1
|
Jiang C, Yan Y, Long T, Xu J, Chang C, Kang M, Wang X, Chen Y, Qiu J. Ferroptosis: a potential therapeutic target in cardio-cerebrovascular diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05262-7. [PMID: 40148662 DOI: 10.1007/s11010-025-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Cardio-cerebrovascular diseases (CCVDs) are the leading cause of global mortality, yet effective treatment options remain limited. Ferroptosis, a novel form of regulated cell death, has emerged as a critical player in various CCVDs, including atherosclerosis, myocardial infarction, ischemia-reperfusion injury, cardiomyopathy, and ischemic/hemorrhagic strokes. This review highlights the core mechanisms of ferroptosis, its pathological implications in CCVDs, and the therapeutic potential of targeting this process. Additionally, it explores the role of Chinese herbal medicines (CHMs) in mitigating ferroptosis, offering novel therapeutic strategies for CCVDs management. Ferroptosis is regulated by several key pathways. The GPX4-GSH-System Xc- axis is central to ferroptosis execution, involving GPX4 using GSH to neutralize lipid peroxides, with system Xc- being crucial for GSH synthesis. The NAD(P)H/FSP1/CoQ10 axis involves FSP1 regenerating CoQ10 via NAD(P)H, inhibiting lipid peroxidation independently of GPX4. Lipid peroxidation, driven by PUFAs and enzymes like ACSL4 and LPCAT3, and iron metabolism, regulated by proteins like TfR1 and ferritin, are also crucial for ferroptosis. Inhibiting ferroptosis shows promise in managing CCVDs. In atherosclerosis, ferroptosis inhibitors reduce iron accumulation and lipid peroxidation. In myocardial infarction, inhibitors protect cardiomyocytes by preserving GPX4 and SLC7A11 levels. In ischemia-reperfusion injury, targeting ferroptosis reduces myocardial and cerebral damage. In diabetic cardiomyopathy, Nrf2 activators alleviate oxidative stress and iron metabolism irregularities. CHMs offer natural compounds that mitigate ferroptosis. They possess antioxidant properties, chelate iron, and modulate signaling pathways like Nrf2 and AMPK. For example, Salvia miltiorrhiza and Astragalus membranaceus reduce oxidative stress, while some CHMs chelate iron, reducing its availability for ferroptosis. In conclusion, ferroptosis plays a pivotal role in CCVDs, and targeting it offers novel therapeutic avenues. CHMs show promise in reducing ferroptosis and improving patient outcomes. Future research should explore combination therapies and further elucidate the molecular interactions in ferroptosis.
Collapse
Affiliation(s)
- Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Yang Yan
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiawei Xu
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Cuicui Chang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Meili Kang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Xuanqi Wang
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China.
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
- School of Life and Health Science, Hainan University, No. 58 People's Avenue, Haikou, 570100, Hainan, China.
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| |
Collapse
|
2
|
Yu D, Hu Y, Ma M, Li W, Zhao X. The landscape of research on ferroptosis under hypoxic conditions: a bibliometric analysis. Front Pharmacol 2025; 16:1519000. [PMID: 40206079 PMCID: PMC11979267 DOI: 10.3389/fphar.2025.1519000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025] Open
Abstract
Background Ferroptosis is a newly identified type of iron-dependent cell death that characterized by an increase in intracellular iron ions, which disrupt the balance of the cellular lipid peroxidation system, causing lipid peroxidation and ultimately resulting in cell death. Interestingly, ferroptosis is modulated by hypoxia and plays a role in hypoxia-related diseases. Therefore, we performed a bibliometric review of the Web of Science Core Collection (WoSCC) database to investigate the link between ferroptosis and hypoxia from January 2013 to December 2023. Method The core collection within the Web of Science bibliographic index was consulted to extract relevant articles and reviews. Data on publications, countries, institutions, authors, journals, citations, and keywords in the included studies were systematically analyzed using Microsoft Excel 2019 and CiteSpace 6.3.R1 software. Result A comprehensive analysis and visualization of 472 research papers on ferroptosis under hypoxic conditions published between 2013 and 2023 revealed emerging research hotspots and trends. Initially, a scarcity of studies existed in this field. However, this was succeeded by a significant increase in research interest in subsequent years, culminating in a peak of 204 publications in 2023. Research in this field focused primarily on the Asian region. Notably, research hotspots include diseases related to hypoxia, treatment therapy and pathogenesis. Among the researchers in this field, Supuran emerged as the most prolific author. Wuhan University was the leading institution in terms of research output, and China was the most prolific country in this area of study. Among the top ten journals ranked by the number of publications, nine were classified as Q1, indicating the high level of credibility of these studies. The research conducted by Stockwell et al., featured in the journal "Cell," currently has the most citations. Present scholarly pursuits are primarily focused on comprehending the mechanisms through which interventions affect hypoxia-related diseases through the ferroptosis pathway, as well as on probing and pinpointing prospective treatment targets. Conclusion This study highlights key areas of interest and emerging trends in ferroptosis research in the presence of hypoxic conditions, thus providing valuable insights for future directions of exploration for the diagnosis and treatment of hypoxia-related diseases.
Collapse
Affiliation(s)
- Di Yu
- Department of Basic Medical Sciences, Qinghai Unversity Medical College, Xining, Qinghai, China
| | - Yibo Hu
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Meijuan Ma
- Department of Basic Medical Sciences, Qinghai Unversity Medical College, Xining, Qinghai, China
| | - Wenjia Li
- Department of Basic Medical Sciences, Qinghai Unversity Medical College, Xining, Qinghai, China
| | - Xiaohui Zhao
- Department of Basic Medical Sciences, Qinghai Unversity Medical College, Xining, Qinghai, China
| |
Collapse
|
3
|
Li Q, Yang X, Li T. Natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in central nervous system diseases: current preclinical evidence and future perspectives. Front Pharmacol 2025; 16:1570069. [PMID: 40196367 PMCID: PMC11973303 DOI: 10.3389/fphar.2025.1570069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoids are a class of important polyphenolic compounds, renowned for their antioxidant properties. However, recent studies have uncovered an additional function of these natural flavonoids: their ability to inhibit ferroptosis. Ferroptosis is a key mechanism driving cell death in central nervous system (CNS) diseases, including both acute injuries and chronic neurodegenerative disorders, characterized by iron overload-induced lipid peroxidation and dysfunction of the antioxidant defense system. This review discusses the therapeutic potential of natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in CNS diseases, focusing on their molecular mechanisms, summarizing findings from preclinical animal models, and providing insights for clinical translation. We specifically highlight natural flavonoids such as Baicalin, Baicalein, Chrysin, Vitexin, Galangin, Quercetin, Isoquercetin, Eriodictyol, Proanthocyanidin, (-)-epigallocatechin-3-gallate, Dihydromyricetin, Soybean Isoflavones, Calycosin, Icariside II, and Safflower Yellow, which have shown promising results in animal models of acute CNS injuries, including ischemic stroke, cerebral ischemia-reperfusion injury, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury. Among these, Baicalin and its precursor Baicalein stand out due to extensive research and favorable outcomes in acute injury models. Mechanistically, these flavonoids not only regulate the Nrf2/ARE pathway and activate GPX4/GSH-related antioxidant pathways but also modulate iron metabolism proteins, thereby alleviating iron overload and inhibiting ferroptosis. While flavonoids show promise as ferroptosis inhibitors for CNS diseases, especially in acute injury settings, further studies are needed to evaluate their efficacy, safety, pharmacokinetics, and blood-brain barrier penetration for clinical application.
Collapse
Affiliation(s)
- Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Lan Y, Song Y, Zhang W, Zhao S, Wang X, Wang L, Wang Y, Yang X, Wu H, Liu X. Quinoa Ethanol Extract Ameliorates Cognitive Impairments Induced by Hypoxia in Mice: Insights into Antioxidant Defense and Gut Microbiome Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3427-3443. [PMID: 39873455 DOI: 10.1021/acs.jafc.4c07530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels. Furthermore, QEE enhanced antioxidant defense mechanisms, alleviated neuroinflammation in brain regions associated with memory, and improved HH-induced cognitive impairments by modulating the cyclic adenosine monophosphate response element-binding protein/brain-derived neurotrophic factor signaling pathway. Higher doses generally yielded more effective outcomes than lower doses. QEE also significantly reshaped the gut microbiome structure of HH mice, inhibited gut barrier damage, and reduced lipopolysaccharide migration, thereby increasing short-chain fatty acids (SCFAs) levels. Our findings suggest that QEE may be a promising strategy for preventing hypoxia-induced cognitive impairments by maintaining gut microbiome stability and increasing SCFAs levels.
Collapse
Affiliation(s)
- Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yujie Song
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wengang Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Shiyang Zhao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinze Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xijuan Yang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Hao Wu
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Naderi S, Khodagholi F, Janahmadi M, Motamedi F, Torabi A, Batool Z, Heydarabadi MF, Pourbadie HG. Ferroptosis and cognitive impairment: Unraveling the link and potential therapeutic targets. Neuropharmacology 2025; 263:110210. [PMID: 39521042 DOI: 10.1016/j.neuropharm.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, share key characteristics, notably cognitive impairment and significant cell death in specific brain regions. Cognition, a complex mental process allowing individuals to perceive time and place, is disrupted in these conditions. This consistent disruption suggests the possibility of a shared underlying mechanism across all neurodegenerative diseases. One potential common factor is the activation of pathways leading to cell death. Despite significant progress in understanding cell death pathways, no definitive treatments have emerged. This has shifted focus towards less-explored mechanisms like ferroptosis, which holds potential due to its involvement in oxidative stress and iron metabolism. Unlike apoptosis or necrosis, ferroptosis offers a novel therapeutic avenue due to its distinct biochemical and genetic underpinnings, making it a promising target in neurodegenerative disease treatment. Ferroptosis is distinguished from other cellular death mechanisms, by distinctive characteristics such as an imbalance of iron hemostasis, peroxidation of lipids in the plasma membrane, and dysregulated glutathione metabolism. In this review, we discuss the potential role of ferroptosis in cognitive impairment. We then summarize the evidence linking ferroptosis biomarkers to cognitive impairment brought on by neurodegeneration while highlighting recent advancements in our understanding of the molecular and genetic mechanisms behind the condition. Finally, we discuss the prospective therapeutic implications of targeting ferroptosis for the treatment of cognitive abnormalities associated with neurodegeneration, including natural and synthetic substances that suppress ferroptosis via a variety of mechanisms. Promising therapeutic candidates, including antioxidants and iron chelators, are being explored to inhibit ferroptosis and mitigate cognitive decline.
Collapse
Affiliation(s)
- Soudabeh Naderi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Torabi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Hamid Gholami Pourbadie
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Han Y, Li W, Duan H, Jia N, Liu J, Zhang H, Song W, Li M, He Y, Wu C, He Y. Ligustrazine hydrochloride Prevents Ferroptosis by Activating the NRF2 Signaling Pathway in a High-Altitude Cerebral Edema Rat Model. Int J Mol Sci 2025; 26:1110. [PMID: 39940878 PMCID: PMC11817441 DOI: 10.3390/ijms26031110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
High-altitude cerebral edema (HACE) is a disorder caused by low pressure and hypoxia at high altitudes. Nevertheless, as of now, there is still a scarcity of safe and effective prevention and treatment methods. The active component of Ligusticum Chuanxiong, namely Ligustrazine hydrochloride (LH), has shown potential in the prevention and treatment of HACE due to its anti-inflammatory, antioxidant, and neuroprotective effects in nervous system disorders. Consequently, the potential protective effect of LH on HACE and its mechanism still need to be further explored. Prior to modeling, 90 male Sprague-Dawley rats were pretreated with different doses of drugs, including LH (100 mg/kg and 50 mg/kg), dexamethasone (4 mg/kg), and ML385 (30 mg/kg). Subsequently, the pretreated rats were placed in a low-pressure anoxic chamber simulating a plateau environment to establish the rat HACE model. The effects and mechanisms of LH on HACE rats were further elucidated through determination of brain water content, HE staining, ELISA, immunofluorescence, molecular docking, molecular dynamics simulation, western blot, and other techniques. The results showed, first of all, that LH pretreatment can effectively reduce brain water content; down-regulate the expression of AQP4, HIF-1α, and VEGF proteins; and alleviate damage to brain tissue and nerve cells. Secondly, compared with the HACE group, LH pretreatment can significantly reduce MDA levels and increase GSH and SOD levels. Additionally, LH decreased the levels of inflammatory factors IL-1β, IL-6, and TNF-α; reduced total iron content in brain tissue; increased the expression of ferroptosis-related proteins such as SLC7A11, GPX4, and FTH1; and alleviated ferroptosis occurrence. Molecular docking and molecular dynamics simulations show that LH has a strong binding affinity for NRF2 signaling. Western blot analysis further confirmed that LH promotes the translocation of NRF2 from the cytoplasm to the nucleus and activates the NRF2 signaling pathway to exert an antioxidant effect. The NRF2 inhibitor ML385 can reverse the anti-oxidative stress effect of LH and its protective effect on HACE rat brain tissue. In summary, LH may have a protective effect on HACE rats by activating the NRF2 signaling pathway, inhibiting ferroptosis, and resisting oxidative stress.
Collapse
Affiliation(s)
- Yue Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Wenting Li
- Department of Pharmacy, The Eighth Clinical College, Sun Yat-sen University, No. 3025, Shennan Middle Rd., Futian District, Shenzhen 518033, China;
| | - Huxinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Nan Jia
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (N.J.); (J.L.)
| | - Junling Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (N.J.); (J.L.)
| | - Hongying Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Wenqian Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Meihui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yacong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| |
Collapse
|
7
|
Patel JIA, Poyya J, Padakannaya A, Kurdekar NM, Khandagale AS, Joshi CG, Kanade SR, Satyamoorthy K. Mechanistic insights into gut microbe derived siderophores and PHD2 interactions with implications for HIF-1α stabilization. Sci Rep 2025; 15:1113. [PMID: 39774022 PMCID: PMC11707245 DOI: 10.1038/s41598-024-83730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In oxygen-deprived conditions, cells respond by activating adaptive mechanisms to bolster their survival and protect tissue integrity. A key player in this process is the HIF-1α signaling cascade, meticulously regulated by Prolyl Hydroxylase Domain 2 (PHD2), which orchestrates cellular responses to varying oxygen levels. The primary aim of this investigation is to utilize gut siderophores as inhibitors of PHD2 in ischemic conditions. This study also helps in understanding the structural mechanisms by which gut microbiota regulate HIF-1α via PHD2 inhibition through the secretion of siderophores. We explore potential PHD2 inhibitors through in-silico approaches, specifically molecular docking, binding pose metadynamics, molecular dynamics simulations, and free energy calculations. We evaluated siderophores secreted by gut microbiota as candidate inhibitors for PHD2. Docking studies revealed that Salmochelin SX exhibits the highest binding affinity to PHD2 (- 9.527 kcal/mol), interacting with key residues such as ASP254, TYR310, ASP315, and ARG322. Despite its high affinity, binding pose metadynamics indicated instability for Salmochelin SX, whereas Staphyloferrin A demonstrated superior stability. Molecular dynamics simulations confirmed stable ligand interactions with PHD2, highlighting HIS313 and ASP315 as critical for inhibition. Principal Component Analysis (PCA) and Free Energy Landscape (FEL) analyses underscored conformational changes and binding stability, suggesting that these interactions may stabilize PHD2's active site and have potential therapeutic implications. Additionally, the study reveals how gut microbiota prevent gut dysbiosis through the stabilization of HIF-1α signaling by secreting siderophores.
Collapse
Affiliation(s)
- Jainabbi Irshad Ahmed Patel
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | - Jagadeesha Poyya
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India.
| | - Apeksha Padakannaya
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | - Namrata Manjunath Kurdekar
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | - Ajay Sathayanarayan Khandagale
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | | | - Santosh R Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India
| |
Collapse
|
8
|
Feng Y, Shi M, Zhang Y, Li X, Yan L, Xu J, Liu C, Li M, Bai F, Yuan F, Sun Y, Liu R, Zhao Y, Yang L, Zhang Y, Guo Y, Zhang J, Zhou R, Liu P. Protocatechuic acid relieves ferroptosis in hepatic lipotoxicity and steatosis via regulating NRF2 signaling pathway. Cell Biol Toxicol 2024; 40:104. [PMID: 39589556 PMCID: PMC11599353 DOI: 10.1007/s10565-024-09953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Ferroptosis represents a newly programmed cell death, and the process is usually accompanied with iron-dependent lipid peroxidation. Importantly, ferroptosis is implicated in a myriad of diseases. Recent literature suggests a potential position of ferroptosis in the pathogenesis of metabolic dysfunction-associated fatty liver disease (MAFLD), the most widespread liver ailment worldwide. Intriguingly, several functional genes and metabolic pathways central to ferroptosis are regulated by nuclear factor erythroid-derived 2-like 2 (NRF2). In current work, we aim to identify protocatechuic acid (PCA), a primary metabolite of antioxidant polyphenols, as a potent NRF2 activator and ferroptosis inhibitor in the hepatic lipotoxicity and steatosis models. Herein, both NRF2+/+ and NRF2-/- cell lines and mice were used to analyze the importance of NRF2 in PCA function, and hepatic lipotoxicity and steatosis models were induced by palmitic acid and high-fat diet respectively. Our results indicated that ferroptosis was mitigated by PCA intervention in hepatic cells. Furthermore, PCA exhibited therapeutic efficacy against ferroptosis, as well as hepatic lipotoxicity and steatosis. The protective role of PCA was predominantly mediated through NRF2 activation, potentially elucidating a pivotal mechanism underlying PCA's therapeutic impact on MAFLD. Additionally, the augmented mitochondrial TCA cycle activity observed in hepatic lipotoxicity and steatosis models was ameliorated by PCA, in part via NRF2-dependent pathways, further bolstering PCA's anti-ferroptosis properties. Collectively, our findings underscore PCA's potential in alleviating hepatic ferroptosis, lipotoxicity and steatosis via inducing activation of NRF2 signaling pathway, offering a promising strategy for the therapy of MAFLD as well as related lipid metabolic disorders.
Collapse
Affiliation(s)
- Yetong Feng
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengjiao Shi
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Yi Zhang
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Xinyan Li
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Liangwen Yan
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Chenyue Liu
- Department of Medical Image, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Li
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Fengyun Bai
- Shaanxi Dongtai Pharmaceutical Co., LTD, Xianyang, China
| | - Fenyue Yuan
- Shaanxi Dongtai Pharmaceutical Co., LTD, Xianyang, China
| | - Ying Sun
- Shaanxi Dongtai Pharmaceutical Co., LTD, Xianyang, China
| | - Rongrong Liu
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Yaping Zhao
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Lan Yang
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yinggang Zhang
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Ying Guo
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Jian Zhang
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Rui Zhou
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Pengfei Liu
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China.
- Key Laboratory of Environment and Genes Related To Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Liu XQ, Shi MZ, Bai YT, Su XL, Liu YM, Wu JC, Chen LR. Hypoxia and ferroptosis. Cell Signal 2024; 122:111328. [PMID: 39094672 DOI: 10.1016/j.cellsig.2024.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Ferroptosis is a novel, iron-dependent cell death characterized by the excessive accumulation of ferroptosis lipid peroxides ultimately leading to oxidative damage to the cell membrane. Iron, lipid, amino acid metabolism, and other signaling pathways all control ferroptosis. Numerous bodily tissues experience hypoxia under normal and pathological circumstances. Tissue cells can adjust to these changes by activating the hypoxia-inducible factor (HIF) signaling pathway and other mechanisms in response to the hypoxic environment. In recent years, there has been increasing evidence that hypoxia and ferroptosis are closely linked, and that hypoxia can regulate ferroptosis in specific cells and conditions through different pathways. In this paper, we review the possible positive and negative regulatory mechanisms of ferroptosis by hypoxia-inducible factors, as well as ferroptosis-associated ischemic diseases, with the intention of delivering novel therapeutic avenues for the defense and management of hypoxic illnesses linked to ferroptosis.
Collapse
Affiliation(s)
- Xiao-Qian Liu
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Meng-Zhen Shi
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yu-Ting Bai
- Qinghai Provincial People's Hospital, Xining 810001, PR China.
| | - Xiao-Ling Su
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yan-Min Liu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Jin-Chun Wu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Li-Rong Chen
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| |
Collapse
|
10
|
Yu Z, Ran G, Chai J, Zhang EE. A nature-inspired HIF stabilizer derived from a highland-adaptation insertion of plateau pika Epas1 protein. Cell Rep 2024; 43:114727. [PMID: 39269902 DOI: 10.1016/j.celrep.2024.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play pivotal roles in numerous diseases and high-altitude adaptation, and HIF stabilizers have emerged as valuable therapeutic tools. In our prior investigation, we identified a highland-adaptation 24-amino-acid insertion within the Epas1 protein. This insertion enhances the protein stability of Epas1, and mice engineered with this insertion display enhanced resilience to hypoxic conditions. In the current study, we delved into the biochemical mechanisms underlying the protein-stabilizing effects of this insertion. Our findings unveiled that the last 11 amino acids within this insertion adopt a helical conformation and interact with the α-domain of the von Hippel-Lindau tumor suppressor protein (pVHL), thereby disrupting the Eloc-pVHL interaction and impeding the ubiquitination of Epas1. Utilizing a synthesized peptide, E14-24, we demonstrated its favorable membrane permeability and ability to stabilize endogenous HIF-α proteins, inducing the expression of hypoxia-responsive element (HRE) genes. Furthermore, the administration of E14-24 to mice subjected to hypoxic conditions mitigated body weight loss, suggesting its potential to enhance hypoxia adaptation.
Collapse
Affiliation(s)
- Ziqing Yu
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100006, China; National Institute of Biological Sciences, Beijing 102206, China.
| | - Guangdi Ran
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Juan Chai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
11
|
Delgado-Martín S, Martínez-Ruiz A. The role of ferroptosis as a regulator of oxidative stress in the pathogenesis of ischemic stroke. FEBS Lett 2024; 598:2160-2173. [PMID: 38676284 DOI: 10.1002/1873-3468.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Ferroptosis is a unique form of cell death that was first described in 2012 and plays a significant role in various diseases, including neurodegenerative conditions. It depends on a dysregulation of cellular iron metabolism, which increases free, redox-active, iron that can trigger Fenton reactions, generating hydroxyl radicals that damage cells through oxidative stress and lipid peroxidation. Lipid peroxides, resulting mainly from unsaturated fatty acids, damage cells by disrupting membrane integrity and propagating cell death signals. Moreover, lipid peroxide degradation products can further affect cellular components such as DNA, proteins, and amines. In ischemic stroke, where blood flow to the brain is restricted, there is increased iron absorption, oxidative stress, and compromised blood-brain barrier integrity. Imbalances in iron-transport and -storage proteins increase lipid oxidation and contribute to neuronal damage, thus pointing to the possibility of brain cells, especially neurons, dying from ferroptosis. Here, we review the evidence showing a role of ferroptosis in ischemic stroke, both in recent studies directly assessing this type of cell death, as well as in previous studies showing evidence that can now be revisited with our new knowledge on ferroptosis mechanisms. We also review the efforts made to target ferroptosis in ischemic stroke as a possible treatment to mitigate cellular damage and death.
Collapse
Affiliation(s)
- Susana Delgado-Martín
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| |
Collapse
|
12
|
Feng L, Sun J, Xia L, Shi Q, Hou Y, Zhang L, Li M, Fan C, Sun B. Ferroptosis mechanism and Alzheimer's disease. Neural Regen Res 2024; 19:1741-1750. [PMID: 38103240 PMCID: PMC10960301 DOI: 10.4103/1673-5374.389362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 09/09/2023] [Indexed: 12/18/2023] Open
Abstract
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms. This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms. Ferroptosis is a classic regulatory mode of cell death. Extensive studies of regulatory cell death in Alzheimer's disease have yielded increasing evidence that ferroptosis is closely related to the occurrence, development, and prognosis of Alzheimer's disease. This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferroptosis in Alzheimer's disease. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Lina Feng
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Jingyi Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Ling Xia
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qiang Shi
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Yajun Hou
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Lili Zhang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, Shandong Province, China
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Cundong Fan
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Baoliang Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
13
|
Dong H, Ma YP, Cui MM, Qiu ZH, He MT, Zhang BG. Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Mol Med Rep 2024; 30:128. [PMID: 38785160 PMCID: PMC11134507 DOI: 10.3892/mmr.2024.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Stroke is a severe neurological disease that is associated with high rates of morbidity and mortality, and the underlying pathological processes are complex. Ferroptosis fulfills a significant role in the progression and treatment of stroke. It is well established that ferroptosis is a type of programmed cell death that is distinct from other forms or types of cell death. The process of ferroptosis involves multiple signaling pathways and regulatory mechanisms that interact with mechanisms inherent to stroke development. Inducers and inhibitors of ferroptosis have been shown to exert a role in the onset of this cell death process. Furthermore, it has been shown that interfering with ferroptosis affects the occurrence of stroke, indicating that targeting ferroptosis may offer a promising therapeutic approach for treating patients of stroke. Hence, the present review aimed to summarize the latest progress that has been made in terms of using therapeutic interventions for ferroptosis as treatment targets in cases of stroke. It provides an overview of the relevant pathways and molecular mechanisms that have been investigated in recent years, highlighting the roles of inducers and inhibitors of ferroptosis in stroke. Additionally, the intervention potential of various types of Traditional Chinese Medicine is also summarized. In conclusion, the present review provides a comprehensive overview of the potential therapeutic targets afforded by ferroptosis‑associated pathways in stroke, offering new insights into how ferroptosis may be exploited in the treatment of stroke.
Collapse
Affiliation(s)
- Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mei-Mei Cui
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Zheng-Hao Qiu
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| |
Collapse
|
14
|
Janssen Daalen JM, Meinders MJ, Mathur S, van Hees HWH, Ainslie PN, Thijssen DHJ, Bloem BR. Randomized controlled trial of intermittent hypoxia in Parkinson's disease: study rationale and protocol. BMC Neurol 2024; 24:212. [PMID: 38909201 PMCID: PMC11193237 DOI: 10.1186/s12883-024-03702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that repeated exposure to intermittent hypoxia might have short- and long-term benefits in PD. In a previous exploratory phase I trial, we demonstrated that in-clinic intermittent hypoxia exposure is safe and feasible with short-term symptomatic effects on PD symptoms. The current study aims to explore the safety, tolerability, feasibility, and net symptomatic effects of a four-week intermittent hypoxia protocol, administered at home, in individuals with PD. METHODS/DESIGN This is a two-armed double-blinded randomized controlled trial involving 40 individuals with mild to moderate PD. Participants will receive 45 min of normobaric intermittent hypoxia (fraction of inspired oxygen 0.16 for 5 min interspersed with 5 min normoxia), 3 times a week for 4 weeks. Co-primary endpoints include nature and total number of adverse events, and a feasibility-tolerability questionnaire. Secondary endpoints include Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part II and III scores, gait tests and biomarkers indicative of hypoxic dose and neuroprotective pathway induction. DISCUSSION This trial builds on the previous phase I trial and aims to investigate the safety, tolerability, feasibility, and net symptomatic effects of intermittent hypoxia in individuals with PD. Additionally, the study aims to explore induction of relevant neuroprotective pathways as measured in plasma. The results of this trial could provide further insight into the potential of hypoxia-based therapy as a novel treatment approach for PD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05948761 (registered June 20th, 2023).
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands.
| | - Marjan J Meinders
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | | | - Hieronymus W H van Hees
- Radboud University Medical Center, Department of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Philip N Ainslie
- University of British Columbia, Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Kelowna, Canada
| | - Dick H J Thijssen
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Wu Z, Zhong K, Tang B, Xie S. Research trends of ferroptosis and pyroptosis in Parkinson's disease: a bibliometric analysis. Front Mol Neurosci 2024; 17:1400668. [PMID: 38817551 PMCID: PMC11137268 DOI: 10.3389/fnmol.2024.1400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Objective This study aims to visualize the trends and hotspots in the research of "ferroptosis in PD" and "pyroptosis in PD" through bibliometric analysis from the past to 2024. Methods Literature was retrieved from the Web of Science Core Collection (WoSCC) from the past to February 16, 2024, and bibliometric analysis was conducted using Vosviewer and Citespace. Results 283 and 542 papers were collected in the field of "ferroptosis in PD" and "pyroptosis in PD." The number of publications in both fields has increased yearly, especially in "ferroptosis in PD," which will become the focus of PD research. China, the United States and England had extensive exchanges and collaborations in both fields, and more than 60% of the top 10 institutions were from China. In the fields of "ferroptosis in PD" and "pyroptosis in PD," the University of Melbourne and Nanjing Medical University stood out in terms of publication numbers, citation frequency, and centrality, and the most influential journals were Cell and Nature, respectively. The keyword time zone map showed that molecular mechanisms and neurons were the research hotspots of "ferroptosis in PD" in 2023, while memory and receptor 2 were the research hotspots of "pyroptosis in PD" in 2023, which may predict the future research direction. Conclusion This study provides insights into the development, collaborations, research themes, hotspots, and tendencies of "ferroptosis in PD" and "pyroptosis in PD." Overall situation of these fields is available for researchers to further explore the underlying mechanisms and potential treatments.
Collapse
Affiliation(s)
- Zihua Wu
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Kexin Zhong
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Biao Tang
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- People’s Hospital of Ningxiang City, Hunan University of Chinese Medicine, Changsha, China
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha, China
| | - Sijian Xie
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Wang Q, Liu C, Chen M, Zhao J, Wang D, Gao P, Zhang C, Zhao H. Mastoparan M promotes functional recovery in stroke mice by activating autophagy and inhibiting ferroptosis. Biomed Pharmacother 2024; 174:116560. [PMID: 38583338 DOI: 10.1016/j.biopha.2024.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Neuronal ferroptosis and autophagy are crucial in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Mastoparan M (Mast-M), extracted from the crude venom of Vespa magnifica (Smith), comprises 14 amino acid residues. Previous studies suggested that Mast-M reduces neuronal damage following global CIRI, but its protective mechanisms remain unclear. The present study examined the effect of Mast-M on middle cerebral artery occlusion/reperfusion (MCAO/R) induced neurological deficits using Grip, Rotarod, Longa test, and TTC staining, followed by treating the mice for three days with Mast-M (20, 40, and 80 μg/kg, subcutaneously). The results demonstrate that Mast-M promotes functional recovery in mice post-ischemic stroke, evidenced by improved neurological impairment, reduced infarct volume and neuronal damage. Meanwhile, the level of iron (Fe2+) and malonyldialdehyde was decreased in the ischemic hemisphere of MCAO/R mice at 24 hours or 48 hours by Mast-M (80 μg/kg) treatment, while the expression of NRF2, x-CT, GPX4, and LC3B protein was increased. Furthermore, these findings were validated in three models-oxygen-glucose deprivation/ reoxygenation, H2O2-induced peroxidation, and erastin-induced ferroptosis-in hippocampal neuron HT22 cells or primary neurons. These data suggested that Mast-M activates autophagy as well as inhibits ferroptosis. Finally, autophagy inhibitors were introduced to determine the relationship between the autophagy and ferroptosis, indicating that Mast-M alleviates ferroptosis by activating autophagy. Taken together, this study described that Mast-M alleviates cerebral infarction, neurologic impairment, and neuronal damage by activating autophagy and inhibiting ferroptosis, presenting a potential therapeutic approach for CIRI.
Collapse
Affiliation(s)
- Qian Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Mingran Chen
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
17
|
Li Y, Li M, Feng S, Xu Q, Zhang X, Xiong X, Gu L. Ferroptosis and endoplasmic reticulum stress in ischemic stroke. Neural Regen Res 2024; 19:611-618. [PMID: 37721292 PMCID: PMC10581588 DOI: 10.4103/1673-5374.380870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Ferroptosis is a form of non-apoptotic programmed cell death, and its mechanisms mainly involve the accumulation of lipid peroxides, imbalance in the amino acid antioxidant system, and disordered iron metabolism. The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum, and the progression of inflammatory diseases can trigger endoplasmic reticulum stress. Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival. Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke. However, there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke. This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke, aiming to provide a reference for developing treatments for ischemic stroke.
Collapse
Affiliation(s)
- Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingyang Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shi Feng
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xu Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
18
|
Li S, Huang P, Lai F, Zhang T, Guan J, Wan H, He Y. Mechanisms of Ferritinophagy and Ferroptosis in Diseases. Mol Neurobiol 2024; 61:1605-1626. [PMID: 37736794 DOI: 10.1007/s12035-023-03640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
The discovery of the role of autophagy, particularly the selective form like ferritinophagy, in promoting cells to undergo ferroptosis has inspired us to investigate functional connections between diseases and cell death. Ferroptosis is a novel model of procedural cell death characterized by the accumulation of iron-dependent reactive oxygen species (ROS), mitochondrial dysfunction, and neuroinflammatory response. Based on ferroptosis, the study of ferritinophagy is particularly important. In recent years, extensive research has elucidated the role of ferroptosis and ferritinophagy in neurological diseases and anemia, suggesting their potential as therapeutic targets. Besides, the global emergence and rapid transmission of COVID-19, which is caused by SARS-CoV-2, represents a considerable risk to public health worldwide. The potential involvement of ferroptosis in the pathophysiology of brain injury associated with COVID-19 is still unclear. This review summarizes the pathophysiological changes of ferroptosis and ferritinophagy in neurological diseases, anemia, and COVID-19, and hypothesizes that ferritinophagy may be a potential mechanism of ferroptosis. Advancements in these fields will enhance our comprehension of methods to prevent and address neurological disorders, anemia, and COVID-19.
Collapse
Affiliation(s)
- Siqi Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feifan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiaqi Guan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
19
|
Tian X, Li X, Pan M, Yang LZ, Li Y, Fang W. Progress of Ferroptosis in Ischemic Stroke and Therapeutic Targets. Cell Mol Neurobiol 2024; 44:25. [PMID: 38393376 PMCID: PMC10891262 DOI: 10.1007/s10571-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death (PCD) and ischemic stroke (IS) has been confirmed to be closely related to ferroptosis. The mechanisms of ferroptosis were summarized into three interrelated aspects: iron metabolism, lipid peroxide metabolism, as well as glutathione and amino acid metabolism. What's more, the causal relationship between ferroptosis and IS has been elucidated by several processes. The disruption of the blood-brain barrier, the release of excitatory amino acids, and the inflammatory response after ischemic stroke all lead to the disorder of iron metabolism and the antioxidant system. Based on these statements, we reviewed the reported effects of compounds and drugs treating IS by modulating key molecules in ferroptosis. Through detailed analysis of the roles of these key molecules, we have also more clearly demonstrated the essential effect of ferroptosis in the occurrence of IS so as to provide new targets and ideas for the therapeutic targets of IS.
Collapse
Affiliation(s)
- Xinjuan Tian
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Mengtian Pan
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Lele Zixin Yang
- The Pennsylvania State University, State College, PA, 16801, USA
| | - Yunman Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
20
|
Mohan S, Alhazmi HA, Hassani R, Khuwaja G, Maheshkumar VP, Aldahish A, Chidambaram K. Role of ferroptosis pathways in neuroinflammation and neurological disorders: From pathogenesis to treatment. Heliyon 2024; 10:e24786. [PMID: 38314277 PMCID: PMC10837572 DOI: 10.1016/j.heliyon.2024.e24786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Ferroptosis is a newly discovered non-apoptotic and iron-dependent type of cell death. Ferroptosis mainly takes place owing to the imbalance of anti-oxidation and oxidation in the body. It is regulated via a number of factors and pathways both inside and outside the cell. Ferroptosis is closely linked with brain and various neurological disorders (NDs). In the human body, the brain contains the highest levels of polyunsaturated fatty acids, which are known as lipid peroxide precursors. In addition, there is also a connection of glutathione depletion and lipid peroxidation with NDs. There is growing evidence regarding the possible link between neuroinflammation and multiple NDs, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and stroke. Recent studies have demonstrated that disruptions of lipid reactive oxygen species (ROS), glutamate excitatory toxicity, iron homeostasis, and various other manifestations linked with ferroptosis can be identified in various neuroinflammation-mediated NDs. It has also been reported that damage-associated molecular pattern molecules including ROS are generated during the events of ferroptosis and can cause glial activation via activating neuroimmune pathways, which subsequently leads to the generation of various inflammatory factors that play a role in various NDs. This review summarizes the regulation pathways of ferroptosis, the link between ferroptosis as well as inflammation in NDs, and the potential of a range of therapeutic agents that can be used to target ferroptosis and inflammation in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - V P Maheshkumar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
21
|
Zheng J, Fang Y, Zhang M, Gao Q, Li J, Yuan H, Jin W, Lin Z, Lin W. Mechanisms of ferroptosis in hypoxic-ischemic brain damage in neonatal rats. Exp Neurol 2024; 372:114641. [PMID: 38065231 DOI: 10.1016/j.expneurol.2023.114641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
This study was to explore the mechanism of ferroptosis and hypoxic-ischemic brain damage in neonatal rats. The neonatal rat hypoxic-ischemic brain damage (HIBD) model was established using the Rice-Vannucci method and treated with the ferroptosis inhibitor liproxstatin-1. Cognitive assessment was performed through absentee field experiments to confirm the successful establishment of the model. Brain tissue damage was evaluated by comparing regional cerebral blood flow and quantifying tissue staining. Neuronal cell morphological changes in the rats' cortical and hippocampal regions were observed using HE and Nissl staining. ELISA was performed to determine GPX4, GSH and ROS expression levels in the rats' brain tissues, and Western blotting to assess the expression levels of 4-HNE, GPX4, GSS, ACSL4, SLC7A11, SLC3A2, TFRC, FHC, FLC, HIF-1α, and Nrf2 proteins in rat brain tissues. Compared to the Sham group, the HIBD group exhibited a significant decrease in cerebral blood perfusion, reduced brain nerve cells, and disordered cell arrangement. The use of the ferroptosis inhibitor effectively improved brain tissue damage and preserved the shape and structure of nerve cells. The oxidative stress products ROS and 4-HNE in the brain tissue of the HIBD group increased significantly, while the expression of antioxidant indicators GPX4, GSH, SLC7A11, and GSS decreased significantly. Furthermore, the expression of iron metabolism-related proteins TFRC, FHC, and FLC increased significantly, whereas the expression of the ferroptosis-related transcription factors HIF-1α and Nrf2 decreased significantly. Treatment with liproxstatin-1 exhibited therapeutic effects on HIBD and downregulated tissue ferroptosis levels. This study shows the involvement of ferroptosis in hypoxic-ischemic brain damage in neonatal rats through the System Xc--GSH-GPX4 functional axis and iron metabolism pathway, with the HIF-1α and Nrf2 transcription factors identified as the regulators of ferroptosis involved in the HIBD process in neonatal rats.
Collapse
Affiliation(s)
- Jinyu Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Yu Fang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Min Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Qiqi Gao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Jianshun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Hao Yuan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Wenwen Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China.
| | - Wei Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
22
|
Hu X, Bao Y, Li M, Zhang W, Chen C. The role of ferroptosis and its mechanism in ischemic stroke. Exp Neurol 2024; 372:114630. [PMID: 38056585 DOI: 10.1016/j.expneurol.2023.114630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Ischemic stroke is an acute cerebrovascular disease with a high morbidity, mortality, and disability rate. Persistent ischemia of brain tissue can cause irreversible damage to neurons, leading to neurological dysfunction and seriously affecting patients' quality of life. However, current clinical therapies are limited and have not achieved satisfactory outcome, due to the incomplete understanding of the mechanism of neuronal damage during ischemic stroke. Recent studies have found that ferroptosis is implicated in the pathophysiology of ischemic stroke. Ferroptosis is an iron-dependent regulated cell death driven by lipid peroxidation. Under normal physiological conditions, GSH/GPX4, FSP1/CoQ10, GCH/BH4 and other anti-ferroptosis pathways can function effectively to suppress the occurrence of ferroptosis. After ischemic stroke, two typical ferroptosis characteristics, lipid peroxidation and iron accumulation, are observed, accompanied by changes in the expression of ferroptosis related genes such as GPX4, ACSL4, and SLC7A11, suggesting that ferroptosis plays a key role in ischemic stroke, which provides a new idea for the clinical treatment of ischemic stroke. This article reviewed the pathological mechanisms of ferroptosis in the occurrence and development of ischemic stroke, as well as the related progress of ferroptosis targeted therapy.
Collapse
Affiliation(s)
- Xiaodan Hu
- School of Clinical Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yutong Bao
- School of Clinical Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Man Li
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weiguang Zhang
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chunhua Chen
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
23
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Zhang C, Lu Y, Zhang J, Zang A, Ren J, Zheng Z, Fan M, Xie Y. Novel 3-hydroxypyridin-4(1H)-One derivatives as ferroptosis inhibitors with iron-chelating and reactive oxygen species scavenging activities and therapeutic effect in cisplatin-induced cytotoxicity. Eur J Med Chem 2024; 263:115945. [PMID: 37976709 DOI: 10.1016/j.ejmech.2023.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Recent advances in understanding the role of iron and ROS in cell death suggest new therapeutic avenues to treat organ damage including acute kidney injury (AKI). Inhibiting ferroptosis was expected to have great potential for the treatment of this disease. Ferroptosis is characterized by iron-dependent lipid peroxidation and currently, a majority of reported ferroptosis inhibitors belong to either radical-trapping antioxidants or iron chelators. However, clinically used iron chelators such as deferoxamine and deferiprone have limited efficacy against ferroptosis (generally with EC50 > 100 μM), despite their proven safety. Herein, we present the rational design of novel ferroptosis inhibitors by incorporating the naturally occurring cinnamic acid scaffold and the 3-hydroxypyridin-4(1H)-one iron-chelating pharmacophore. Through ABTS˙+ radical-scavenging assay, oxygen radical absorbance capacity (ORAC) measurement, Fe3+ affinity evaluation, and anti-erastin-induced HT22 cell ferroptosis assays, we identified compound 9c as the most prospective ferroptosis inhibitor (ABTS˙+, IC50 = 4.35 ± 0.05 μM; ORCA = 23.79 ± 0.56 TE; pFe3+ = 18.59; EC50 = 14.89 ± 0.08 μM, respectively). Notably, 9c dose-dependently alleviated cell death in cisplatin-induced AKI model. Our results provide insight into the development of new ferroptosis inhibitors through rational incorporation of pharmacophores from existing ferroptosis inhibitors, and compound 9c could be a promising lead compound worth further investigation.
Collapse
Affiliation(s)
- Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yi Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jingqi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Anjie Zang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jinhui Ren
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
25
|
Lin F, Yang X, Li L, Chen J, Zheng X, Qiu L, Shi S, Nie B. The Relationship between Alzheimer's Disease and Ferroptosis: A Bibliometric Study Based on Citespace. Curr Alzheimer Res 2024; 21:566-577. [PMID: 39716789 DOI: 10.2174/0115672050348799241211072746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND The potential relationship between Alzheimer's Disease (AD) and ferroptosis has received considerable attention, yet there is no comprehensive visualization analysis in this field. This study aimed to explore the research frontiers and hotspots through bibliometric analysis. METHODS Literature related to AD and ferroptosis was collected from the Web of Science Core Collection. Data, including countries, authors, institutions, journals, and keywords, were analyzed by Tableau Public Desktop and Citespace software. RESULTS A total of 305 articles published between January 1st, 2013, and December 31st, 2023, were included, and the number of articles on the relationship between AD and ferroptosis has increased annually, with the largest number reported from China (162 articles). The articles from Professor SJ Dixon were cited most frequently. Among the top ten most cited articles, four were published in top journals. The University of Melbourne emerged as the institution with the highest number of publications (27 articles). Among the journals, most of the articles were published in Frontiers in Aging Neuroscience (13 articles, accounting for 4.26%). The co-occurrence analysis of keywords revealed that major hotspots in this field contained oxidative stress, cell death, and lipid peroxidation. Keyword burst analysis indicated that antioxidant was the term with the longest duration of high interest, while clustering analysis showed that this research area primarily focused on amyloid precursor protein, drug development, and diagnostic models. CONCLUSION Bibliometric analyses were conducted to comprehensively present the research progress and trends on the relationship between AD and ferroptosis, providing valuable evidence for future research in related fields.
Collapse
Affiliation(s)
- Fengwen Lin
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, The Second People's Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Xiaolu Yang
- School of Medicine and Life Sciences, Chengdu University of TCM, Chengdu, China
- Medical Imaging Center, The Second People's Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Linqin Li
- Medical Imaging Center, The Second People's Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Jie Chen
- Department of Laboratory Medicine, The Second People's Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Xuxiang Zheng
- Department of Laboratory Medicine, The Second People's Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Lihua Qiu
- Medical Imaging Center, The Second People's Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Shaorui Shi
- Department of Laboratory Medicine, The Second People's Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Bin Nie
- Department of Laboratory Medicine, The Second People's Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| |
Collapse
|
26
|
Zhang Q, Wang X, Zhao Y, Cheng Z, Fang D, Liu Y, Tian G, Li M, Luo Z. Nanointegrative In Situ Reprogramming of Tumor-Intrinsic Lipid Droplet Biogenesis for Low-Dose Radiation-Activated Ferroptosis Immunotherapy. ACS NANO 2023; 17:25419-25438. [PMID: 38055636 DOI: 10.1021/acsnano.3c08907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Low-dose radiotherapy (LDR) has shown significant implications for inflaming the immunosuppressive tumor microenvironment (TME). Surprisingly, we identify that FABP-dependent lipid droplet biogenesis in tumor cells is a key determinant of LDR-evoked cytotoxic and immunostimulatory effects and developed a nanointegrated strategy to promote the antitumor efficacy of LDR through cooperative ferroptosis immunotherapy. Specifically, TCPP-TK-PEG-PAMAM-FA, a nanoscale multicomponent functional polymer with self-assembly capability, was synthesized for cooperatively entrapping hafnium ions (Hf4+) and HIF-1α-inhibiting siRNAs (siHIF-1α). The TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α nanoassemblies are specifically taken in by folate receptor-overexpressing tumor cells and activated by the elevated cellular ROS stress. siHIF-1α could readily inhibit the FABP3/7 expression in tumor cells via HIF-1α-FABP3/7 signaling and abolish lipid droplet biogenesis for enhancing the peroxidation susceptibility of membrane lipids, which synergizes with the elevated ROS stress in the context of Hf4+-enhanced radiation exposure and evokes pronounced ferroptotic damage in vital membrane structures. Interestingly, TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α-enhanced ferroptotic biomembrane damage also facilitates the exposure of tumor-associated antigens (TAAs) to promote post-LDR immunotherapeutic effects, leading to robust tumor regression in vivo. This study offers a nanointegrative approach to boost the antitumor effects of LDR through the utilization of tumor-intrinsic lipid metabolism.
Collapse
Affiliation(s)
- Qiqi Zhang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Xuan Wang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yuanyuan Zhao
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Zhuo Cheng
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, P. R. China
| | - De Fang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Gan Tian
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
27
|
Wang Y, Lv MN, Zhao WJ. Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases. Ageing Res Rev 2023; 91:102035. [PMID: 37619619 DOI: 10.1016/j.arr.2023.102035] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Ferroptosis is an iron- and lipid peroxidation (LPO)-mediated programmed cell death type. Recently, mounting evidence has indicated the involvement of ferroptosis in neurodegenerative diseases, especially in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and so on. Treating ferroptosis presents opportunities as well as challenges for neurodegenerative diseases. This review provides a comprehensive overview of typical features of ferroptosis and the underlying mechanisms that contribute to its occurrence, as well as their implications in the pathogenesis and advancement of major neurodegenerative disorders. Meanwhile, we summarize the utilization of ferroptosis inhibition in both experimental and clinical approaches for the treatment of major neurodegenerative disorders. In addition, we specifically summarize recent advances in developing therapeutic means targeting ferroptosis in these diseases, which may guide future approaches for the effective management of these devastating medical conditions.
Collapse
Affiliation(s)
- Yi Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Meng-Nan Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
28
|
Vatte S, Ugale R. HIF-1, an important regulator in potential new therapeutic approaches to ischemic stroke. Neurochem Int 2023; 170:105605. [PMID: 37657765 DOI: 10.1016/j.neuint.2023.105605] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic window of the only approved therapies like intravenous thrombolysis and thrombectomy. Hypoxia inducible factor-1α (HIF-1α) is a sensitive regulator of oxygen homeostasis, and its expression is rapidly induced after hypoxia/ischemia. It plays an extensive role in the pathophysiology of stroke by regulating multiple pathways including glucose metabolism, angiogenesis, neuronal survival, neuroinflammation and blood brain barrier regulation. Here, we give a brief overview of the HIF-1α-targeting strategies currently under investigation and summarise recent research on how HIF-1α is regulated in various brain cells, including neurons and microglia, at various stages in ischemic stroke. The roles of HIF-1 in stroke varies with ischemic time and degree of ischemia, are still up for debate. More focus has been placed on prospective HIF-1α targeting drugs, such as HIF-1α activator, HIF-1α stabilizers, and natural compounds. In this review, we have highlighted the regulation of HIF-1α in the novel therapeutic approaches for treatment of stroke.
Collapse
Affiliation(s)
- Sneha Vatte
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, India.
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, India.
| |
Collapse
|
29
|
Wang Q, Sun J, Chen T, Song S, Hou Y, Feng L, Fan C, Li M. Ferroptosis, Pyroptosis, and Cuproptosis in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3564-3587. [PMID: 37703318 DOI: 10.1021/acschemneuro.3c00343] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, is a neurodegenerative disorder characterized by progressive cognitive dysfunction. Epidemiological investigation has demonstrated that, after cardiovascular and cerebrovascular diseases, tumors, and other causes, AD has become a major health issue affecting elderly individuals, with its mortality rate acutely increasing each year. Regulatory cell death is the active and orderly death of genetically determined cells, which is ubiquitous in the development of living organisms and is crucial to the regulation of life homeostasis. With extensive research on regulatory cell death in AD, increasing evidence has revealed that ferroptosis, pyroptosis, and cuproptosis are closely related to the occurrence, development, and prognosis of AD. This paper will review the molecular mechanisms of ferroptosis, pyroptosis, and cuproptosis and their regulatory roles in AD to explore potential therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Qi Wang
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Jingyi Sun
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Tian Chen
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Siyu Song
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Yajun Hou
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Lina Feng
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Cundong Fan
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Mingquan Li
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| |
Collapse
|
30
|
Gao X, Hu W, Qian D, Bai X, He H, Li L, Sun S. The Mechanisms of Ferroptosis Under Hypoxia. Cell Mol Neurobiol 2023; 43:3329-3341. [PMID: 37458878 PMCID: PMC10477166 DOI: 10.1007/s10571-023-01388-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 09/05/2023]
Abstract
Ferroptosis is a new form of programmed cell death, which is characterized by the iron-dependent accumulation of lipid peroxidation and increase of ROS, resulting in oxidative stress and cell death. Iron, lipid, and multiple signaling pathways precisely control the occurrence and implementation of ferroptosis. The pathways mainly include Nrf2/HO-1 signaling pathway, p62/Keap1/Nrf2 signaling pathway. Activating p62/Keap1/Nrf2 signaling pathway inhibits ferroptosis. Nrf2/HO-1 signaling pathway promotes ferroptosis. Furthermore, some factors also participate in the occurrence of ferroptosis under hypoxia, such as HIF-1, NCOA4, DMT1. Meanwhile, ferroptosis is related with hypoxia-related diseases, such as MIRI, cancers, and AKI. Accordingly, ferroptosis appears to be a therapeutic target for hypoxia-related diseases.
Collapse
Affiliation(s)
- Xin Gao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, China
- 2020 Clinical Medicine Class 6, Kunming Medical University, Kunming, 650500, China
| | - Wei Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Dianlun Qian
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Xiangfeng Bai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Huilin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, China
| | - Lin Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, China.
| |
Collapse
|
31
|
Sun N, Xing Y, Jiang J, Wu P, Qing L, Tang J. Knowledge mapping and emerging trends of ferroptosis in ischemia reperfusion injury research: A bibliometric analysis (2013-2022). Heliyon 2023; 9:e20363. [PMID: 37767486 PMCID: PMC10520329 DOI: 10.1016/j.heliyon.2023.e20363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Ischemia/reperfusion (I/R) injury is an inevitable dilemma when previously ischemic multiple organs and tissues are returned to a state of blood flow, with confirming a critical role of ferroptosis in molecular, pathway mechanisms, subcellular structure. Discovering the potential relationship may provide useful approaches for the clinical treatment and prognosis of the pathophysiological status of IRI. Therefore, a comprehensive visualization and scientometric analysis were conducted to systematically summarize and discuss the "ferroptosis in ischemia reperfusion injury" research to demonstrate directions for scholars in this field. METHODS We retrieved all publications focusing on I/R injury and ferroptosis from the Web of Science Core Collection (WoSCC), published from 2013 to October 2022. Next, scientometric analysis of different items was performed using various bibliometrics softwares to explore the annual trends, countries/regions, institutions, journals, authors and their multi-dimensional relationship pointing to current hotspots and future advancement in this field. RESULTS We included a total of 421 English articles in set timespan. The number of publications increased steadily annually. China produced the highest number of publications, followed by the United States. Most publications were from Central South University, followed by Sichuan University and Wuhan University. The most authoritative academic journal was Oxidative Medicine and Cellular Longevity. Cell occupied the first rank of co-cited journal list. Andreas Linkermann and Scott J Dixon may have the highest influence in this intersected field with the highest number of citations and co-cited references respectively. The essential biological reactions such as oxidative stress response, lipid peroxidation metabolism, anti-inflammmatory and pro-inflammatory procedure, and related molecular pathways were knowledge base and current hotspots. Molecules pathways exploration, effective inhibition of I/R injury and promising strategy of improving allografts may become future trends and focuses. CONCLUSIONS Research on ferroptosis in I/R injury had aroused great interest recently. This first bibliometric study comprehensively analyzed the research landscape of ferroptosis and I/R injury, and also provided a reliable reference for related scholars to facilitate further advancement in this field.
Collapse
Affiliation(s)
- Nianzhe Sun
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yixuan Xing
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Panfeng Wu
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Liming Qing
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Juyu Tang
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
32
|
Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300325. [PMID: 37341302 PMCID: PMC10460905 DOI: 10.1002/advs.202300325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Emerging evidence suggests that ferroptosis, a unique regulated cell death modality that is morphologically and mechanistically different from other forms of cell death, plays a vital role in the pathophysiological process of neurodegenerative diseases, and strokes. Accumulating evidence supports ferroptosis as a critical factor of neurodegenerative diseases and strokes, and pharmacological inhibition of ferroptosis as a therapeutic target for these diseases. In this review article, the core mechanisms of ferroptosis are overviewed and the roles of ferroptosis in neurodegenerative diseases and strokes are described. Finally, the emerging findings in treating neurodegenerative diseases and strokes through pharmacological inhibition of ferroptosis are described. This review demonstrates that pharmacological inhibition of ferroptosis by bioactive small-molecule compounds (ferroptosis inhibitors) could be effective for treatments of these diseases, and highlights a potential promising therapeutic avenue that could be used to prevent neurodegenerative diseases and strokes. This review article will shed light on developing novel therapeutic regimens by pharmacological inhibition of ferroptosis to slow down the progression of these diseases in the future.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care MedicineAerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijing100049P. R. China
| | - Shuang Wu
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhan430000P. R. China
| | - Qiang Li
- Department of NeurologyThe Affiliated Hospital of Chifeng UniversityChifeng024005P. R. China
| | - Huiyan Sun
- Chifeng University Health Science CenterChifeng024000P. R. China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| |
Collapse
|
33
|
Tang L, Liu S, Li S, Chen Y, Xie B, Zhou J. Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis: A Novel Therapeutic Target in Nervous System Diseases. Int J Mol Sci 2023; 24:10127. [PMID: 37373274 DOI: 10.3390/ijms241210127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, three emerging cell deaths, ferroptosis, necroptosis and pyroptosis, have gradually attracted everyone's attention, and they also play an important role in the occurrence and development of various diseases. Ferroptosis is an idiographic iron-dependent form regulated cell death with the hallmark of accumulation of the intracellular reactive oxygen species (ROS). Necroptosis is a form of regulated necrotic cell death mediated by the receptor-interacting protein kinase 1(RIPK1) and receptor-interacting protein kinase 3RIPK3. Pyroptosis, also known as cell inflammatory necrosis, is a programmed cell necrosis mediated by Gasdermin D (GSDMD). It is manifested by the continuous swelling of the cells until the cell membrane ruptures, resulting in the release of the cell contents and the activation of a strong inflammatory response. Neurological disorders remain a clinical challenge and patients do not respond well to conventional treatments. Nerve cell death can aggravate the occurrence and development of neurological diseases. This article reviews the specific mechanisms of these three types of cell death and their relationship with neurological diseases and the evidence for the role of the three types of cell death in neurological diseases; understanding these pathways and their mechanisms is helpful for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Lu Tang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Sitong Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Shiwei Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
34
|
Chen B, Jin W. A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci 2023; 17:1200061. [PMID: 37351420 PMCID: PMC10282194 DOI: 10.3389/fnins.2023.1200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
This review provides insight into the complex network of signaling pathways and mechanisms involved in stroke pathophysiology. It summarizes the historical progress of stroke-related signaling pathways, identifying potential interactions between them and emphasizing that stroke is a complex network disease. Of particular interest are the Hippo signaling pathway and ferroptosis signaling pathway, which remain understudied areas of research, and are therefore a focus of the review. The involvement of multiple signaling pathways, including Sonic Hedgehog (SHH), nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE), hypoxia-inducible factor-1α (HIF-1α), PI3K/AKT, JAK/STAT, and AMPK in pathophysiological mechanisms such as oxidative stress and apoptosis, highlights the complexity of stroke. The review also delves into the details of traditional Chinese medicine (TCM) therapies such as Rehmanniae and Astragalus, providing an analysis of the recent status of western medicine in the treatment of stroke and the advantages and disadvantages of TCM and western medicine in stroke treatment. The review proposes that since stroke is a network disease, TCM has the potential and advantages of a multi-target and multi-pathway mechanism of action in the treatment of stroke. Therefore, it is suggested that future research should explore more treasures of TCM and develop new therapies from the perspective of stroke as a network disease.
Collapse
Affiliation(s)
- Binhao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
35
|
Xie Q, Yu H, Liu Z, Zhou B, Fang F, Qiu W, Wu H. Identification and characterization of the ferroptosis-related ceRNA network in irreversible pulpitis. Front Immunol 2023; 14:1198053. [PMID: 37275855 PMCID: PMC10235459 DOI: 10.3389/fimmu.2023.1198053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Background The role of ferroptosis in irreversible pulpitis (IP) remains unclear. The competing endogenous RNA (ceRNA) theory that has been widely investigated is rarely used studied in IP. Hub lncRNAs selected from a ceRNA network may provide a novel hypothesis for the interaction of ferroptosis and IP. Methods Differentially expressed genes (DEGs) were intersected with 484 ferroptosis markers to identify differentially expressed ferroptosis-related genes (DE-FRGs). Functional analysis and protein-protein interaction (PPI) networks were constructed to reveal the functions of DE-FRGs. Then, coexpression analyses were conducted between DE-FRGs and DElncRNAs to define ferroptosis-related DElncRNAs (FR-DElncRNAs). Predictions of DE-FRG- and FR-DElncRNA-related miRNAs were obtained, and members of both groups were selected. Additionally, two ceRNA networks consisting of FR-DElncRNAs, miRNAs and DE-FRGs from upregulated and downregulated groups were built. Finally, the hub lncRNAs of the ceRNA networks were used for immuno-infiltration analysis and qPCR verification. Results According to the results of PCA and clustering analysis, 5 inflamed and 5 healthy pulp tissue samples were selected for analysis. The intersection of DEGs with 484 ferroptosis marker genes identified 72 DE-FRGs. The response to stimulus, cellular process, signaling, localization, and biological regulation pathways related to DE-FRGs were enriched. In total, 161 downregulated and 40 upregulated FR-DElncRNAs were chosen by coexpression analysis for further investigation. The MultimiR package and starBase were used to predict miRNAs of DE-FRGs and FR-DElncRNAs, respectively. The upregulated ceRNA network contained 2 FR-DElncRNAs (↑), 19 miRNAs (↓) and 22 DE-FRGs (↑). The downregulated network contained 44 FR-DElncRNAs (↓), 251 miRNAs (↑) and 10 DE-FRGs (↓). Six hub lncRNAs were identified based on the MCC method (LUCAT1 and AC106897.1 ↑; LINC00943, AL583810.1, AC068888.1, and AC125257.1↓). In addition, strong relationships between hub lncRNAs and immune cells were shown by immune infiltration analysis. Finally, validated by qPCR assays of the pulp tissue of IP patients, the expression levels in clinical samples were consistent with the microarray data. Conclusion Two ceRNA networks were comprehensively constructed, and 6 hub lncRNAs were identified. These genes provide novel insights into the relationship between ferroptosis and IP. Intriguingly, the LINC00943/hsa-miR-29a-3p/PDK4 axis was deemed to be the key node in this network.
Collapse
Affiliation(s)
- Qiuyan Xie
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwen Yu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zining Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bangyi Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongle Wu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Zhao F, Peng C, Li H, Chen H, Yang Y, Ai Q, Chen N, Liu F. Paeoniae Radix Rubra extract attenuates cerebral ischemia injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023:116567. [PMID: 37172921 DOI: 10.1016/j.jep.2023.116567] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Rubra (PRR), the root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, has been widely used to promote blood circulation and eliminate blood stasis in Chinese clinical practice, but its effect on cerebral ischemia is still rarely reported. AIM OF THE STUDY The present study aimed to assess the potential therapeutic possibilities of the extract of PRR (PRRE) on cerebral ischemia, further exploring the underlying mechanism, and preliminary screening of the corresponding active components. MATERIALS AND METHODS The neuroprotective effects of PRRE in Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO) injury and mouse hippocampal neuronal cells (HT22 cell line) following oxidative stress were confirmed. The mechanism was investigated using immunohistochemical staining, western blotting, transmission electron microscopy (TEM), and immunofluorescence. The active components of PRRE were analysed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and molecular docking. RESULTS The in vivo study showed that PRRE reduced infarct volume and improved neurological deficits in rats, and the expression of GPX4, FTH1, Beclin1, LC3 II, and p-Akt was upregulated in the rat hippocampi. In addition, the vitro research indicated that PRRE can also alleviate H2O2-induced HT22 cell damage by regulating cytokines such as malondialdehyde (MDA), reduced glutathione (GSH) and reactive oxygen species (ROS), and the expressions of GPX4 and Beclin1 were observed to be elevated. The PI3K/Akt signalling pathway was inhibited by LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K). Furthermore, the effective components of PRRE in regulating ferroptosis and autophagy are mainly defined as albiflorin, paeoniflorin, benzoyl paeoniflorin, oleanolic acid, and hederagenin. CONCLUSION PRRE exerts neuroprotective effects against cerebral ischaemic injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. This study provides an experimental basis for the potential application of PRRE as a novel therapeutic drug, and PI3K/Akt-associated ferroptosis and autophagy as therapeutic targets for cerebral ischemia.
Collapse
Affiliation(s)
- Fengyan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Caiwang Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Hengli Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Haodong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Yantao Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Qidi Ai
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Naihong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China.
| |
Collapse
|
37
|
Jiang X, Wu K, Ye XY, Xie T, Zhang P, Blass BE, Bai R. Novel druggable mechanism of Parkinson's disease: Potential therapeutics and underlying pathogenesis based on ferroptosis. Med Res Rev 2023. [PMID: 36924451 DOI: 10.1002/med.21939] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/07/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Genetics, age, environmental factors, and oxidative stress have all been implicated in the development of Parkinson's disease (PD); however, a complete understanding of its pathology remains elusive. At present, there is no cure for PD, and currently available therapeutics are insufficient to meet patient needs. Ferroptosis, a distinctive iron-dependent cell death mode characterized by lipid peroxidation and oxidative stress, has pathophysiological features similar to those of PD, including iron accumulation, reactive oxygen species-induced oxidative damage, and mitochondrial dysfunction. Ferroptosis has been identified as a specific pathway of neuronal death and is closely related to the pathogenesis of PD. Despite the similarities in the biological targets involved in PD pathogenesis and ferroptosis, the relationship between novel targets in PD and ferroptosis has been neglected in the literature. In this review, the mechanism of ferroptosis is discussed, and the potential therapeutic targets implicated in both PD and ferroptosis are compared. Furthermore, the anti-PD effects of several ferroptosis inhibitors, as well as clinical studies thereof, and the identification of novel lead compounds for the treatment of PD and the inhibition of ferroptosis are reviewed. It is hoped that this review can promote research to further elucidate the relationship between ferroptosis and PD and provide new strategies for the development of novel ferroptosis-targeting PD therapy.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China.,Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Kaiyu Wu
- Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Xiang-Yang Ye
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Tian Xie
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Pengfei Zhang
- Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| |
Collapse
|
38
|
Shi Y, Zhang J, Luo K, Pan S, Shi H, Xiong L, Du S. The Roles of Iron and Ferroptosis in Human Chronic Diseases. Biochemistry 2023. [DOI: 10.5772/intechopen.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ferroptosis, an iron-dependent novel type of cell death, has been characterized as an excessive accumulation of lipid peroxides and reactive oxygen species. A growing number of studies demonstrate that ferroptosis not only plays an important role in the pathogenesis and progression of chronic diseases, but also functions differently in different diseases. As a double-edged sword, activation of ferroptosis could potently inhibit tumor growth and increase sensitivity to chemotherapy and immunotherapy in various cancer settings. Therefore, the development of more efficacious ferroptosis agonists or inhibitors remains the mainstay of ferroptosis-targeting strategy for cancer therapeutics or cardiovascular and cerebrovascular diseases and neurodegenerative diseases therapeutics.
Collapse
|
39
|
Xu Y, Li K, Zhao Y, Zhou L, Liu Y, Zhao J. Role of Ferroptosis in Stroke. Cell Mol Neurobiol 2023; 43:205-222. [PMID: 35102454 PMCID: PMC11415219 DOI: 10.1007/s10571-022-01196-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
Stroke is a common and serious nervous system disease caused by the rupture or blockage of the cardiovascular system. It causes millions of deaths and disabilities every year, which is a huge burden on humanity. It may be induced by thrombosis, hypertension, hyperlipidemia, hyperglycemia, smoking, advanced age and so on. According to different causes, stroke can be generally divided into hemorrhagic stroke and ischemic stroke, whose pathogenesis and treatment are quite different. Ferroptosis is a new type of cell death first defined in 2012, which is characterized by non-apoptotic, iron-dependent, and over-accumulated lipid peroxides. Excess lipid reactive oxygen species produced during ferroptosis eventually leads to oxidative cell death. Ferroptosis has been shown to occur and play an important role in tumors, neurological diseases, kidney injury, and ischemia-reperfusion injury. Ferroptosis is also closely related to the pathogenesis of stroke. Moreover, scientists have successfully intervened in the process of stroke in animal models by regulating ferroptosis, indicating that ferroptosis is a new potential target for the treatment of stroke. This paper systematically summarizes the involvement and role of ferroptosis in the pathogenesis of stroke and predicts the potential of ferroptosis in the treatment of stroke. Ferroptosis in stroke. Stroke induces iron overload and lipid metabolism disorders. Elevated iron catalyzes lipid peroxidation and eventually triggers ferroptosis. Conversely, the GSH/GPX4 pathway, as well as CoQ10, Fer-1, and Lip-1, inhibits lipid peroxidation and, thus, alleviates ferroptosis. GSH glutathione; GPX4 glutathione peroxidase 4; CoQ10 coenzyme Q10; Lip-1 liproxstatin-1; Fer-1 ferostatin-1.
Collapse
Affiliation(s)
- Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China.
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
40
|
Dong Z, Liang P, Guan G, Yin B, Wang Y, Yue R, Zhang X, Song G. Overcoming Hypoxia‐Induced Ferroptosis Resistance via a
19
F/
1
H‐MRI Traceable Core‐Shell Nanostructure. Angew Chem Int Ed Engl 2022; 61:e202206074. [DOI: 10.1002/anie.202206074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Peng Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
41
|
Zhao F, Peng C, Sun Y, Li H, Du K, Liu F. Potential application of traditional Chinese medicine in cerebral ischemia—Focusing on ferroptosis. Front Pharmacol 2022; 13:963179. [PMID: 36210857 PMCID: PMC9539431 DOI: 10.3389/fphar.2022.963179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Traditional Chinese medicine (TCM) has attracted a great deal of attention in the treatment of cerebral ischemia is credited with the remarkable neuroprotective effects. However, the imperfect functional mechanism of TCM is a major obstacle to their application. Many studies have been conducted to illustrate the pathophysiology of post-ischemic cerebral ischemia by elucidating the neuronal cell death pathway. Meanwhile, a new type of cell death, ferroptosis, is gradually being recognized in various diseases and is becoming a new pathway of therapeutic intervention strategy to solve many health problems. Especially since ferroptosis has been found to be closely involved into the pathogenesis of cerebral ischemia, it has been considered as a key target in the treatment of cerebral ischemia. Therefore, this paper reviews the latest research findings about the treatment of cerebral ischemia with TCM focused on ferroptosis as a target. Also, in order to explores the possibility of a new approach to treat cerebral ischemia with TCM, we discusses the correlation between ferroptosis and other cell death pathways such as apoptosis and autophagy, which would provide references for the following researches.
Collapse
Affiliation(s)
- Fengyan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | - Caiwang Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | - Yang Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | - Hengli Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | - Ke Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
- *Correspondence: Fang Liu,
| |
Collapse
|
42
|
Bioinformatics analysis reveals potential biomarkers associated with the occurrence of intracranial aneurysms. Sci Rep 2022; 12:13282. [PMID: 35918429 PMCID: PMC9345973 DOI: 10.1038/s41598-022-17510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
To better understand the molecular mechanisms of intracranial aneurysm (IA) pathogenesis, we used gene coexpression networks to identify hub genes and functional pathways associated with IA onset. Two Gene Expression Omnibus (GEO) datasets encompassing intracranial aneurysm tissue samples and cerebral artery control samples were included. To discover functional pathways and potential biomarkers, weighted gene coexpression network analysis was employed. Next, single-gene gene set enrichment analysis was employed to investigate the putative biological roles of the chosen genes. We also used receiver operating characteristic analysis to confirm the diagnostic results. Finally, we used a rat model to confirm the hub genes in the module of interest. The module of interest, which was designated the green module and included 115 hub genes, was the key module that was most strongly and negatively associated with IA formation. According to gene set variation analysis results, 15 immune-related pathways were significantly activated in the IA group, whereas 7 metabolic pathways were suppressed. In two GEO datasets, SLC2A12 could distinguish IAs from control samples. Twenty-nine hub genes in the green module might be biomarkers for the occurrence of cerebral aneurysms. SLC2A12 expression was significantly downregulated in both human and rat IA tissue. In the present study, we identified 115 hub genes related to the pathogenesis of IA onset and deduced their potential roles in various molecular pathways; this new information may contribute to the diagnosis and treatment of IAs. By external validation, the SLC2A12 gene may play an important role. The molecular function of SLC2A12 in the process of IA occurrence can be further studied in a rat model.
Collapse
|
43
|
Protective Effect of Resveratrol against Hypoxia-Induced Neural Oxidative Stress. J Pers Med 2022; 12:jpm12081202. [PMID: 35893296 PMCID: PMC9330416 DOI: 10.3390/jpm12081202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress plays an important role in brain aging and in neurodegenerative diseases. New therapeutic agents are necessary to cross the blood–brain barrier and target disease pathogenesis without causing disagreeable side effects. Resveratrol (RSV) may act as a neuroprotective compound, but little is known about its potential in improving the cognitive and metabolic aspects that are associated with neurodegenerative diseases. The objective of this study was to investigate the protective effects and the underlying mechanisms of RSV against hypoxia-induced oxidative stress in neuronal PC12 cells. For the induction of the hypoxia model, the cells were exposed to oxygen-deprived gas in a hypoxic chamber. Cell cycle and apoptosis were analyzed by a fluorescence activated cell sorting (FACS) analysis. The intracellular reactive oxygen species (ROS) level was analyzed by using dichlorodihydrofluorescein diacetate (DCFDA) and 5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) tests. The expression of activated caspase-3, -9, Bcl-2, Bax, p53, and SOD was investigated by a Western blot analysis. We found that hypoxia reduced PC12 viability by inducing apoptosis, while RSV treatment attenuated the ROS-induced damage by reducing caspase-3, -9, and the Bax/Bcl-2 ratio. The RSV treated groups were found to improve cellular health, with a 7.41% increase in the S phase population in the 10 µM group, compared to the control. Hence, RSV has a protective effect in neuronal cells and may halt the cell cycle in the G1/S phase to repair the intracellular damage. Therefore, RSV could be a good candidate to act as an antioxidant and promising preventive therapeutic agent in neurodegenerative diseases for personalized medicine.
Collapse
|
44
|
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z. Role and Mechanism of Ferroptosis in Neurological Diseases. Mol Metab 2022; 61:101502. [PMID: 35447365 PMCID: PMC9170779 DOI: 10.1016/j.molmet.2022.101502] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Ferroptosis, as a new form of cell death, is different from other cell deaths such as autophagy or senescence. Ferroptosis involves in the pathophysiological progress of several diseases, including cancers, cardiovascular diseases, nervous system diseases, and kidney damage. Since oxidative stress and iron deposition are the broad pathological features of neurological diseases, the role of ferroptosis in neurological diseases has been widely explored. Scope of review Ferroptosis is mainly characterized by changes in iron homeostasis, iron-dependent lipid peroxidation, and glutamate toxicity accumulation, of which can be specifically reversed by ferroptosis inducers or inhibitors. The ferroptosis is mainly regulated by the metabolism of iron, lipids and amino acids through System Xc−, voltage-dependent anion channels, p53, p62-Keap1-Nrf2, mevalonate and other pathways. This review also focus on the regulatory pathways of ferroptosis and its research progress in neurological diseases. Major conclusions The current researches of ferroptosis in neurological diseases mostly focus on the key pathways of ferroptosis. At the same time, ferroptosis was found playing a bidirectional regulation role in neurological diseases. Therefore, the specific regulatory mechanisms of ferroptosis in neurological diseases still need to be further explored to provide new perspectives for the application of ferroptosis in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mengmeng Ou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Ying Jiang
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Yingying Ji
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Qin Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Zhiqiang Du
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Haohao Zhu
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Zhenhe Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
45
|
Guo N, Chen Y, Zhang Y, Deng Y, Zeng F, Li X. Potential Role of APEX1 During Ferroptosis. Front Oncol 2022; 12:798304. [PMID: 35311089 PMCID: PMC8927806 DOI: 10.3389/fonc.2022.798304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Ferroptosis is a recently discovered category of programmed cell death. It is much different from other types of cell death such as apoptosis, necrosis and autophagy. The main pathological feature of ferroptosis is the accumulation of iron-dependent lipid peroxidation. The typical changes in the morphological features of ferroptosis include cell volume shrinkage and increased mitochondrial membrane area. The mechanisms of ferroptosis may be mainly related to lipid peroxidation accumulation, imbalance in amino acid antioxidant system, and disturbance of iron metabolism. Besides, hypoxia-inducible factor (HIF), nuclear factor-E2-related factor 2 (Nrf2), and p53 pathway have been demonstrated to be involved in ferroptosis. At present, the molecular mechanisms of ferroptosis pathway are still unmapped. In this review, an outlook has been put forward about the crucial role of apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) in the regulation of ferroptosis. APEX1 plays an important role in the regulation of intracellular redox balance and can be used as a potential inhibitor of ferroptotic cell death. Bioinformatics analysis indicated that the mRNA level of APEX1 is decreased in cases of ferroptosis triggered by erastin. Besides, it was found that there was a significant correlation between APEX1 and genes in the ferroptosis pathway. We have discussed the possibility to employ APEX1 inducers or inhibitors in the regulation of ferroptosis as a new strategy for the treatment of various human diseases.
Collapse
Affiliation(s)
- Nan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yan Chen
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yonghao Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
46
|
Nazzal M, Madsen EC, Armstrong A, van Nispen J, Murali V, Song E, Voigt M, Madnawat H, Welu A, Manithody C, Suri A, Krebs J, Gilbert E, Samaddar A, Blackall D, Carpenter D, Varma C, Teckman J, Jain AK. Novel NMP split liver model recapitulates human IRI and demonstrates ferroptosis modulators as a new therapeutic strategy. Pediatr Transplant 2022; 26:e14164. [PMID: 34633130 DOI: 10.1111/petr.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Almost 9%of deceased donor livers are discarded as marginal donor livers (MDL) due to concern of severe ischemia reperfusion injury (IRI). Emerging data supports ferroptosis (iron regulated hepatocellular death) as an IRI driver, however lack of robust preclinical model limits therapeutic testing. In this manuscript we describe the development of a novel rigorous internal control system utilizing normothermic perfusion of split livers to test ferroptosis regulators modulating IRI. METHODS Upon institutional approval, split human MDLs were placed on our normothermic perfusion machine, Perfusion Regulated Organ Therapeutics with Enhanced Controlled Testing (PROTECT), pumping arterial and portal blood. Experiment 1 compared right (UR) and left (UL) lobes to validate PROTECT. Experiment 2 assessed ferroptosis regulator Deferoxamine in Deferoxamine Agent Treated (DMAT) vs. No Agent Internal Control (NAIC) lobes. Liver serology, histology, and ferroptosis genes were assessed. RESULTS Successful MDL perfusion validated PROTECT with no ALT or AST difference between UR and UL (∆ALT UR: 235, ∆ALT UL: 212; ∆AST UR: 576, ∆AST UL: 389). Liver injury markers increased in NAIC vs. DMAT (∆ALT NAIC: 586, ∆ALT DMAT: -405; ∆AST NAIC: 617, ∆AST DMAT: -380). UR and UL had similar expression of ferroptosis regulators RPL8,HO-1 and HIFα. Significantly decreased intrahepatic iron (p = .038), HO-1 and HIFα in DMAT (HO-1 NAIC: 6.93, HO-1 DMAT: 2.74; HIFαNAIC: 8.67, HIFαDMAT: 2.60)and no hepatocellular necrosis or immunohistochemical staining (Ki67/Cytokeratin-7) differences were noted. CONCLUSION PROTECT demonstrates the therapeutic utility of a novel normothermic perfusion split liver system for drug discovery and rapid translatability of therapeutics, driving a paradigm change in organ recovery and transplant medicine. Our study using human livers, provides preliminary proof of concept for the novel role of ferroptosis regulators in driving IRI.
Collapse
Affiliation(s)
- Mustafa Nazzal
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Erik C Madsen
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Austin Armstrong
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Johan van Nispen
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Vidul Murali
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Eric Song
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Marcus Voigt
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Himani Madnawat
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Adam Welu
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | | | - Anandini Suri
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Joseph Krebs
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Ester Gilbert
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Ashish Samaddar
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Douglas Blackall
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Danielle Carpenter
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Chintalapati Varma
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Jeffrey Teckman
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA.,Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Ajay Kumar Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
47
|
Chen Y, Long T, Xu Q, Zhang C. Bibliometric Analysis of Ferroptosis in Stroke From 2013 to 2021. Front Pharmacol 2022; 12:817364. [PMID: 35264947 PMCID: PMC8899397 DOI: 10.3389/fphar.2021.817364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Stroke is a major cause of long-term disability and death, but the clinical therapeutic strategy for stroke is limited and more research must be conducted to explore the possible avenues for stroke treatment and recovery. Since ferroptosis is defined, its role in the body has become the focus of attention and discussion, including in stroke. Methods: In this work, we aim to systematically discuss the “ferroptosis in stroke” research by bibliometric analysis. Documents were retrieved from the Web of Science Core Collection database on October 30, 2021. Statistical analysis and visualization analysis were conducted by the VOSviewer 1.6.15. Results: Ninety-nine documents were identified for bibliometric analysis. Research on “ferroptosis in stroke” has been rapidly developing and has remained the focus of many scholars and organizations in the last few years, but the Chinese groups in this field still lacked collaboration with others. Documents and citation analysis suggested that Rajiv R. Ratan and Brent R. Stockwell are active researchers, and the research by Qingzhang Tuo, Ishraq Alim, and Qian Li are more important drivers in the development of the field. Keywords associated with lipid peroxidation, ferroptosis, iron, oxidative stress, and cell death had high frequency, but apoptosis, necroptosis, pyroptosis, and autophagy had scant research, and there may be more research ideas in the future by scholars. Conclusion: Further exploration of the mechanisms of crosstalk between ferroptosis and other programmed cell death may improve clinical applications and therapeutic effects against stroke. Scholars will also continue to pay attention to and be interested in the hot topic “ferroptosis in stroke”, to produce more exciting results and provide new insights into the bottleneck of stroke treatment.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, China
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
| | - Quanhua Xu
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- *Correspondence: Chi Zhang,
| |
Collapse
|
48
|
He J, Li X, Yu M. Bioinformatics Analysis Identifies Potential Ferroptosis Key Genes in the Pathogenesis of Pulmonary Fibrosis. Front Genet 2022; 12:788417. [PMID: 35069688 PMCID: PMC8770739 DOI: 10.3389/fgene.2021.788417] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
Objective: Ferroptosis has an important role in developing pulmonary fibrosis. The present project aimed to identify and validate the potential ferroptosis-related genes in pulmonary fibrosis by bioinformatics analyses and experiments. Methods: First, the pulmonary fibrosis tissue sequencing data were obtained from Gene Expression Omnibus (GEO) and FerrDb databases. Bioinformatics methods were used to analyze the differentially expressed genes (DEGs) between the normal control group and the pulmonary fibrosis group and extract ferroptosis-related DEGs. Hub genes were screened by enrichment analysis, protein-protein interaction (PPI) analysis, and random forest algorithm. Finally, mouse pulmonary fibrosis model was made for performing an exercise intervention and the hub genes’ expression was verified through qRT-PCR. Results: 13 up-regulated genes and 7 down-regulated genes were identified as ferroptosis-related DEGs by comparing 103 lung tissues with idiopathic pulmonary fibrosis (IPF) and 103 normal lung tissues. PPI results indicated the interactions among these ferroptosis-related genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment and Genome-Ontology (GO) enrichment analyses showed that these ferroptosis-related genes involved in the organic anion transport, response to hypoxia, response to decrease oxygen level, HIF-1 signaling pathway, renal cell carcinoma, and arachidonic acid metabolism signaling pathway. The confirmed genes using PPI analysis and random forest algorithm included CAV1, NOS2, GDF15, HNF4A, and CDKN2A. qRT-PCR of the fibrotic lung tissues from the mouse model showed that the mRNA levels of NOS2 and GDF15 were up-regulated, while CAV1 and CDKN2A were down-regulated. Also, treadmill training led to an increased expression of CAV1 and CDKN2A and a decrease in the expression of NOS2 and GDF15. Conclusion: Using bioinformatics analysis, 20 potential genes were identified to be associated with ferroptosis in pulmonary fibrosis. CAV1, NOS2, GDF15, and CDKN2A were demonstrated to be influencing the development of pulmonary fibrosis by regulating ferroptosis. These findings suggested that, as an aerobic exercise treatment, treadmill training reduced ferroptosis in the pulmonary fibrosis tissues, and thus, reduces inflammation in the lungs. Aerobic exercise training initiate concomitantly with induction of pulmonary fibrosis reduces ferroptosis in lung. These results may develop our knowledge about pulmonary fibrosis and may contribute to its treatment.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoyan Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Mi Yu
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
49
|
Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine. Int J Mol Sci 2022; 23:ijms23031247. [PMID: 35163169 PMCID: PMC8835618 DOI: 10.3390/ijms23031247] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
The antioxidant/pro-oxidant activity of drugs and dietary molecules and their role in the maintenance of redox homeostasis, as well as the implications in health and different diseases, have not yet been fully evaluated. In particular, the redox activity and other interactions of drugs with essential redox metal ions, such as iron and copper, need further investigation. These metal ions are ubiquitous in human nutrition but also widely found in dietary supplements and appear to exert major effects on redox homeostasis in health, but also on many diseases of free radical pathology. In this context, the redox mechanistic insights of mainly three prototype groups of drugs, namely alpha-ketohydroxypyridines (alpha-hydroxypyridones), e.g., deferiprone, anthraquinones, e.g., doxorubicin and thiosemicarbazones, e.g., triapine and their metal complexes were examined; details of the mechanisms of their redox activity were reviewed, with emphasis on the biological implications and potential clinical applications, including anticancer activity. Furthermore, the redox properties of these three classes of chelators were compared to those of the iron chelating drugs and also to vitamin C, with an emphasis on their potential clinical interactions and future clinical application prospects in cancer, neurodegenerative and other diseases.
Collapse
|
50
|
Nie Q, Hu Y, Yu X, Li X, Fang X. Induction and application of ferroptosis in cancer therapy. Cancer Cell Int 2022; 22:12. [PMID: 34996454 PMCID: PMC8742449 DOI: 10.1186/s12935-021-02366-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
At present, more than one cell death pathways have been found, one of which is ferroptosis. Ferroptosis was discovered in 2012 and described as an iron-dependent and lipid peroxidation-driven regulated cell death pathway. In the past few years, ferroptosis has been shown to induce tumor cell death, providing new ideas for tumor treatment. In this article, we summarize the latest advances in ferroptosis-induced tumor therapy at the intersection of tumor biology, molecular biology, redox biology, and materials chemistry. First, we state the characteristics of ferroptosis in cells, then introduce the key molecular mechanism of ferroptosis, and describes the relationship between ferroptosis and oxidative stress signaling pathways. Finally, we focused on several types of ferroptosis inducers discovered by scholars, and the application of ferroptosis in systemic chemotherapy, radiotherapy, immunotherapy and nanomedicine, in the hope that ferroptosis can exert its potential in the treatment of tumors.
Collapse
Affiliation(s)
- Qing Nie
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Hu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiao Yu
- First Affiliated Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiao Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xuedong Fang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|