair components in 5-FU sensitive cells. We established a 5-FU resistance cell line (5-FU-R) from 5-FU-sensitive HCT-116 (mismatch repair deficient) cells that was not resistant to other chemotherapeutic agents (e.g., BCNU, Res) except 5-FU. The 5-FU resistance of 5-FU-R cells was assessed by exposure to increasing concentrations of 5-FU followed by the MTT assay. There was no significant cell death noted in 5-FU-R cells in comparison to 5-FU sensitive cells after 5-FU treatment. This resistant cell line overexpressed anti-apoptotic [e.g., AKT, nuclear factor κB, FLICE-like inhibitory protein), DNA repair (e.g., DNA polymerase beta (POL-β), DNA polymerase eta (POLH), protein Flap endonuclease 1 (FEN1), DNA damage-binding protein 2 (DDB2)] and 5-FU-resistance proteins (thymidylate synthase) but under expressed pro-apoptotic proteins (e.g., DAB2, CK1) in comparison to the parental cells. Increased genotoxicity and apoptosis were observed in resistant cells after combined application of BCNU and Res in comparison to untreated or parental cells. BCNU increased the sensitivity to Res of 5-FU resistant cells compared with parental cells. Fifty percent cell death were noted in parental cells when 18 μmol/L of Res was associated with fixed concentration (20 μmol/L) of BCNU, but a much lower concentration of Res (8 μmol/L) was needed to achieve the same effect in 5-FU resistant cells. Interestingly, increased levels of adenomatous polyposis coli and decreased levels POL-β, POLH, FEN1 and DDB2 were noted after the same combined treatment in resistant cells.
CONCLUSION: BCNU combined with Res exerts a synergistic effect that may prove useful for the treatment of colon cancer and to overcome drug resistance.
Collapse
|
16
|
Preet R, Mohapatra P, Das D, Satapathy SR, Choudhuri T, Wyatt MD, Kundu CN. Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis 2012; 34:277-86. [PMID: 23129580 DOI: 10.1093/carcin/bgs351] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We previously reported that quinacrine (QC) has anticancer activity against breast cancer cells. Here, we examine the mechanism of action of QC and its ability to inhibit Wnt-TCF signaling in two independent breast cancer cell lines. QC altered Wnt-TCF signaling components by increasing the levels of adenomatous polyposis coli (APC), DAB2, GSK-3β and axin and decreasing the levels of β-catenin, p-GSK3β (ser 9) and CK1. QC also reduced the activity of the Wnt transcription factor TCF/LEF and its downstream targets cyclin D1 and c-MYC. Using a luciferase-based Wnt-TCF transcription factor assay, it was shown that APC levels were inversely associated with TCF/LEF activity. Induction of apoptosis and DNA damage was observed after treatment with QC, which was associated with increased expression of APC. The effects induced by QC depend on APC because the inhibition of Wnt-TCF signaling by QC is lost in APC-knockdown cells, and consequently, the extent of apoptosis and DNA damage caused by QC is reduced compared with parental cells. Because we previously showed that QC inhibits topoisomerase, we examined the effect of another topoisomerase inhibitor, etoposide, on Wnt signaling. Interestingly, etoposide treatment also reduced TCF/LEF activity, β-catenin and cyclin D1 levels commensurate with induction of DNA damage and apoptosis. Lycopene, a plant-derived antioxidant, synergistically increased QC activity and inhibited Wnt-TCF signaling in cancer cells without affecting the MCF-10A normal breast cell line. Collectively, the data suggest that QC-mediated Wnt-TCF signal inhibition depends on APC and that the addition of lycopene synergistically increases QC anticancer activity.
Collapse
Affiliation(s)
- Ranjan Preet
- Cancer Biology Laboratory, Department of KIIT School of Biotechnology, Campus-11, KIIT University, Patia, Bhubaneswar, Orissa 751024, India
| | | | | | | | | | | | | |
Collapse
|
17
|
Gong K, Chen C, Zhan Y, Chen Y, Huang Z, Li W. Autophagy-related gene 7 (ATG7) and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma. J Biol Chem 2012; 287:35576-35588. [PMID: 22927446 PMCID: PMC3471698 DOI: 10.1074/jbc.m112.370585] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 08/18/2012] [Indexed: 12/31/2022] Open
Abstract
Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the broadly used Chinese medicinal herb Stephaniae tetrandrae, exhibits potent antitumor effects and has the potential to be used as a cancer chemotherapeutic agent. We previously reported that high concentrations of tetrandrine induce apoptosis in liver cancer cells. Here, we found that in human hepatocellular carcinoma (HCC) cells, a low dose of tetrandrine (5 μm) induced the expression of LC3-II, resulted in the formation of acidic autophagolysosome vacuoles (AVOs), and caused a punctate fluorescence pattern with the GFP-LC3 protein, which all are markers for cellular autophagy. Tetrandrine induced the production of intracellular reactive oxygen species (ROS), and treatment with ROS scavengers significantly abrogated the tetrandrine-induced autophagy. These results suggest that the generation of ROS plays an important role in promoting tetrandrine-induced autophagy. Tetrandrine-induced mitochondrial dysfunction resulted in ROS accumulation and autophagy. ROS generation activated the ERK MAP kinase, and the ERK signaling pathway at least partially contributed to tetrandrine-induced autophagy in HCC cells. Moreover, we found that tetrandrine transcriptionally regulated the expression of autophagy related gene 7 (ATG7), which promoted tetrandrine-induced autophagy. In addition to in vitro studies, similar results were also observed in vivo, where tetrandrine caused the accumulation of ROS and induced cell autophagy in a tumor xenograft model. Interestingly, tetrandrine treatment also induced autophagy in a ROS-dependent manner in C. elegans muscle cells. Therefore, these findings suggest that tetrandrine is a potent autophagy agonist and may be a promising clinical chemotherapeutic agent.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Autophagy/drug effects
- Autophagy/genetics
- Autophagy-Related Protein 7
- Benzylisoquinolines/chemistry
- Benzylisoquinolines/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Dose-Response Relationship, Drug
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Hep G2 Cells
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microtubule-Associated Proteins/biosynthesis
- Microtubule-Associated Proteins/genetics
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Reactive Oxygen Species/metabolism
- Stephania tetrandra/chemistry
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Ubiquitin-Activating Enzymes/biosynthesis
- Ubiquitin-Activating Enzymes/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ke Gong
- College of Life Sciences, Wuhan University, Wuhan 430072
| | - Chao Chen
- College of Life Sciences, Wuhan University, Wuhan 430072
| | - Yao Zhan
- College of Life Sciences, Wuhan University, Wuhan 430072
| | - Yan Chen
- College of Pharmacy, Wuhan University, Wuhan 430071, China
| | - Zebo Huang
- College of Pharmacy, Wuhan University, Wuhan 430071, China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan 430072.
| |
Collapse
|
18
|
Fong MY, Jin S, Rane M, Singh RK, Gupta R, Kakar SS. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS One 2012; 7:e42265. [PMID: 22860102 PMCID: PMC3408484 DOI: 10.1371/journal.pone.0042265] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/02/2012] [Indexed: 12/27/2022] Open
Abstract
Application of doxorubicin (Dox) for the treatment of cancer is restricted due to its severe side effects. We used combination strategy by combining doxorubicin (Dox) with withaferin A (WFA) to minimize the ill effects of Dox. Treatment of various epithelial ovarian cancer cell lines (A2780, A2780/CP70 and CaOV3) with combination of WFA and Dox (WFA/DOX) showed a time- and dose-dependent synergistic effect on inhibition of cell proliferation and induction of cell death, thus reducing the dosage requirement of Dox. Combination treatment resulted in a significant enhancement of ROS production resulting in immense DNA damage, induction of autophagy analyzed by transmission electron microscope and increase in expression of autophagy marker LC3B, and culminated in cell death analyzed by cleaved caspase 3. We validated combination therapy on tumor growth using an in vitro 3Dimension (3D) tumor model and the more classic in vivo xenograft model of ovarian cancer. Both tumor models showed a 70 to 80% reduction in tumor growth compared to control or animals treated with WFA or Dox alone. Immunohistochemical analysis of the tumor tissues from animals treated with WFA/Dox combination showed a significant reduction in cell proliferation and formation of microvessels accompanied by increased in LC3B level, cleaved caspase 3, and DNA damage. Taken together, our data suggest that combining WFA with Dox decreases the dosage requirement of Dox, therefore, minimizing/eliminating the severe side effects associated with high doses of DOX, suggesting the application of this combination strategy for the treatment of ovarian and other cancers with no or minimum side effects.
Collapse
Affiliation(s)
- Miranda Y. Fong
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, United States of America
| | - Shunying Jin
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Madhavi Rane
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Raj K. Singh
- Vivo Biosciences Inc., Birmingham, Alabama, United States of America
| | - Ramesh Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Sham S. Kakar
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, United States of America
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
19
|
Gong K, Xie J, Yi H, Li W. CS055 (Chidamide/HBI-8000), a novel histone deacetylase inhibitor, induces G1 arrest, ROS-dependent apoptosis and differentiation in human leukaemia cells. Biochem J 2012; 443:735-746. [PMID: 22339555 DOI: 10.1042/bj20111685] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
CS055 (Chidamide/HBI-8000) is a novel benzamide-type HDACi (histone deacetylase inhibitor), which has entered Phase I clinical trials in the U.S. and Phase II/III in China. In the present study, we investigated the effects of CS055 on proliferation, differentiation and apoptosis in human leukaemia cell lines and primary myeloid leukaemia cells. The results showed that at low concentrations (<1 μM), CS055 induced G1 arrest. At moderate concentrations (0.5 μM-2 μM), CS055 induced differentiation, as determined by the increased expression of the myeloid differentiation marker CD11b. At relatively high concentrations (2 μM-4 μM), CS055 potently induced caspase-dependent apoptosis. Co-treatment with the ROS (reactive oxygen species) scavengers N-acetyl-L-cysteine or Tiron blocked CS055-induced cell differentiation and apoptosis, suggesting an essential role for ROS in these effects. Cytochrome c release and ROS-mediated mitochondrial dysfunction are involved in CS055-induced apoptosis of leukaemia. In addition to cell lines, CS055 also exhibits therapeutic effects in human primary leukaemia cells. Moreover, daily oral CS055 treatment of nude mice bearing HL60 cell xenografts suppressed tumour growth, induced tumour cell apoptosis and prolonged the survival of tumour-bearing mice. In conclusion, our findings demonstrate that CS055 is a novel HDACi with potential chemotherapeutic value in several haematological malignancies, especially leukaemia.
Collapse
Affiliation(s)
- Ke Gong
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | |
Collapse
|