1
|
Nguyen HVM, Ran Q, Salmon AB, Bumsoo A, Chiao YA, Bhaskaran S, Richardson A. Mouse models used to test the role of reactive oxygen species in aging and age-related chronic diseases. Free Radic Biol Med 2024; 225:617-629. [PMID: 39419456 PMCID: PMC11624111 DOI: 10.1016/j.freeradbiomed.2024.10.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/13/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
With the development of the technology to generate transgenic and knockout mice in the 1990s, investigators had a powerful tool to directly test the impact of altering a specific gene on a biological process or disease. Over the past three decades, investigators have used transgenic and knockout mouse models, which have altered expression of antioxidant genes, to test the role of oxidative stress/damage in aging and age-related diseases. In this comprehensive review, we describe the studies using transgenic and knockout mouse models to test the role of oxidative stress/damage in aging (longevity) and three age-related diseases, e.g., sarcopenia, cardiac aging, and Alzheimer's Disease. While longevity was consistently altered only by one transgenic and one knockout mouse model as predicted by the Oxidative Stress Theory of Aging, the incidence/progression of the three age-related diseases (especially Alzheimer's disease) were robustly impacted when the expression of various antioxidant genes was altered using transgenic and knockout mouse models.
Collapse
Affiliation(s)
- Hoang Van M Nguyen
- Department of Nutritional Sciences, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Qitao Ran
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; VA South Texas Health Care System, San Antonio, TX, USA
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; VA South Texas Health Care System, San Antonio, TX, USA
| | - Ahn Bumsoo
- Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ying Ann Chiao
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences, Oklahoma City, OK, USA; VA Oklahoma Health Care System, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Han QH, Huang SM, Wu SS, Luo SS, Lou ZY, Li H, Yang YM, Zhang Q, Shao JM, Zhu LJ. Mapping the evolution of liver aging research: A bibliometric analysis. World J Gastroenterol 2024; 30:4461-4480. [PMID: 39534417 PMCID: PMC11551677 DOI: 10.3748/wjg.v30.i41.4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND With the increasing of the global aging population, healthy aging and prevention of age-related diseases have become increasingly important. The liver, a vital organ involved in metabolism, detoxification, digestion, and immunity, holds a pivotal role in the aging process of organisms. Although extensive research on liver aging has been carried out, no bibliometric analysis has been conducted to evaluate the scientific progress in this area. AIM To analyze basic knowledge, development trends, and current research frontiers in the field via bibliometric methods. METHODS We conducted bibliometric analyses via a range of analytical tools including Python, the bibliometrix package in R, CiteSpace, and VOSviewer. We retrieved publication data on liver aging research from the Web of Science Core Collection Database. A scientific knowledge map was constructed to display the contributions from different authors, journals, countries, institutions, as well as patterns of co-occurrence keywords and co-cited references. Additionally, gene regulation pathways associated with liver aging were analyzed via the STRING database. RESULTS We identified 4288 articles on liver aging, authored by 24034 contributors from 4092 institutions across 85 countries. Notably, the years 1991 and 2020 presented significant bursts in publication output. The United States led in terms of publications (n = 1008, 25.1%), citations (n = 55205), and international collaborations (multiple country publications = 214). Keywords such as "lipid metabolism", "fatty liver disease", "inflammation", "liver fibrosis" and "target" were prominent, highlighting the current research hotspots. Notably, the top 64 genes, each of which appeared in at least 8 articles, were involved in pathways essential for cell survival and aging, including the phosphatidylinositol 3-kinase/protein kinase B, Forkhead box O and p53 signaling pathways. CONCLUSION This study highlights key areas of liver aging and offers a comprehensive overview of research trends, as well as insights into potential value for collaborative pursuits and clinical implementations.
Collapse
Affiliation(s)
- Qun-Hua Han
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Department of Pathology & Pathophysiology, Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Shun-Mei Huang
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Sha-Sha Wu
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Department of Rehabilitation Medicine, First People’s Hospital of Wenling, Wenling 317500, Zhejiang Province, China
| | - Sui-Sui Luo
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi-Yuan Lou
- Department of Pathology & Pathophysiology, Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Hui Li
- Laboratory of Animal Research Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yun-Mei Yang
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ji-Min Shao
- Department of Pathology & Pathophysiology, Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Li-Jun Zhu
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
3
|
Konstantinou E, Longange E, Kaya G. Mechanisms of Senescence and Anti-Senescence Strategies in the Skin. BIOLOGY 2024; 13:647. [PMID: 39336075 PMCID: PMC11428750 DOI: 10.3390/biology13090647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
The skin is the layer of tissue that covers the largest part of the body in vertebrates, and its main function is to act as a protective barrier against external environmental factors, such as microorganisms, ultraviolet light and mechanical damage. Due to its important function, investigating the factors that lead to skin aging and age-related diseases, as well as understanding the biology of this process, is of high importance. Indeed, it has been reported that several external and internal stressors contribute to skin aging, similar to the aging of other tissues. Moreover, during aging, senescent cells accumulate in the skin and express senescence-associated factors, which act in a paracrine manner on neighboring healthy cells and tissues. In this review, we will present the factors that lead to skin aging and cellular senescence, as well as ways to study senescence in vitro and in vivo. We will further discuss the adverse effects of the accumulation of chronic senescent cells and therapeutic agents and tools to selectively target and eliminate them.
Collapse
Affiliation(s)
- Evangelia Konstantinou
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Eliane Longange
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Gürkan Kaya
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
- Departments of Dermatology and Clinical Pathology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1205 Geneva, Switzerland
| |
Collapse
|
4
|
Alchalidi A, Veri N, Emilda E, Mutiah C, Magfirah M, Henniwati H, Harahap MS, Susilawati E. Michelia Champaca L. Modulates Superoxide Dismutase and Apoptosis-Regulating Proteins in Hippocampus of Middle-Aged Female Rats. J Microsc Ultrastruct 2024; 12:71-74. [PMID: 39006048 PMCID: PMC11245127 DOI: 10.4103/jmau.jmau_4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/03/2022] [Accepted: 03/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background and Objective The aging process in women is still a problem, especially in developing countries that will become developed countries, including Indonesia. Here, we investigated the action of Michelia champaca L. extract administration on antioxidant modulation to inhibit hippocampal apoptosis in middle-aged female rats. Materials and Methods Thirty-two female Wistar rats were divided into four groups (n = 8 each group): the middle-aged rats without any treatment (control group) and three M. champaca L. extract groups (treated at doses of 100, 200, or 300 mg/kg b. w). The superoxide dismutase (SOD) levels and Bax and Bcl-2 expressions in the hippocampal region were analyzed using the technique of enzyme-linked immunosorbent assay. Results The second and third doses of M. champaca L. extract significantly increased the SOD hippocampal levels compared with the control (P < 0.05). This extract also decreased Bax expression (at the second and third doses) and significantly increased Bcl-2 expression (at the highest dose) than that of the control (P < 0.05). Conclusions The ethanol extract of M. champaca L. could modulate SOD and regulate apoptotic-related proteins in middle-aged female rats. Thus, the extract of M. champaca L. can be an alternative to prevent the degeneration of hippocampus due to the aging process.
Collapse
Affiliation(s)
- Alchalidi Alchalidi
- Department of Midwifery, Midwifery Program, Aceh Polytechnic Ministry of Health-Langsa, Langsa City, Aceh, Indonesia
| | - Nora Veri
- Department of Midwifery, Midwifery Program, Aceh Polytechnic Ministry of Health-Langsa, Langsa City, Aceh, Indonesia
| | - Emilda Emilda
- Department of Midwifery, Midwifery Program, Aceh Polytechnic Ministry of Health-Langsa, Langsa City, Aceh, Indonesia
| | - Cut Mutiah
- Department of Midwifery, Midwifery Program, Aceh Polytechnic Ministry of Health-Langsa, Langsa City, Aceh, Indonesia
| | - Magfirah Magfirah
- Department of Midwifery, Midwifery Program, Aceh Polytechnic Ministry of Health-Langsa, Langsa City, Aceh, Indonesia
| | - Henniwati Henniwati
- Department of Midwifery, Midwifery Program, Aceh Polytechnic Ministry of Health-Langsa, Langsa City, Aceh, Indonesia
| | - Meliani Sukmadewi Harahap
- Department of Nursing, Nursing Program, Aceh Polytechnic Ministry of Health-Langsa, Langsa City, Aceh, Indonesia
| | - Elly Susilawati
- Department of Midwifery, Midwifery Program, Riau Polytechnic of Health-Ministry of Health, Riau, Indonesia
| |
Collapse
|
5
|
Yılmaz D, Mathavan N, Wehrle E, Kuhn GA, Müller R. Mouse models of accelerated aging in musculoskeletal research for assessing frailty, sarcopenia, and osteoporosis - A review. Ageing Res Rev 2024; 93:102118. [PMID: 37935249 DOI: 10.1016/j.arr.2023.102118] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Musculoskeletal aging encompasses the decline in bone and muscle function, leading to conditions such as frailty, osteoporosis, and sarcopenia. Unraveling the underlying molecular mechanisms and developing effective treatments are crucial for improving the quality of life for those affected. In this context, accelerated aging models offer valuable insights into these conditions by displaying the hallmarks of human aging. Herein, this review focuses on relevant mouse models of musculoskeletal aging with particular emphasis on frailty, osteoporosis, and sarcopenia. Among the discussed models, PolgA mice in particular exhibit hallmarks of musculoskeletal aging, presenting early-onset frailty, as well as reduced bone and muscle mass that closely resemble human musculoskeletal aging. Ultimately, findings from these models hold promise for advancing interventions targeted at age-related musculoskeletal disorders, effectively addressing the challenges posed by musculoskeletal aging and associated conditions in humans.
Collapse
Affiliation(s)
- Dilara Yılmaz
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; AO Research Institute Davos, Davos Platz, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Cancemi G, Cicero N, Allegra A, Gangemi S. Effect of Diet and Oxidative Stress in the Pathogenesis of Lymphoproliferative Disorders. Antioxidants (Basel) 2023; 12:1674. [PMID: 37759977 PMCID: PMC10525385 DOI: 10.3390/antiox12091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Lymphomas are a heterogeneous group of pathologies that result from clonal proliferation of lymphocytes. They are classified into Hodgkin lymphoma and non-Hodgkin lymphoma; the latter develops as a result of B, T, or NK cells undergoing malignant transformation. It is believed that diet can modulate cellular redox state and that oxidative stress is implicated in lymphomagenesis by acting on several biological mechanisms; in fact, oxidative stress can generate a state of chronic inflammation through the activation of various transcription factors, thereby increasing the production of proinflammatory cytokines and causing overstimulation of B lymphocytes in the production of antibodies and possible alterations in cellular DNA. The purpose of our work is to investigate the results of in vitro and in vivo studies on the possible interaction between lymphomas, oxidative stress, and diet. A variety of dietary regimens and substances introduced with the diet that may have antioxidant and antiproliferative effects were assessed. The possibility of using nutraceuticals as novel anticancer agents is discussed; although the use of natural substances in lymphoma therapy is an interesting field of study, further studies are needed to define the efficacy of different nutraceuticals before introducing them into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
7
|
Cognitive Healthy Aging in Mice: Boosting Memory by an Ergothioneine-Rich Hericium erinaceus Primordium Extract. BIOLOGY 2023; 12:biology12020196. [PMID: 36829475 PMCID: PMC9953177 DOI: 10.3390/biology12020196] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Brain aging is a crucial risk factor for several neurodegenerative disorders and dementia. The most affected cognitive function is memory, worsening early during aging. Inflammation and oxidative stress are known to have a role in pathogenesis of cognitive impairments, and a link exists between aging/frailty and immunosenescence/inflammaging. Based on anti-aging properties, medicinal mushrooms represent a source to develop medicines and functional foods. In particular, Hericium erinaceus (He) displays several actions ranging from boosting the immune system to fighting senescence, due to its active ingredients/metabolites. Among these, Ergothioneine (ERGO) is known as the longevity vitamin. Currently, we demonstrated the efficacy of an ERGO-rich He primordium extract (He2) in preventing cognitive decline in a murine model of aging. We focused on recognition memory deterioration during aging, monitored through spontaneous behavioral tests assessing both memory components and frailty index. A parallel significant decrease in key markers of inflammation and oxidative stress, i.e., IL6, TGFβ1, GFAP, Nrf2, SOD1, COX2, NOS2, was revealed in the hippocampus by immunohistochemistry, accompanied by an enhancement of NMDAR1and mGluR2, crucially involved in glutamatergic neurotransmission. In summary, we disclosed a selective, preventive and neuroprotective effect of He2 on aged hippocampus, both on recognition memory as well on inflammation/oxidative stress/glutamate receptors expression.
Collapse
|
8
|
Thadathil N, Selvarani R, Mohammed S, Nicklas EH, Tran AL, Kamal M, Luo W, Brown JL, Lawrence MM, Borowik AK, Miller BF, Van Remmen H, Richardson A, Deepa SS. Senolytic treatment reduces cell senescence and necroptosis in Sod1 knockout mice that is associated with reduced inflammation and hepatocellular carcinoma. Aging Cell 2022; 21:e13676. [PMID: 35869934 PMCID: PMC9381894 DOI: 10.1111/acel.13676] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 02/06/2023] Open
Abstract
The goal of this study was to test the role cellular senescence plays in the increased inflammation, chronic liver disease, and hepatocellular carcinoma seen in mice null for Cu/Zn-Superoxide dismutase (Sod1KO). To inhibit senescence, wildtype (WT) and Sod1KO mice were given the senolytics, dasatinib, and quercetin (D + Q) at 6 months of age when the Sod1KO mice begin exhibiting signs of accelerated aging. Seven months of D + Q treatment reduced the expression of p16 in the livers of Sod1KO mice to WT levels and the expression of several senescence-associated secretory phenotype factors (IL-6, IL-1β, CXCL-1, and GDF-15). D + Q treatment also reduced markers of inflammation in livers of the Sod1KO mice, for example, cytokines, chemokines, macrophage levels, and Kupffer cell clusters. D + Q treatment had no effect on various markers of liver fibrosis in the Sod1KO mice but reduced the expression of genes involved in liver cancer and dramatically reduced the incidence of hepatocellular carcinoma. Surprisingly, D + Q also reduced markers of necroptosis (phosphorylated and oligomerized MLKL) in the Sod1KO mice to WT levels. We also found that inhibiting necroptosis in the Sod1KO mice with necrostatin-1s reduced the markers of cellular senescence (p16, p21, and p53). Our study suggests that an interaction occurs between cellular senescence and necroptosis in the liver of Sod1KO mice. We propose that these two cell fates interact through a positive feedback loop resulting in a cycle amplifying both cellular senescence and necroptosis leading to inflammaging and age-associated pathology in the Sod1KO mice.
Collapse
Affiliation(s)
- Nidheesh Thadathil
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Ramasamy Selvarani
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Sabira Mohammed
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Evan H. Nicklas
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Albert L. Tran
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Maria Kamal
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Wenyi Luo
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Jacob L. Brown
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
| | - Marcus M. Lawrence
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Department of Kinesiology and Outdoor RecreationSouthern Utah UniversityCedar CityUtahUSA
| | - Agnieszka K. Borowik
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Benjamin F. Miller
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Holly Van Remmen
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Arlan Richardson
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Sathyaseelan S. Deepa
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| |
Collapse
|
9
|
Li M, Yuan Y, Han X, Liu X, Zhang W, Hao J. Antioxidant Mitoquinone Alleviates Chronic Pancreatitis via Anti-Fibrotic and Antioxidant Effects. J Inflamm Res 2022; 15:4409-4420. [PMID: 35945990 PMCID: PMC9357395 DOI: 10.2147/jir.s357394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/04/2022] [Indexed: 12/06/2022] Open
Abstract
Background Chronic pancreatitis (CP) is a long-term inflammatory disease of the pancreas that can be caused by various pathogenic factors. Oxidative stress (OS), which is associated with several pancreatic diseases, can induce pancreatic stellate cell (PSC) activation, leading to pancreatic fibrosis. Given the inefficacy of existing treatments for CP, in this study, our objective was to evaluate the therapeutic effect of the antioxidant, mitoquinone (MitoQ). Methods First, in vivo, we established a CP mouse model via the repeated injection of cerulein. Mice in the MitoQ group simultaneously received MitoQ daily. After 4 weeks of cerulein injection, pancreatic tissues from mice were evaluated by morphological changes and the expression of fibrosis markers. Further, OS in the collected pancreatic tissue samples was evaluated by determining the level of malondialdehyde (MDA) as well as the expression levels and activities of antioxidants. Furthermore, in vitro, the effect of MitoQ on human PSCs (hPSCs) was evaluated based on PSC activation markers and fibrotic phenotypes, and OS in these treated hPSCs was evaluated by measuring reactive oxygen species (ROS), MDA, and antioxidant levels. Results In vivo, MitoQ alleviated pancreatic fibrosis and inhibited OS in the cerulein-induced murine CP model. In vitro, it inhibited PSC activation as well as the subsequent development of the profibrogenic phenotypes by balancing out the levels of free radicals and the intracellular antioxidant system. Conclusion MitoQ is a potential candidate for CP treatment.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yue Yuan
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xue Han
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China
- Weizhen Zhang, Department of Physiology and Pathophysiology, Peking University Health Science Center, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, Email
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Jianyu Hao, Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Road of Workers Stadium, Chaoyang District, Beijing, 100020, Email
| |
Collapse
|
10
|
Heinze-Milne SD, Banga S, Howlett SE. Frailty and cytokines in preclinical models: Comparisons with humans. Mech Ageing Dev 2022; 206:111706. [PMID: 35835224 DOI: 10.1016/j.mad.2022.111706] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
Chronic low-grade elevations of blood-borne cytokines/chemokines in older age tend to associate with frailty in humans. This persistent inflammation is often called "inflammageing" and likely contributes to frailty progression. Preclinical models such as ageing and/or genetically modified mice offer a unique opportunity to mechanistically study how these inflammatory mediators affect frailty. In this review, we summarize and contrast evidence relating cytokines/chemokines to frailty in humans and in mouse models of frailty. In humans and mice, higher levels of the pro-inflammatory cytokine interleukin-6 regularly increased in proportion to the degree of frailty. Evidence linking other cytokines/chemokines to frailty in humans and mice is less certain. The chemokines CXCL-10 and monocyte chemoattractant protein-1 related to frailty across both species, but evidence is limited and inconsistent. Several other cytokines/chemokines, including tumour necrosis factor-α relate to frailty in humans or in mice, but evidence to date is species- and tissue-dependent. It is important for future studies to validate common mechanistic inflammatory biomarkers of frailty between humans and mice. Achieving this goal will accelerate the search for drugs to treat frailty.
Collapse
Affiliation(s)
| | - Shubham Banga
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
11
|
Zhang JQ, Qiao Y, Li D, Hao S, Zhang F, Zhang X, Li A, Qin XM. Aqueous extract from Astragalus membranaceus can improve the function degradation and delay aging on Drosophila melanogaster through antioxidant mechanism. Rejuvenation Res 2022; 25:181-190. [PMID: 35726384 DOI: 10.1089/rej.2021.0081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Astragali radix is the dry root of the leguminous plants Astragalus membranaceus (Fisch.) Bge. Var. mongholicus (Bge.) Hsiao and Astragalus membranaceus (Fisch.) Bge. Astragali radix is mostly used clinically as a decoction. A number of pharmacological studies shows that Astragalus extract can increase telomerase activity, and has anti-oxidation, anti-inflammatory, immune regulation, anti-cancer, lowering blood lipid, lowering blood sugar and other effects. However, the anti-aging mechanism of aqueous extract from Astragali Radix (ARE) is still unclear. In this study, we evaluated the anti-aging effect of ARE on Drosophila melanogaster (D. melanogaster) and investigated the underlying mechanism. The results of lifespan assay showed that 1.25 mg/mL of ARE can significantly prolong the lifespan of D. melanogaster in a natural aging model, and protect against H2O2 and paraquat. Meanwhile, ARE can improve flies climbing ability and food intake. Metabolomics and the glutamate content assay suggested that ARE prevented an age-dependent increase in glutamate levels in D. melanogaster. Furthermore, ARE showed a dose-dependent effect on the scavenging ability of DPPH in vitro. Superoxide dismutase and catalase activities in the aging group also increased after the intervention of ARE. The data and the findings described here support the notion that ARE may play a preventive role in aging by improving the climbing ability, eliminating harmful free radicals accumulated in D. melanogaster and triggering antioxidant responses.
Collapse
Affiliation(s)
- Jian-Qin Zhang
- Shanxi University, 12441, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province,the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Taiyuan, Shanxi , China;
| | - Yuqi Qiao
- Shanxi University, 12441, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province,the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Taiyuan, Shanxi , China;
| | - Daqi Li
- Shanxi Agricultural University, 74600, College of Plant Protection, Taiyuan, Shanxi , China;
| | - Shenghui Hao
- Shanxi University, 12441, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province,the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Taiyuan, Shanxi , China;
| | - Fusheng Zhang
- Shanxi University, 12441, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province,the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Taiyuan, Shanxi , China;
| | - Xubo Zhang
- Shanxi University, 12441, Institute of Applied Biology, Taiyuan, Shanxi , China;
| | - Aiping Li
- Shanxi University, 12441, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province,the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Taiyuan, Shanxi , China;
| | - Xue-Mei Qin
- Shanxi University, 12441, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province,the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Taiyuan, Shanxi , China;
| |
Collapse
|
12
|
Su Y, Claflin DR, Huang M, Davis CS, Macpherson PCD, Richardson A, Van Remmen H, Brooks SV. Deletion of Neuronal CuZnSOD Accelerates Age-Associated Muscle Mitochondria and Calcium Handling Dysfunction That Is Independent of Denervation and Precedes Sarcopenia. Int J Mol Sci 2021; 22:ijms221910735. [PMID: 34639076 PMCID: PMC8509582 DOI: 10.3390/ijms221910735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle suffers atrophy and weakness with aging. Denervation, oxidative stress, and mitochondrial dysfunction are all proposed as contributors to age-associated muscle loss, but connections between these factors have not been established. We examined contractility, mitochondrial function, and intracellular calcium transients (ICTs) in muscles of mice throughout the life span to define their sequential relationships. We performed these same measures and analyzed neuromuscular junction (NMJ) morphology in mice with postnatal deletion of neuronal Sod1 (i-mn-Sod1-/- mice), previously shown to display accelerated age-associated muscle loss and exacerbation of denervation in old age, to test relationships between neuronal redox homeostasis, NMJ degeneration and mitochondrial function. In control mice, the amount and rate of the decrease in mitochondrial NADH during contraction was greater in middle than young age although force was not reduced, suggesting decreased efficiency of NADH utilization prior to the onset of weakness. Declines in both the peak of the ICT and force were observed in old age. Muscles of i-mn-Sod1-/- mice showed degeneration of mitochondrial and calcium handling functions in middle-age and a decline in force generation to a level not different from the old control mice, with maintenance of NMJ morphology. Together, the findings support the conclusion that muscle mitochondrial function decreases during aging and in response to altered neuronal redox status prior to NMJ deterioration or loss of mass and force suggesting mitochondrial defects contribute to sarcopenia independent of denervation.
Collapse
Affiliation(s)
- Yu Su
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dennis R Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meixiang Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Carol S Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter C D Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arlan Richardson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- VA Medical Center, Oklahoma City, OK 73104, USA
| | - Holly Van Remmen
- VA Medical Center, Oklahoma City, OK 73104, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Physiology, Health Science Center, Oklahoma University, Oklahoma City, OK 73104, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Marquez-Exposito L, Tejedor-Santamaria L, Santos-Sanchez L, Valentijn FA, Cantero-Navarro E, Rayego-Mateos S, Rodrigues-Diez RR, Tejera-Muñoz A, Marchant V, Sanz AB, Ortiz A, Goldschmeding R, Ruiz-Ortega M. Acute Kidney Injury is Aggravated in Aged Mice by the Exacerbation of Proinflammatory Processes. Front Pharmacol 2021; 12:662020. [PMID: 34239439 PMCID: PMC8258347 DOI: 10.3389/fphar.2021.662020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is more frequent in elderly patients. Mechanisms contributing to AKI (tubular cell death, inflammatory cell infiltration, impaired mitochondrial function, and prolonged cell-cycle arrest) have been linked to cellular senescence, a process implicated in regeneration failure and progression to fibrosis. However, the molecular and pathological basis of the age-related increase in AKI incidence is not completely understood. To explore these mechanisms, experimental AKI was induced by folic acid (FA) administration in young (3-months-old) and old (1-year-old) mice, and kidneys were evaluated in the early phase of AKI, at 48 h. Tubular damage score, KIM-1 expression, the recruitment of infiltrating immune cells (mainly neutrophils and macrophages) and proinflammatory gene expression were higher in AKI kidneys of old than of young mice. Tubular cell death in FA-AKI involves several pathways, such as regulated necrosis and apoptosis. Ferroptosis and necroptosis cell-death pathways were upregulated in old AKI kidneys. In contrast, caspase-3 activation was only found in young but not in old mice. Moreover, the antiapoptotic factor BCL-xL was significantly overexpressed in old, injured kidneys, suggesting an age-related apoptosis suppression. AKI kidneys displayed evidence of cellular senescence, such as increased levels of cyclin dependent kinase inhibitors p16ink4a and p21cip1, and of the DNA damage response marker γH2AX. Furthermore, p21cip1 mRNA expression and nuclear staining for p21cip1 and γH2AX were higher in old than in young FA-AKI mice, as well as the expression of senescence-associated secretory phenotype (SASP) components (Il-6, Tgfb1, Ctgf, and Serpine1). Interestingly, some infiltrating immune cells were p21 or γH2AX positive, suggesting that molecular senescence in the immune cells (“immunosenescence”) are involved in the increased severity of AKI in old mice. In contrast, expression of renal protective factors was dramatically downregulated in old AKI mice, including the antiaging factor Klotho and the mitochondrial biogenesis driver PGC-1α. In conclusion, aging resulted in more severe AKI after the exposure to toxic compounds. This increased toxicity may be related to magnification of proinflammatory-related pathways in older mice, including a switch to a proinflammatory cell death (necroptosis) instead of apoptosis, and overactivation of cellular senescence of resident renal cells and infiltrating inflammatory cells.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Floris A Valentijn
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elena Cantero-Navarro
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Raul R Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| |
Collapse
|
14
|
Mohammed S, Nicklas EH, Thadathil N, Selvarani R, Royce GH, Kinter M, Richardson A, Deepa SS. Role of necroptosis in chronic hepatic inflammation and fibrosis in a mouse model of increased oxidative stress. Free Radic Biol Med 2021; 164:315-328. [PMID: 33429022 PMCID: PMC8845573 DOI: 10.1016/j.freeradbiomed.2020.12.449] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Mice deficient in the antioxidant enzyme Cu/Zn-superoxide dismutase (Sod1-/- or Sod1KO mice) have increased oxidative stress, show accelerated aging and develop spontaneous hepatocellular carcinoma (HCC) with age. Similar to humans, HCC development in Sod1KO mice progresses from non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH) with fibrosis, which eventually progresses to HCC. Oxidative stress plays a role in NAFLD to NASH progression, and liver inflammation is the main mechanism that drives the disease progression from NASH to fibrosis. Because necroptosis is a major source of inflammation, we tested the hypothesis that increased necroptosis in the liver plays a role in increased inflammation and fibrosis in Sod1KO mice. Phosphorylation of MLKL (P-MLKL), a well-accepted marker of necroptosis, and expression of MLKL protein were significantly increased in the livers of Sod1KO mice compared to wild type (WT) mice indicating increased necroptosis. Similarly, phosphorylation of RIPK3 and RIPK3 protein levels were also significantly increased. Markers of pro-inflammatory M1 macrophages, NLRP3 inflammasome, and transcript levels of pro-inflammatory cytokines and chemokines, e.g., TNFα, IL-6, IL-1β, and Ccl2 that are associated with human NASH, were significantly increased. Expression of antioxidant enzymes and heat shock proteins, and markers of fibrosis and oncogenic transcription factor STAT3 were also upregulated and autophagy was downregulated in the livers of Sod1KO mice. Short term treatment of Sod1KO mice with necrostatin-1s (Nec-1s), a necroptosis inhibitor, reversed these conditions. Our data show for the first time that necroptosis-mediated inflammation contributes to fibrosis in a mouse model of increased oxidative stress and accelerated aging, that also exhibits progressive HCC development.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, USA
| | - Arlan Richardson
- Stephenson Cancer Center, USA; Department of Biochemistry and Molecular Biology, USA; Oklahoma Center for Geroscience & Brain Aging, University of Oklahoma Health Sciences Center, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Sathyaseelan S Deepa
- Stephenson Cancer Center, USA; Department of Biochemistry and Molecular Biology, USA; Oklahoma Center for Geroscience & Brain Aging, University of Oklahoma Health Sciences Center, USA.
| |
Collapse
|
15
|
Royce GH, Brown-Borg HM, Deepa SS. The potential role of necroptosis in inflammaging and aging. GeroScience 2019; 41:795-811. [PMID: 31721033 PMCID: PMC6925091 DOI: 10.1007/s11357-019-00131-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
An age-associated increase in chronic, low-grade sterile inflammation termed "inflammaging" is a characteristic feature of mammalian aging that shows a strong association with occurrence of various age-associated diseases. However, the mechanism(s) responsible for inflammaging and its causal role in aging and age-related diseases are not well understood. Age-associated accumulation of damage-associated molecular patterns (DAMPs) is an important trigger in inflammation and has been proposed as a potential driver of inflammaging. DAMPs can initiate an inflammatory response by binding to the cell surface receptors on innate immune cells. Programmed necrosis, termed necroptosis, is one of the pathways that can release DAMPs, and cell death due to necroptosis is known to induce inflammation. Necroptosis-mediated inflammation plays an important role in a variety of age-related diseases such as Alzheimer's disease, Parkinson's disease, and atherosclerosis. Recently, it was reported that markers of necroptosis increase with age in mice and that dietary restriction, which retards aging and increases lifespan, reduces necroptosis and inflammation. Genetic manipulations that increase lifespan (Ames Dwarf mice) and reduce lifespan (Sod1-/- mice) are associated with reduced and increased necroptosis and inflammation, respectively. While necroptosis evolved to protect cells/tissues from invading pathogens, e.g., viruses, we propose that the age-related increase in oxidative stress, mTOR signaling, and cell senescence results in cells/tissues in old animals being more prone to undergo necroptosis thereby releasing DAMPs, which contribute to the chronic inflammation observed with age. Approach to decrease DAMPs release by reducing/blocking necroptosis is a potentially new approach to reduce inflammaging, retard aging, and improve healthspan.
Collapse
Affiliation(s)
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Sathyaseelan S Deepa
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1368A, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
16
|
Logan S, Royce GH, Owen D, Farley J, Ranjo-Bishop M, Sonntag WE, Deepa SS. Accelerated decline in cognition in a mouse model of increased oxidative stress. GeroScience 2019; 41:591-607. [PMID: 31641924 DOI: 10.1007/s11357-019-00105-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/13/2019] [Indexed: 02/08/2023] Open
Abstract
Mice deficient in the antioxidant enzyme Cu/Zn-superoxide dismutase (Sod1KO mice) have a significant reduction in lifespan, exhibit many phenotypes of accelerated aging, and have high levels of oxidative stress in various tissues. Age-associated cognitive decline is a hallmark of aging and the increase in oxidative stress/damage with age is one of the mechanisms proposed for cognitive decline with age. Therefore, the goal of this study was to determine if Sod1KO mice exhibit an accelerated loss in cognitive function similar to that observed in aged animals. Cognition was assessed in Sod1KO and wild type (WT) mice using an automated home-cage testing apparatus (Noldus PhenoTyper) that included an initial discrimination and reversal task. Comparison of the total distance moved by the mice during light and dark phases of the study demonstrated that the Sod1KO mice do not show a deficit in movement. Assessment of cognitive function showed no significant difference between Sod1KO and WT mice during the initial discrimination phase of learning. However, during the reversal task, Sod1KO mice showed a significantly greater number of incorrect entries compared to WT mice indicating a decline in cognition similar to that observed in aged animals. Markers of oxidative stress (4-Hydroxynonenal, 4-HNE) and neuroinflammation [proinflammatory cytokines (IL6 and IL-1β) and neuroinflammatory markers (CD68, TLR4, and MCP1)] were significantly elevated in the hippocampus of male and female Sod1KO compared to WT mice. This study provides important evidence that increases in oxidative stress alone are sufficient to induce neuroinflammation and cognitive dysfunction that parallels the memory deficits seen in advanced aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sreemathi Logan
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gordon H Royce
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA
| | - Daniel Owen
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, BMSB-860, Oklahoma City, OK, 73104, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA
| | - Julie Farley
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, BMSB-860, Oklahoma City, OK, 73104, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA
| | - Michelle Ranjo-Bishop
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA
| | - William E Sonntag
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, BMSB-860, Oklahoma City, OK, 73104, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA
| | - Sathyaseelan S Deepa
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA. .,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1372, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
17
|
Yousefzadeh MJ, Melos KI, Angelini L, Burd CE, Robbins PD, Niedernhofer LJ. Mouse Models of Accelerated Cellular Senescence. Methods Mol Biol 2019; 1896:203-230. [PMID: 30474850 DOI: 10.1007/978-1-4939-8931-7_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Senescent cells accumulate in multiple tissues as virtually all vertebrate organisms age. Senescence is a highly conserved response to many forms of cellular stress intended to block the propagation of damaged cells. Senescent cells have been demonstrated to play a causal role in aging via their senescence-associated secretory phenotype and by impeding tissue regeneration. Depletion of senescent cells either through genetic or pharmacologic methods has been demonstrated to extend murine lifespan and delay the onset of age-related diseases. Measuring the burden and location of senescent cells in vivo remains challenging, as there is no marker unique to senescent cells. Here, we describe multiple methods to detect the presence and extent of cellular senescence in preclinical models, with a special emphasis on murine models of accelerated aging that exhibit a more rapid onset of cellular senescence.
Collapse
Affiliation(s)
- Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Kendra I Melos
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Luise Angelini
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Christin E Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Qaisar R, Bhaskaran S, Premkumar P, Ranjit R, Natarajan KS, Ahn B, Riddle K, Claflin DR, Richardson A, Brooks SV, Van Remmen H. Oxidative stress-induced dysregulation of excitation-contraction coupling contributes to muscle weakness. J Cachexia Sarcopenia Muscle 2018; 9:1003-1017. [PMID: 30073804 PMCID: PMC6204588 DOI: 10.1002/jcsm.12339] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We have previously shown that the deletion of the superoxide scavenger, CuZn superoxide dismutase, in mice (Sod1-/- mice) results in increased oxidative stress and an accelerated loss of skeletal muscle mass and force that mirror the changes seen in old control mice. The goal of this study is to define the effect of oxidative stress and ageing on muscle weakness and the Excitation Contraction (EC) coupling machinery in age-matched adult (8-10 months) wild-type (WT) and Sod1-/- mice in comparison with old (25-28 months) WT mice. METHODS In vitro contractile assays were used to measure muscle contractile parameters. The activity of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump was measured using an NADH-linked enzyme assay. Immunoblotting and immunofluorescence techniques were used to measure protein expression, and real-time reverse transcription PCR was used to measure gene expression. RESULTS The specific force generated by the extensor digitorum longus muscle was reduced in the Sod1-/- and old WT mice compared with young WT mice along with significant prolongation of time to peak force, increased half relaxation time, and disruption of intracellular calcium handling. The maximal activity of the SERCA calcium uptake pump was significantly reduced in gastrocnemius muscle from both old WT (≈14%) and adult Sod1-/- (≈33%) mice compared with young WT mice along with increased expression of sarcolipin, a known inhibitor of SERCA activity. Protein levels of the voltage sensor and calcium uptake channel proteins dihydropyridine receptor α1 and SERCA2 were significantly elevated (≈45% and ≈57%, respectively), while the ratio of calstabin, a channel stabilizing protein, to ryanodine receptor was significantly reduced (≈21%) in Sod1-/- mice compared with young WT mice. The changes in calcium handling were accompanied by substantially elevated levels of global protein carbonylation and lipid peroxidation. CONCLUSIONS Our data suggest that the muscle weakness in Sod1-/- and old WT mice is in part driven by reactive oxygen species-mediated EC uncoupling and supports a role for reduced SERCA pump activity in compromised muscle function. The novel quantitative mechanistic data provided here can lead to potential therapeutic interventions of SERCA dysfunction for sarcopenia and muscle diseases.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Pavithra Premkumar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kaitlyn Riddle
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Dennis R Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Arlan Richardson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA.,Department of Geriatric Medicine and the Reynolds Oklahoma Center of Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Qaisar R, Bhaskaran S, Ranjit R, Sataranatarajan K, Premkumar P, Huseman K, Van Remmen H. Restoration of SERCA ATPase prevents oxidative stress-related muscle atrophy and weakness. Redox Biol 2018; 20:68-74. [PMID: 30296699 PMCID: PMC6174848 DOI: 10.1016/j.redox.2018.09.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023] Open
Abstract
Molecular targets to reduce muscle weakness and atrophy due to oxidative stress have been elusive. Here we show that activation of Sarcoplasmic Reticulum (SR) Ca2+ ATPase (SERCA) with CDN1163, a novel small molecule allosteric SERCA activator, ameliorates the muscle impairment in the CuZnSOD deficient (Sod1-/-) mouse model of oxidative stress. Sod1-/- mice are characterized by reduced SERCA activity, muscle weakness and atrophy, increased oxidative stress and mitochondrial dysfunction. Seven weeks of CDN1163 treatment completely restored SERCA activity and reversed the 23% reduction in gastrocnemius mass and 22% reduction in specific force in untreated Sod1-/- versus wild type mice. These changes were accompanied by restoration of autophagy protein markers to the levels found in wild-type mice. CDN1163 also reversed the increase in mitochondrial ROS generation and oxidative damage in muscle tissue from Sod1-/- mice. Taken together our findings suggest that the pharmacological restoration of SERCA is a promising therapeutic approach to counter oxidative stress-associated muscle impairment.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | - Pavithra Premkumar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Kendra Huseman
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Oklahoma City VA Medical Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
20
|
Tsang CK, Chen M, Cheng X, Qi Y, Chen Y, Das I, Li X, Vallat B, Fu LW, Qian CN, Wang HY, White E, Burley SK, Zheng XFS. SOD1 Phosphorylation by mTORC1 Couples Nutrient Sensing and Redox Regulation. Mol Cell 2018; 70:502-515.e8. [PMID: 29727620 PMCID: PMC6108545 DOI: 10.1016/j.molcel.2018.03.029] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/12/2017] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Nutrients are not only organic compounds fueling bioenergetics and biosynthesis, but also key chemical signals controlling growth and metabolism. Nutrients enormously impact the production of reactive oxygen species (ROS), which play essential roles in normal physiology and diseases. How nutrient signaling is integrated with redox regulation is an interesting, but not fully understood, question. Herein, we report that superoxide dismutase 1 (SOD1) is a conserved component of the mechanistic target of rapamycin complex 1 (mTORC1) nutrient signaling. mTORC1 regulates SOD1 activity through reversible phosphorylation at S39 in yeast and T40 in humans in response to nutrients, which moderates ROS level and prevents oxidative DNA damage. We further show that SOD1 activation enhances cancer cell survival and tumor formation in the ischemic tumor microenvironment and protects against the chemotherapeutic agent cisplatin. Collectively, these findings identify a conserved mechanism by which eukaryotes dynamically regulate redox homeostasis in response to changing nutrient conditions.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Miao Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Xin Cheng
- Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Yanmei Qi
- Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Yin Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Ishani Das
- Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Xiaoxing Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Brinda Vallat
- Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, Piscataway, NJ 08854 USA
| | - Li-Wu Fu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Hui-Yun Wang
- Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, Piscataway, NJ 08854 USA
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
21
|
Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 2018; 217:1915-1928. [PMID: 29669742 PMCID: PMC5987716 DOI: 10.1083/jcb.201708007] [Citation(s) in RCA: 1165] [Impact Index Per Article: 166.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Wang et al. review the dual role of superoxide dismutases in controlling reactive oxygen species (ROS) damage and regulating ROS signaling across model systems as well as their involvement in human diseases. Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | - Robyn Branicky
- Department of Biology, McGill University, Montreal, Canada
| | - Alycia Noë
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
22
|
Santos AL, Sinha S, Lindner AB. The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1941285. [PMID: 29743972 PMCID: PMC5878877 DOI: 10.1155/2018/1941285] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Aging is associated with the accumulation of cellular damage over the course of a lifetime. This process is promoted in large part by reactive oxygen species (ROS) generated via cellular metabolic and respiratory pathways. Pharmacological, nonpharmacological, and genetic interventions have been used to target cellular and mitochondrial networks in an effort to decipher aging and age-related disorders. While ROS historically have been viewed as a detrimental byproduct of normal metabolism and associated with several pathologies, recent research has revealed a more complex and beneficial role of ROS in regulating metabolism, development, and lifespan. In this review, we summarize the recent advances in ROS research, focusing on both the beneficial and harmful roles of ROS, many of which are conserved across species from bacteria to humans, in various aspects of cellular physiology. These studies provide a new context for our understanding of the parts ROS play in health and disease. Moreover, we highlight the utility of bacterial models to elucidate the molecular pathways by which ROS mediate aging and aging-related diseases.
Collapse
Affiliation(s)
- Ana L. Santos
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sanchari Sinha
- Defence Institute of Physiology and Allied Sciences, DRDO, New Delhi, India
| | - Ariel B. Lindner
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
23
|
The Geropathology Grading Platform demonstrates that mice null for Cu/Zn-superoxide dismutase show accelerated biological aging. GeroScience 2018; 40:97-103. [PMID: 29478190 PMCID: PMC5964058 DOI: 10.1007/s11357-018-0008-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/25/2018] [Indexed: 01/26/2023] Open
Abstract
The Geropathology Grading Platform (GGP) that is being developed by the Geropathology Research Network provides a grading system that allows investigators to assess biological aging in mice by measuring the pathological status of a wide range of tissues in a standardized scoring system. The GGP is a grading system that generates a numerical score for the total lesions in each tissue, which when averaged over the mice in the cohort provides a composite lesion score (CLS) for each tissue and mouse. In this study, we tested ability of the GGP to predict accelerated aging in mice null for Cu/Zn-superoxide dismutase (Sod1KO mice), which have been shown to have reduced lifespan and healthspan. Using the GGP, we evaluated the pathological status of 11 tissues from male and female wild-type (WT) and Sod1KO mice at 9 to 10 months of age. The whole animal CLS was 2- to 3.5-fold higher for both male and female Sod1KO mice compared to WT mice. The tissues most affected in the Sod1KO mice were the liver, lung, and kidney. These data demonstrate that the GGP is able to predict the accelerated aging phenotype observed in the Sod1KO mice and correlates with the changes in healthspan that have been reported for Sod1KO mice. Thus, the GGP is a new paradigm for evaluating the effect of an intervention on the pathological status of an animal as well as the healthspan of the mice.
Collapse
|
24
|
Deepa SS, Bhaskaran S, Espinoza S, Brooks SV, McArdle A, Jackson MJ, Van Remmen H, Richardson A. A new mouse model of frailty: the Cu/Zn superoxide dismutase knockout mouse. GeroScience 2017; 39:187-198. [PMID: 28409332 PMCID: PMC5411367 DOI: 10.1007/s11357-017-9975-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 11/29/2022] Open
Abstract
Frailty is a geriatric syndrome that is an important public health problem for the older adults living in the USA. Although several methods have been developed to measure frailty in humans, we have very little understanding of its etiology. Because the molecular basis of frailty is poorly understood, mouse models would be of great value in determining which pathways contribute to the development of frailty. More importantly, mouse models would be critical in testing potential therapies to treat and possibly prevent frailty. In this article, we present data showing that Sod1KO mice, which lack the antioxidant enzyme, Cu/Zn superoxide dismutase, are an excellent model of frailty, and we compare the Sod1KO mice to the only other mouse model of frailty, mice with the deletion of the IL-10 gene. Sod1KO mice exhibit four characteristics that have been used to define human frailty: weight loss, weakness, low physical activity, and exhaustion. In addition, Sod1KO mice show increased inflammation and sarcopenia, which are strongly associated with human frailty. The Sod1KO mice also show alterations in pathways that have been proposed to play a role in the etiology of frailty: oxidative stress, mitochondrial dysfunction, and cell senescence. Using Sod1KO mice, we show that dietary restriction can delay/prevent characteristics of frailty in mice.
Collapse
Affiliation(s)
- Sathyaseelan S Deepa
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA.
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sara Espinoza
- Barshop Institute for Longevity & Aging Studies, Medicine, Division of Geriatrics, Gerontology & Palliative Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Geriatrics Research, Education & Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
| | - Anne McArdle
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Malcolm J Jackson
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
25
|
Zhang Y, Unnikrishnan A, Deepa SS, Liu Y, Li Y, Ikeno Y, Sosnowska D, Van Remmen H, Richardson A. A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1 -/- mice is correlated to increased cellular senescence. Redox Biol 2016; 11:30-37. [PMID: 27846439 PMCID: PMC5109248 DOI: 10.1016/j.redox.2016.10.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 12/11/2022] Open
Abstract
In contrast to other mouse models that are deficient in antioxidant enzymes, mice null for Cu/Zn-superoxide dismutase (Sod1−/− mice) show a major decrease in lifespan and several accelerated aging phenotypes. The goal of this study was to determine if cell senescence might be a contributing factor in the accelerated aging phenotype observed in the Sod1−/− mice. We focused on kidney because it is a tissue that has been shown to a significant increase in senescent cells with age. The Sod1−/− mice are characterized by high levels of DNA oxidation in the kidney, which is attenuated by DR. The kidney of the Sod1−/− mice also have higher levels of double strand DNA breaks than wild type (WT) mice. Expression (mRNA and protein) of p16 and p21, two of the markers of cellular senescence, which increased with age, are increased significantly in the kidney of Sod1−/− mice as is β-gal staining cells. In addition, the senescence associated secretory phenotype was also increased significantly in the kidney of Sod1−/− mice compared to WT mice as measured by the expression of transcripts for IL-6 and IL-1β. Dietary restriction of the Sod1−/− mice attenuated the increase in DNA damage, cellular senescence, and expression of IL-6 and IL-1β. Interestingly, the Sod1−/− mice showed higher levels of circulating cytokines than WT mice, suggesting that the accelerated aging phenotype shown by the Sod1−/− mice could result from increased inflammation arising from an accelerated accumulation of senescent cells. Based on our data with Sod1−/− mice, we propose that various bouts of increased oxidative stress over the lifespan of an animal leads to the accumulation of senescent cells. The accumulation of senescent cells in turn leads to increased inflammation, which plays a major role in the loss of function and increased pathology that are hallmark features of aging. Sod1−/− mice have high levels of oxidative damage and DNA double strand breaks. Sod1−/− mice show increased cellular senescence, e.g., p16, p21 and β-gal+ cells. Sod1−/− mice showed an increase in the senescence associated secretory phenotype. Dietary restriction attenuated cellular senescence and inflammation in Sod1−/− mice.
Collapse
Affiliation(s)
- Yiqiang Zhang
- Greehy Children's Cancer Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Archana Unnikrishnan
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Sathyaseelan S Deepa
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Yuhong Liu
- Departments of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yan Li
- Departments of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yuji Ikeno
- Departments of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Geriatric Research, Education and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Danuta Sosnowska
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
26
|
Sataranatarajan K, Ikeno Y, Bokov A, Feliers D, Yalamanchili H, Lee HJ, Mariappan MM, Tabatabai-Mir H, Diaz V, Prasad S, Javors MA, Ghosh Choudhury G, Hubbard GB, Barnes JL, Richardson A, Kasinath BS. Rapamycin Increases Mortality in db/db Mice, a Mouse Model of Type 2 Diabetes. J Gerontol A Biol Sci Med Sci 2016; 71:850-7. [PMID: 26442901 PMCID: PMC4906320 DOI: 10.1093/gerona/glv170] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022] Open
Abstract
We examined the effect of rapamycin on the life span of a mouse model of type 2 diabetes, db/db mice. At 4 months of age, male and female C57BLKSJ-lepr (db/db) mice (db/db) were placed on either a control diet, lacking rapamycin or a diet containing rapamycin and maintained on these diets over their life span. Rapamycin was found to reduce the life span of the db/db mice. The median survival of male db/db mice fed the control and rapamycin diets was 349 and 302 days, respectively, and the median survival of female db/db mice fed the control and rapamycin diets was 487 and 411 days, respectively. Adjusting for gender differences, rapamycin increased the mortality risk 1.7-fold in both male and female db/db mice. End-of-life pathological data showed that suppurative inflammation was the main cause of death in the db/db mice, which is enhanced slightly by rapamycin treatment.
Collapse
Affiliation(s)
| | - Yuji Ikeno
- Department of Pathology, and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Sciences Center, San Antonio. Research Service and Geriatric Research and Education Center, Audie L. Murphy VA Hospital South Texas Veterans Health Care System, San Antonio
| | | | | | | | | | | | | | - Vivian Diaz
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Sciences Center, San Antonio
| | | | | | - Goutam Ghosh Choudhury
- Department of Medicine, Research Service and Geriatric Research and Education Center, Audie L. Murphy VA Hospital South Texas Veterans Health Care System, San Antonio
| | - Gene B Hubbard
- Department of Pathology, and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Sciences Center, San Antonio
| | | | - Arlan Richardson
- ROCA/Department of Geriatric Medicine, University of Oklahoma Health Science Center and the Oklahoma City VA Medical Center.
| | - Balakuntalam S Kasinath
- Department of Medicine, The Barshop Institute for Longevity and Aging Studies, University of Texas Health Sciences Center, San Antonio. Research Service and
| |
Collapse
|
27
|
Zhang Y, Liu Y, Walsh M, Bokov A, Ikeno Y, Jang YC, Perez VI, Van Remmen H, Richardson A. Liver specific expression of Cu/ZnSOD extends the lifespan of Sod1 null mice. Mech Ageing Dev 2016; 154:1-8. [PMID: 26839948 PMCID: PMC4855307 DOI: 10.1016/j.mad.2016.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/24/2015] [Accepted: 01/25/2016] [Indexed: 12/11/2022]
Abstract
Genetic ablation of CuZn-superoxide dismutase (Sod1) in mice (Sod1(-/-) mice) leads to shortened lifespan with a dramatic increase in hepatocellular carcinoma and accelerated aging phenotypes, including early onset sarcopenia. To study the tissue specific effects of oxidative stress in the Sod1(-/-) mice, we generated mice that only express the human SOD1 gene specifically in the liver of Sod1(-/-) mice (Sod1(-/-)/hSOD1(alb) mice). Expression of hSOD1 in the liver of Sod1(-/-) mice improved liver function, reduced oxidative damage in liver, and partially restored the expression of several genes involved in tumorigenesis, which are abnormally expressed in the livers of the Sod1(-/-) mice. However, liver specific expression of hSOD1 did not prevent the loss of body weight and muscle mass and alterations in the structure of neuromuscular junctions. The expression of hSOD1 in the liver of Sod1(-/-) mice significantly improved the lifespan of Sod1(-/-) mice; however, the lifespan of the Sod1(-/-)/hSOD1(alb) mice was still significantly shorter than wild type mice.
Collapse
Affiliation(s)
- Yiqiang Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuhong Liu
- Departments of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Michael Walsh
- Departments of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Alex Bokov
- Departments of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Yuji Ikeno
- Departments of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Geriatric Research, Education and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Young C Jang
- School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Viviana I Perez
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| | - Holly Van Remmen
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| | - Arlan Richardson
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA; Oklahoma University Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
28
|
Sataranatarajan K, Qaisar R, Davis C, Sakellariou GK, Vasilaki A, Zhang Y, Liu Y, Bhaskaran S, McArdle A, Jackson M, Brooks SV, Richardson A, Van Remmen H. Neuron specific reduction in CuZnSOD is not sufficient to initiate a full sarcopenia phenotype. Redox Biol 2015; 5:140-148. [PMID: 25917273 PMCID: PMC5022075 DOI: 10.1016/j.redox.2015.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 11/27/2022] Open
Abstract
Our previous studies showed that adult (8 month) mice lacking CuZn-superoxide dismutase (CuZnSOD, Sod1KO mice) have neuromuscular changes resulting in dramatic accelerated muscle atrophy and weakness that mimics age-related sarcopenia. We have further shown that loss of CuZnSOD targeted to skeletal muscle alone results in only mild weakness and no muscle atrophy. In this study, we targeted deletion of CuZnSOD specifically to neurons (nSod1KO mice) and determined the effect on muscle mass and weakness. The nSod1KO mice show a significant loss of CuZnSOD activity and protein level in brain and spinal cord but not in muscle tissue. The masses of the gastrocnemius, tibialis anterior and extensor digitorum longus (EDL) muscles were not reduced in nSod1KO compared to wild type mice, even at 20 months of age, although the quadriceps and soleus muscles showed small but statistically significant reductions in mass in the nSod1KO mice. Maximum isometric specific force was reduced by 8–10% in the gastrocnemius and EDL muscle of nSod1KO mice, while soleus was not affected. Muscle mitochondrial ROS generation and oxidative stress measured by levels of reactive oxygen/nitrogen species (RONS) regulatory enzymes, protein nitration and F2-isoprostane levels were not increased in muscle from the nSod1KO mice. Although we did not find evidence of denervation in the nSod1KO mice, neuromuscular junction morphology was altered and the expression of genes associated with denervation acetylcholine receptor subunit alpha (AChRα), the transcription factor, Runx1 and GADD45α) was increased, supporting a role for neuronal loss of CuZnSOD initiating alterations at the neuromuscular junction. These results and our previous studies support the concept that CuZnSOD deficits in either the motor neuron or muscle alone are not sufficient to initiate a full sarcopenic phenotype and that deficits in both tissues are required to recapitulate the loss of muscle observed in Sod1KO mice. CuZnSOD deletion in nSod1KO mice does not induce an overt sarcopenia phenotype. Force is slightly reduced in the gastrocnemius of nSod1KO mice but mass is unaffected. Neuronal Sod1 depletion does not induce denervation despite altered NMJ morphology. Neuronal Sod1 depletion does not induce muscle oxidative stress or mitochondrial ROS. Deficits in both motor neurons and muscle are required to initiate sarcopenia.
Collapse
Affiliation(s)
| | - Rizwan Qaisar
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Carol Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Giorgos K Sakellariou
- MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Aphrodite Vasilaki
- MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Yiqiang Zhang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuhong Liu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shylesh Bhaskaran
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Anne McArdle
- MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Malcolm Jackson
- MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Arlan Richardson
- Oklahoma VA Medical Center, Oklahoma City, OK 73104, USA; Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center and Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Oklahoma VA Medical Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
29
|
Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med 2014; 71:368-378. [PMID: 24704971 PMCID: PMC4049226 DOI: 10.1016/j.freeradbiomed.2014.03.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Significant advances in maintaining health throughout life can be made through a clear understanding of the fundamental mechanisms that regulate aging. The Oxidative Stress Theory of Aging (OSTA) is probably the most well studied mechanistic theory of aging and suggests that the rate of aging is controlled by accumulation of oxidative damage. To directly test the OSTA, aging has been measured in several lines of mice with genetic alterations in the expression of enzymatic antioxidants. Under its strictest interpretation, these studies do not support the OSTA, as modulation of antioxidant expression does not generally affect mouse life span. However, the incidence of many age-related diseases and pathologies is altered in these models, suggesting that oxidative stress does significantly influence some aspects of the aging process. Further, oxidative stress may affect aging in disparate patterns among tissues or under various environmental conditions. In this review, we summarize the current literature regarding aging in antioxidant mutant mice and offer several interpretations of their support of the OSTA.
Collapse
Affiliation(s)
- Yael H Edrey
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and San Antonio, TX 78229, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and San Antonio, TX 78229, USA; The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA; Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
30
|
Fok WC, Bokov A, Gelfond J, Yu Z, Zhang Y, Doderer M, Chen Y, Javors M, Wood WH, Zhang Y, Becker KG, Richardson A, Pérez VI. Combined treatment of rapamycin and dietary restriction has a larger effect on the transcriptome and metabolome of liver. Aging Cell 2014; 13:311-9. [PMID: 24304444 PMCID: PMC3989927 DOI: 10.1111/acel.12175] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 01/24/2023] Open
Abstract
Rapamycin (Rapa) and dietary restriction (DR) have consistently been shown to increase lifespan. To investigate whether Rapa and DR affect similar pathways in mice, we compared the effects of feeding mice ad libitum (AL), Rapa, DR, or a combination of Rapa and DR (Rapa + DR) on the transcriptome and metabolome of the liver. The principal component analysis shows that Rapa and DR are distinct groups. Over 2500 genes are significantly changed with either Rapa or DR when compared with mice fed AL; more than 80% are unique to DR or Rapa. A similar observation was made when genes were grouped into pathways; two-thirds of the pathways were uniquely changed by DR or Rapa. The metabolome shows an even greater difference between Rapa and DR; no metabolites in Rapa-treated mice were changed significantly from AL mice, whereas 173 metabolites were changed in the DR mice. Interestingly, the number of genes significantly changed by Rapa + DR when compared with AL is twice as large as the number of genes significantly altered by either DR or Rapa alone. In summary, the global effects of DR or Rapa on the liver are quite different and a combination of Rapa and DR results in alterations in a large number of genes and metabolites that are not significantly changed by either manipulation alone, suggesting that a combination of DR and Rapa would be more effective in extending longevity than either treatment alone.
Collapse
Affiliation(s)
- Wilson C. Fok
- Department of Cellular and Structural BiologyThe University of Texas Health Science Center at San Antonio San Antonio TX 78229 USA
| | - Alex Bokov
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San Antonio San Antonio TX 78229 USA
- Department of Epidemiology & Biostatistics The University of Texas Health Science Center at San Antonio San Antonio TX 78229USA
| | - Jonathan Gelfond
- Department of Epidemiology & Biostatistics The University of Texas Health Science Center at San Antonio San Antonio TX 78229USA
| | - Zhen Yu
- Linus Pauling Institute Oregon State University Corvallis OR 97331USA
| | - Yiqiang Zhang
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San Antonio San Antonio TX 78229 USA
- Department of PhysiologyThe University of Texas Health Science Center at San Antonio San Antonio TX 78229 USA
| | - Mark Doderer
- Greehey Children's Cancer Research Institute The University of Texas Health Science Center at San AntonioSan Antonio TX 78229 USA
| | - Yidong Chen
- Department of Epidemiology & Biostatistics The University of Texas Health Science Center at San Antonio San Antonio TX 78229USA
- Greehey Children's Cancer Research Institute The University of Texas Health Science Center at San AntonioSan Antonio TX 78229 USA
- Cancer Therapy and Research Center The University of Texas Health Science Center at San AntonioSan Antonio TX 78229 USA
| | - Martin Javors
- Department of Psychiatry The University of Texas Health Science Center at San Antonio San Antonio TX 78229USA
| | | | | | | | - Arlan Richardson
- Department of Cellular and Structural BiologyThe University of Texas Health Science Center at San Antonio San Antonio TX 78229 USA
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San Antonio San Antonio TX 78229 USA
- Research Service Audie Murphy VA Hospital (STVHCS) San Antonio TX 78229USA
| | - Viviana I. Pérez
- Linus Pauling Institute Oregon State University Corvallis OR 97331USA
- Department of Biochemistry and Biophysics Oregon State University Corvallis OR 97331USA
| |
Collapse
|
31
|
Garratt M, Brooks R. A genetic reduction in antioxidant function causes elevated aggression in mice. J Exp Biol 2014; 218:223-7. [DOI: 10.1242/jeb.112011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Male-male aggression can have a large influence on access to mates, particularly in highly territorial animals such as mice. It has been suggested that males with impaired antioxidant defence and a consequential increased susceptibility to oxidative stress may have a reduced ability to invest in aggressive behaviours, which could limit their mating opportunities and reproductive success. Oxidative stress occurs as a result of an uncontrolled over-production of reactive oxygen species (ROS) in relation to defence mechanisms (such as antioxidants), and can cause damage to a variety of different cellular components. Impairments in specific aspects of antioxidant defence, leading to oxidative stress, can limit investment in some reproductive traits in males, such as sperm quality and the production of sexual signals to attract males. However, a direct effect of impaired antioxidant defence on aggressive behaviour has not, to our knowledge, been reported. In this study we demonstrate that mice with experimentally elevated sensitivity to oxidative stress (through inhibition of copper-zinc superoxide dismutase (Sod1)) actually show the opposite response to previous predictions. Males completely deficient in Sod1 are more aggressive than both wild-type males and males that express 50% of this antioxidant enzyme. They are also faster to attack another male. The cause of this increased aggression is unknown, but this result highlights that aggressive behaviour in mice is not highly constrained by inhibited Sod1 expression, in contrast to other reproductive traits known to be impaired in this mouse model.
Collapse
Affiliation(s)
- Michael Garratt
- University of New South Wales, Australia; University of Michigan Medical School, United States
| | | |
Collapse
|
32
|
Liochev SI. Superoxide dismutase mimics, other mimics, antioxidants, prooxidants, and related matters. Chem Res Toxicol 2013; 26:1312-9. [PMID: 23905839 DOI: 10.1021/tx4001623] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A significant number of low molecular weight metal complexes as well as metal-free compounds that are capable of scavenging superoxide and/or other radicals and reactive species in simple systems have been proposed to be used as potential drugs in the case of various diseases and/or as antiaging agents. Some have been used or suggested to be used as diagnostic tools for the involvement of such species in biological processes. In the present work, analysis of such claims indicates that their use as specific detectors of superoxide or of other reactive oxygen species is unsupported and might be confusing. Many of these compounds exert beneficial effects by counteracting the toxic effects of oxidative stress in a significant number of models of pathological processes. However, it is concluded that these actions are more likely due to other effects including prooxidant actions and that their beneficial effects also may be exerted in pathological processes that do not practically involve reactive oxygen species. Adaptation may be a common mode of action explaining a sizable portion of the beneficial effect of the so-called mimics and other compounds including prooxidants.
Collapse
|