1
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Wang T, Pang L, He M, Wang Z. Small-molecule inhibitors targeting apoptosis signal-regulated kinase 1. Eur J Med Chem 2023; 262:115889. [PMID: 37883895 DOI: 10.1016/j.ejmech.2023.115889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Apoptosis signal regulated kinase 1 (ASK1, also known as MAP3K5) is a member of the mitogen activated protein kinase kinase kinase (MAP3K) family. Since its first isolation from a human macrophage library in 1996, its research has been ongoing for over 25 years. A large number of reports have revealed that ASK1, as a key activator of the p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) signaling cascade, responds to various stressors, and its inhibitors have important potential value in the treatment of diseases such as inflammation, cancer, and the nervous system and so on. This review summarizes the recent development in this field, including the structure and signaling pathways of ASK1, with a particular focus on the structure-activity relationships, and the hit-to-lead optimization strategies.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Lidan Pang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Mengni He
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Zengtao Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| |
Collapse
|
3
|
Qu N, Meng Y, Zhai J, Griffin N, Shan Y, Gao Y, Shan F. Methionine enkephalin inhibited cervical cancer migration as well as invasion and activated CD11b + NCR1 + NKs of tumor microenvironment. Int Immunopharmacol 2023; 124:110967. [PMID: 37741126 DOI: 10.1016/j.intimp.2023.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
This study was to study the role of methionine enkephalin (menk) in cell invasion and migration as well as NK cells activation of tumor microenvironment in cervical cancer. The results showed that menk inhibited cervical cancer migration and invasion. In addition, we found menk affected epithelial to mesenchymal transition (EMT) related indicators, with increasing E-cadherin level, decreasing N-cadherin and vimentin level. Through in vivo mouse model, we found that menk IFNγ and NKP46 expression was upregulated in tumor tissues by menk compared with controls, while LAG3 expression was inhibited by menk, besides, there was an upregulation of CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer. Therefore, we concluded that menk inhibited cancer migration and invasion via affecting EMT related indicators and activated CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer, laying a theoretical foundation for the further clinical treatment of menk.
Collapse
Affiliation(s)
- Na Qu
- Department of Gynecological Radiotherapy Ward, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Noreen Griffin
- Biostax Inc. 1317 Edgewater Dr., Ste 4882, Orlando, FL 32804, USA
| | - Yuanye Shan
- Biostax Inc. 1317 Edgewater Dr., Ste 4882, Orlando, FL 32804, USA
| | - Yuhua Gao
- Department of Gynecological Radiotherapy Ward, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China.
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
4
|
Wang D, Deng Z, Lu M, Deng K, Li Z, Zhou F. Integrated analysis of the roles of oxidative stress related genes and prognostic value in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:11057-11071. [PMID: 37340189 PMCID: PMC10465389 DOI: 10.1007/s00432-023-04983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Patients with clear cell renal cell carcinoma (ccRCC), which is the most commonly diagnosed subtype of renal cell carcinoma, are at risk of tumor metastasis and recrudescence. Previous research has shown that oxidative stress can induce tumorigenesis in many cancers and can be a target of cancer treatment. Despite these findings, little progress has been made understanding in the association of oxidative stress-related genes (OSRGs) with ccRCC. METHODS In vitro experiments were conducted with MTT survival assays, qRT‒PCR, apoptosis assays, cell cycle assays, ROS assays, and IHC staining. RESULTS In our study, 12 differentially expressed oxidative stress-related genes (DEOSGs) and related transcription factors (TFs) that are relevant to overall survival (OS) were screened, and their mutual regulatory networks were constructed with data from the TCGA database. Moreover, we constructed a risk model of these OSRGs and performed clinical prognostic analysis and validation. Next, we performed protein-protein interaction (PPI) network analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of MELK, PYCR1, and PML. A tissue microarray also verified the high expression of MELK and PYCR1 in ccRCC. Finally, in vitro cellular experiments demonstrated that knockdown of MELK or PYCR1 significantly inhibited ccRCC cell proliferation by causing cell apoptosis and inducing cell cycle arrest in the G1 phase. Intracellular ROS levels were elevated after these two genes were knocked down. CONCLUSION Our results revealed the potential DEORGs to be used in ccRCC prognostic prediction and identified two biomarkers, named PYCR1 and MELK, which regulated the proliferation of ccRCC cells by affecting ROS levels. Furthermore, PYCR1 and MELK could be promising targets for predicting the progression and prognosis of ccRCC, thereby serving as new targets for medical treatments.
Collapse
Affiliation(s)
- Danwen Wang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kai Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Roshani M, Baniebrahimi G, Mousavi M, Zare N, Sadeghi R, Salarinia R, Sheida A, Molavizadeh D, Sadeghi S, Moammer F, Zolfaghari MR, Mirzaei H. Exosomal long non-coding RNAs: novel molecules in gastrointestinal cancers' progression and diagnosis. Front Oncol 2022; 12:1014949. [PMID: 36591473 PMCID: PMC9795196 DOI: 10.3389/fonc.2022.1014949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GI) cancers arise in the GI tract and accessory organs, including the mouth, esophagus, stomach, liver, biliary tract, pancreas, small intestine, large intestine, and rectum. GI cancers are a major cause of cancer-related morbidity and mortality worldwide. Exosomes act as mediators of cell-to-cell communication, with pleiotropic activity in the regulation of homeostasis, and can be markers for diseases. Non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs), can be transported by exosomes derived from tumor cells or non-tumor cells. They can be taken by recipient cells to alter their function or remodel the tumor microenvironment. Moreover, due to their uniquely low immunogenicity and excellent stability, exosomes can be used as natural carriers for therapeutic ncRNAs in vivo. Exosomal lncRNAs have a crucial role in regulating several cancer processes, including angiogenesis, proliferation, drug resistance, metastasis, and immunomodulation. Exosomal lncRNA levels frequently alter according to the onset and progression of cancer. Exosomal lncRNAs can therefore be employed as biomarkers for the diagnosis and prognosis of cancer. Exosomal lncRNAs can also monitor the patient's response to chemotherapy while also serving as potential targets for cancer treatment. Here, we discuss the role of exosomal lncRNAs in the biology and possible future treatment of GI cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mousavi
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Noushid Zare
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Reza Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Moammer
- Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Hamed Mirzaei
- Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Ren L, Guo JS, Li YH, Dong G, Li XY. Structural classification of MELK inhibitors and prospects for the treatment of tumor resistance: A review. Biomed Pharmacother 2022; 156:113965. [DOI: 10.1016/j.biopha.2022.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
7
|
Crystallographic mining of ASK1 regulators to unravel the intricate PPI interfaces for the discovery of small molecule. Comput Struct Biotechnol J 2022; 20:3734-3754. [PMID: 35891784 PMCID: PMC9294202 DOI: 10.1016/j.csbj.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein seldom performs biological activities in isolation. Understanding the protein–protein interactions’ physical rewiring in response to pathological conditions or pathogen infection can help advance our comprehension of disease etiology, progression, and pathogenesis, which allow us to explore the alternate route to control the regulation of key target interactions, timely and effectively. Nonalcoholic steatohepatitis (NASH) is now a global public health problem exacerbated due to the lack of appropriate treatments. The most advanced anti-NASH lead compound (selonsertib) is withdrawn, though it is able to inhibit its target Apoptosis signal-regulating kinase 1 (ASK1) completely, indicating the necessity to explore alternate routes rather than complete inhibition. Understanding the interaction fingerprints of endogenous regulators at the molecular level that underpin disease formation and progression may spur the rationale of designing therapeutic strategies. Based on our analysis and thorough literature survey of the various key regulators and PTMs, the current review emphasizes PPI-based drug discovery’s relevance for NASH conditions. The lack of structural detail (interface sites) of ASK1 and its regulators makes it challenging to characterize the PPI interfaces. This review summarizes key regulators interaction fingerprinting of ASK1, which can be explored further to restore the homeostasis from its hyperactive states for therapeutics intervention against NASH.
Collapse
Key Words
- ASK1
- ASK1, Apoptosis signal-regulating kinase 1
- CFLAR, CASP8 and FADD-like apoptosis regulator
- CREG, Cellular repressor of E1A-stimulated genes
- DKK3, Dickkopf-related protein 3
- Interaction fingerprint
- NAFLD, Non-alcoholic fatty liver disease
- NASH
- NASH, Nonalcoholic steatohepatitis
- PPI, Protein-protein interaction
- PTM, Post-trancriptional modification
- PTMs
- Protein-protein interaction
- TNFAIP3, TNF Alpha Induced Protein 3
- TRAF2/6, Tumor necrosis factor receptor (TNFR)-associated factor2/6
- TRIM48, Tripartite Motif Containing 48
- TRX, Thioredoxin
- USP9X, Ubiquitin Specific Peptidase 9 X-Linked
Collapse
|
8
|
DAXX ameliorates metabolic dysfunction in mice with diet-induced obesity by activating the AMP-activated protein kinase-related kinase MPK38/MELK. Biochem Biophys Res Commun 2021; 572:164-170. [PMID: 34365141 DOI: 10.1016/j.bbrc.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022]
Abstract
Death domain-associated protein (DAXX) is involved in the activation of adipocyte apoptosis and is downregulated in response to a high-fat diet (HFD), which implies that the inhibition of adipocyte apoptosis may cause obesity. However, the anti-obesity effects of DAXX in diet-induced obesity (DIO) remain to be characterized. Here, we identified DAXX as an interacting partner of murine protein serine-threonine kinase 38 (MPK38). This interaction was mediated by the C-terminal (amino acids 270-643) domain of MPK38 and the N-terminal (amino acids 1-440) domain of DAXX and was increased by diverse signals that activate ASK1/TGF-β/p53 signaling. MPK38 phosphorylated DAXX at Thr578. Wild-type DAXX, but not a DAXX T578A mutant, stimulated MPK38-dependent ASK1/TGF-β/p53 signaling by increasing the stability of MPK38 and complex formation between MPK38 and its downstream targets, such as ASK1, Smad3, and p53. This mechanism was also shown in MEF cells that were null (-/-) for DAXX. Furthermore, the adenovirally-mediated reinstatement of DAXX expression activated MPK38 and ameliorated diet-induced defects in glucose and lipid metabolism in mice. These results indicate that DAXX limits obesity-induced metabolic abnormalities in DIO mice by activating MPK38.
Collapse
|
9
|
Functional genomics for breast cancer drug target discovery. J Hum Genet 2021; 66:927-935. [PMID: 34285339 PMCID: PMC8384626 DOI: 10.1038/s10038-021-00962-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023]
Abstract
Breast cancer is a heterogeneous disease that develops through a multistep process via the accumulation of genetic/epigenetic alterations in various cancer-related genes. Current treatment options for breast cancer patients include surgery, radiotherapy, and chemotherapy including conventional cytotoxic and molecular-targeted anticancer drugs for each intrinsic subtype, such as endocrine therapy and antihuman epidermal growth factor receptor 2 (HER2) therapy. However, these therapies often fail to prevent recurrence and metastasis due to resistance. Overall, understanding the molecular mechanisms of breast carcinogenesis and progression will help to establish therapeutic modalities to improve treatment. The recent development of comprehensive omics technologies has led to the discovery of driver genes, including oncogenes and tumor-suppressor genes, contributing to the development of molecular-targeted anticancer drugs. Here, we review the development of anticancer drugs targeting cancer-specific functional therapeutic targets, namely, MELK (maternal embryonic leucine zipper kinase), TOPK (T-lymphokine-activated killer cell-originated protein kinase), and BIG3 (brefeldin A-inhibited guanine nucleotide-exchange protein 3), as identified through comprehensive breast cancer transcriptomics.
Collapse
|
10
|
Seong HA, Ha H. Ablation of AMPK-Related Kinase MPK38/MELK Leads to Male-Specific Obesity in Aged Mature Adult Mice. Diabetes 2021; 70:386-399. [PMID: 33268463 DOI: 10.2337/db20-0436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022]
Abstract
Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK) is implicated in diverse biological processes, including the cell cycle, apoptosis, and tumorigenesis; however, its physiological role is unknown. Using mice lacking MPK38 (MPK38-/-), we found that MPK38-/- male, but not female, mice (7 months of age) became obese while consuming a standard diet, displayed impairments in metabolism and inflammation, became more obese than wild-type mice while consuming a high-fat diet, and exhibited no castration/testosterone replacement-induced metabolic changes. The adenoviral restoration of MPK38 ameliorated the obesity-induced adverse metabolic profile of the obese male, but not female, mice. Seven-month-old MPK38-/- males displayed typical postcastration concentrations of serum testosterone with an accompanying decrease in serum luteinizing hormone (LH) levels, suggesting a role for MPK38 in the age-related changes in serum testosterone in aged mature adult male mice. The stability and activity of MPK38 were increased by dihydrotestosterone but reduced by estradiol (E2). These findings suggest MPK38 as a therapeutic target for obesity-related metabolic disorders in males.
Collapse
Affiliation(s)
- Hyun-A Seong
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyunjung Ha
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
11
|
Li PH, Zhang R, Cheng LQ, Liu JJ, Chen HZ. Metabolic regulation of immune cells in proinflammatory microenvironments and diseases during ageing. Ageing Res Rev 2020; 64:101165. [PMID: 32898718 DOI: 10.1016/j.arr.2020.101165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
The process of ageing includes molecular changes within cells and interactions between cells, eventually resulting in age-related diseases. Although various cells (immune cells, parenchymal cells, fibroblasts and endothelial cells) in tissues secrete proinflammatory signals in age-related diseases, immune cells are the major contributors to inflammation. Many studies have emphasized the role of metabolic dysregulation in parenchymal cells in age-related inflammatory diseases. However, few studies have discussed metabolic modifications in immune cells during ageing. In this review, we introduce the metabolic dysregulation of major nutrients (glucose, lipids, and amino acids) within immune cells during ageing, which leads to dysfunctional NAD + metabolism that increases immune cell senescence and leads to the acquisition of the corresponding senescence-associated secretory phenotype (SASP). We then focus on senescent immune cell interactions with parenchymal cells and the extracellular matrix and their involvement in angiogenesis, which lead to proinflammatory microenvironments in tissues and inflammatory diseases at the systemic level. Elucidating the roles of metabolic modifications in immune cells during ageing will provide new insights into the mechanisms of ageing and therapeutic directions for age-related inflammatory diseases.
Collapse
Affiliation(s)
- Pei-Heng Li
- Department of Internal Medicine, Peking Union Medical college Hospital, Beijing, China; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ran Zhang
- Buck Institute for Research on Ageing, Novato, United States
| | - Li-Qin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Jin-Jing Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China.
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 2020; 5:248. [PMID: 33110061 PMCID: PMC7588592 DOI: 10.1038/s41392-020-00345-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is emphysema and/or chronic bronchitis characterised by long-term breathing problems and poor airflow. The prevalence of COPD has increased over the last decade and the drugs most commonly used to treat it, such as glucocorticoids and bronchodilators, have significant therapeutic effects; however, they also cause side effects, including infection and immunosuppression. Here we reviewed the pathogenesis and progression of COPD and elaborated on the effects and mechanisms of newly developed molecular targeted COPD therapeutic drugs. Among these new drugs, we focussed on thioredoxin (Trx). Trx effectively prevents the progression of COPD by regulating redox status and protease/anti-protease balance, blocking the NF-κB and MAPK signalling pathways, suppressing the activation and migration of inflammatory cells and the production of cytokines, inhibiting the synthesis and the activation of adhesion factors and growth factors, and controlling the cAMP-PKA and PI3K/Akt signalling pathways. The mechanism by which Trx affects COPD is different from glucocorticoid-based mechanisms which regulate the inflammatory reaction in association with suppressing immune responses. In addition, Trx also improves the insensitivity of COPD to steroids by inhibiting the production and internalisation of macrophage migration inhibitory factor (MIF). Taken together, these findings suggest that Trx may be the ideal drug for treating COPD.
Collapse
Affiliation(s)
- Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jinquan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China.
- Jiaozhimei Biotechnology (Shaoxing) Co, Ltd, Shaoxing, 312000, China.
| |
Collapse
|
13
|
Thangaraj K, Ponnusamy L, Natarajan SR, Manoharan R. MELK/MPK38 in cancer: from mechanistic aspects to therapeutic strategies. Drug Discov Today 2020; 25:2161-2173. [PMID: 33010478 DOI: 10.1016/j.drudis.2020.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022]
Abstract
Maternal embryonic leucine zipper kinase (MELK)/Murine protein serine-threonine kinase 38 (MPK38) is a member of the AMP-related serine-threonine kinase family, which has been reported to be involved in the regulation of many cellular events, including cell proliferation, apoptosis, and metabolism, partly by phosphorylation and regulation of several signaling molecules. The abnormal expression of MELK has been associated with tumorigenesis and malignant progression in various types of cancer. Currently, several small-molecule inhibitors of MELK are under investigation although only OTS167 has entered clinical trials. In this review, we elaborate on the relative contributions of MELK pathways in the physiological process, their oncogenic role in carcinogenesis, and targeted agents under development for the treatment of cancer.
Collapse
Affiliation(s)
- Karthik Thangaraj
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Lavanya Ponnusamy
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Sathan Raj Natarajan
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Ravi Manoharan
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India.
| |
Collapse
|
14
|
Li T, Xu R, Xia H, Hu X, Wang S, Li Y, Yan Y, Xia Y. ASK1 phosphorylation regulates astrocytic reactive gliosis in vitro and in vivo. Neurosci Lett 2019; 716:134675. [PMID: 31830507 DOI: 10.1016/j.neulet.2019.134675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 01/12/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) may play a pivotal role in reactive gliosis. To assess the role of ASK1 in trauma-induced reactive gliosis, we examined the phosphorylation of ASK1 and the expression of glial fibrillary acidic protein (GFAP) and vimentin after scratch injury in cultured astrocytes and spinal cord injury (SCI) in rats. Enhanced phosphorylation of ASK1 was detected during reactive gliosis both in vitro and in vivo, and P38 MAPK relayed the signal from phosphorylated ASK1 to the activation of astrocytes. Immunoprecipitation analyses suggested that 14-3-3 was dissociated from ASK1 during astrocyte activation. Finally, treatment with thioredoxin reduced ASK1 phosphorylation and reactive gliosis and promoted hindlimb locomotion recovery in SCI rats. These results indicated that ASK1 may play an important role in mechanical-injury-induced reactive gliosis.
Collapse
Affiliation(s)
- Tianzun Li
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing 400042, China
| | - Rui Xu
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haijian Xia
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaojun Hu
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shengxi Wang
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Li
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Yan
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yongzhi Xia
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Long noncoding RNA LINC02418 regulates MELK expression by acting as a ceRNA and may serve as a diagnostic marker for colorectal cancer. Cell Death Dis 2019; 10:568. [PMID: 31358735 PMCID: PMC6662768 DOI: 10.1038/s41419-019-1804-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022]
Abstract
Some types of long noncoding RNAs (lncRNAs) are aberrantly expressed in human diseases, including cancer. However, the overall biological roles and clinical significances of most lncRNAs in colorectal cancer (CRC) are not fully understood. First, The Cancer Genome Atlas (TCGA) was analyzed to identify differentially expressed lncRNAs between CRC tissues and noncancerous tissues. We identified that LINC02418 was highly expressed in CRC tissues and cell lines. Next, we evaluated the effect of LINC02418 on CRC tumorigenesis and its regulatory functions of absorbing microRNA and indirectly stimulating protein expression by acting as a ceRNA. Mechanistically, LINC02418 acted as a ceRNA to upregulate MELK expression by absorbing miR-1273g-3p. In addition, the diagnostic performance of cell-free LINC02418 and exosomal LINC02418 were both evaluated by the receiver operating characteristic curve and the area under the curve (AUC). Exosomal LINC02418 could distinguish the patients with CRC from the healthy controls (AUC = 0.8978, 95% confidence interval = 0.8644–0.9351) better than cell-free LINC02418 (AUC = 0.6784, 95% confidence interval = 0.6116–0.7452). Collectively, we determined that LINC02418 was significantly overexpressed in CRC and that the LINC02418–miR-1273g-3p–MELK axis played a critical role in CRC tumorigenesis. Finally, exosomal LINC02418 is a promising, novel biomarker that can be used for the clinical diagnosis of CRC.
Collapse
|
16
|
Thr55 phosphorylation of p21 by MPK38/MELK ameliorates defects in glucose, lipid, and energy metabolism in diet-induced obese mice. Cell Death Dis 2019; 10:380. [PMID: 31097688 PMCID: PMC6522503 DOI: 10.1038/s41419-019-1616-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 01/15/2023]
Abstract
Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK), an AMP-activated protein kinase (AMPK)-related kinase, has previously been shown to interact with p53 and to stimulate downstream signaling. p21, a downstream target of p53, is also known to be involved in adipocyte and obesity metabolism. However, little is known about the mechanism by which p21 mediates obesity-associated metabolic adaptation. Here, we identify MPK38 as an interacting partner of p21. p21 and MPK38 interacted through the cyclin-dependent kinase (CDK) binding region of p21 and the C-terminal domain of MPK38. MPK38 potentiated p21-mediated apoptosis and cell cycle arrest in a kinase-dependent manner by inhibiting assembly of CDK2-cyclin E and CDK4-cyclin D complexes via induction of CDK2-p21 and CDK4-p21 complex formation and reductions in complex formation between p21 and its negative regulator mouse double minute 2 (MDM2), leading to p21 stabilization. MPK38 phosphorylated p21 at Thr55, stimulating its nuclear translocation, which resulted in greater association of p21 with peroxisome proliferator-activated receptor γ (PPARγ), preventing the PPARγ transactivation required for adipogenesis. Furthermore, restoration of p21 expression by adenoviral delivery in diet-induced obese mice ameliorated obesity-induced metabolic abnormalities in a MPK38 phosphorylation-dependent manner. These results suggest that MPK38 functions as a positive regulator of p21, regulating apoptosis, cell cycle arrest, and metabolism during obesity.
Collapse
|
17
|
Gong X, Chen Z, Han Q, Chen C, Jing L, Liu Y, Zhao L, Yao X, Sun X. Sanguinarine triggers intrinsic apoptosis to suppress colorectal cancer growth through disassociation between STRAP and MELK. BMC Cancer 2018; 18:578. [PMID: 29783958 PMCID: PMC5963096 DOI: 10.1186/s12885-018-4463-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/30/2018] [Indexed: 01/24/2023] Open
Abstract
Background Previous studies showed sanguinarine induced apoptosis in CRC cells but did not define the underlying mechanisms. The purpose of this work was to determine the in vivo and in vitro effects of sanguinarine on CRC tumors and to elucidate the mechanism in regulating the intrinsic apoptosis. Methods Cell viability of CRC cell lines treated with sanguinarine was measured by MTT assay. Apoptotic cells stained with Annexin V and 7-AAD were detected by flow cytometry. Mitochondrial membrane potential and reactive oxygen species (ROS) were analyzed by JC-1 and DCFH-DA staining, respectively. The in vitro kinase activity of MELK was analyzed by using HTRF® KinEASE™-STK kit. The expression of proteins were determined using Western blotting and immunohistochemistry. Co-immunoprecipitation and immunofluorecence were used to study the interaction between STRAP and MELK. The anti-neoplastic effect of sanguinarine was observed in vivo in an orthotopic CRC model. Results Sanguinarine decreased the tumor size in a dose-dependent manner in orthotopical colorectal carcinomas through intrinsic apoptosis pathway in BALB/c-nu mice. It significantly increased cleavage of caspase 3 and PARP in implanted colorectal tissues. Sanguinarine increased mitochondrial ROS and triggered mitochondrial outer membrane permeabilization in multiple colorectal cancer (CRC) cell lines. NAC pretreatment lowered ROS level and downregulated apoptosis induced by sanguinarine. The intrinsic apoptosis induced by sanguinarine was Bax-dependent. The elevated expression and association between serine-threonine kinase receptor-associated protein (STRAP) and maternal embryonic leucine zipper kinase (MELK) were observed in Bax positive cells but not in Bax negative cells. Sanguinarine dephosphorylated STRAP and MELK and disrupted the association between them in HCT116 and SW480 cells. The expression and association between STRAP and MELK were also attenuated by sanguinarine in the tumor tissues. Importantly, we found that STRAP and MELK were overexpressed and highly phosphorylated in colorectal adenocarcinomas and their expression were significantly correlated with tumor stages. Furthermore, the expression of MELK, but not STRAP, was associated with lymph node metastasis. Conclusions Sanguinarine dephosphorelates STRAP and MELK and disassociates the interaction between them to trigger intrinsic apoptosis. Overexpression of STRAP and MELK may be markers of CRC and their disassociation may be a determinant of therapeutic efficacy. Electronic supplementary material The online version of this article (10.1186/s12885-018-4463-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianling Gong
- The key laboratory of molecular biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou, (510515), China.,School of pharmacy, Guangdong Medical University, Guangdong, Dongguan, (523808), China
| | - Zhihong Chen
- School of pharmacy, Guangdong Medical University, Guangdong, Dongguan, (523808), China
| | - Qinrui Han
- The key laboratory of molecular biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou, (510515), China
| | - Chunhui Chen
- The key laboratory of molecular biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou, (510515), China
| | - Linlin Jing
- Traditional Chinese Medicine Integrated Hospital, Southern Medical University, Guangdong, Guangzhou, (510315), China
| | - Yawei Liu
- Nanfang hospital, Southern Medical University, Guangzhou, (510515), China
| | - Liang Zhao
- Nanfang hospital, Southern Medical University, Guangzhou, (510515), China
| | - Xueqing Yao
- Department of Gastrointestinal Surgery, Guangdong General Hospital, Guangzhou, (510120), China.
| | - Xuegang Sun
- The key laboratory of molecular biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou, (510515), China. .,Traditional Chinese Medicine Integrated Hospital, Southern Medical University, Guangdong, Guangzhou, (510315), China.
| |
Collapse
|
18
|
Smad proteins differentially regulate obesity-induced glucose and lipid abnormalities and inflammation via class-specific control of AMPK-related kinase MPK38/MELK activity. Cell Death Dis 2018; 9:471. [PMID: 29700281 PMCID: PMC5920110 DOI: 10.1038/s41419-018-0489-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/16/2022]
Abstract
Smad proteins have been implicated in metabolic processes, but little is known about how they regulate metabolism. Because Smad 2, 3, 4, and 7 have previously been shown to interact with murine protein serine-threonine kinase 38 (MPK38), an AMP-activated protein kinase (AMPK)-related kinase that has been implicated in obesity-associated metabolic defects, we investigated whether Smad proteins regulate metabolic processes via MPK38. Smads2/3/4 increased, but Smad7 decreased, MPK38-mediated apoptosis signal-regulating kinase-1 (ASK1)/transforming growth factor-β (TGF-β)/p53 signaling. However, MPK38-mediated phosphorylation-defective Smad mutants (Smad2 S245A, Smad3 S204A, Smad4 S343A, and Smad7 T96A) had no such effect. In addition, Smads2/3/4 increased, but Smad7 decreased, the stability of MPK38. Consistent with this, Smads2/3/4 attenuated complex formation between MPK38 and its negative regulator thioredoxin (Trx), whereas Smad7 increased this complex formation. However, an opposite effect was observed on complex formation between MPK38 and its positive regulator zinc-finger-like protein 9 (ZPR9). When Smads were overexpressed in high-fat diet (HFD)-fed obese mice using an adenoviral delivery system, Smads2/3/4 improved, but Smad7 worsened, obesity-associated metabolic parameters and inflammation in a MPK38 phosphorylation-dependent manner. These findings suggest that Smad proteins have class-specific impacts on obesity-associated metabolism by differentially regulating MPK38 activity in diet-induced obese mice.
Collapse
|
19
|
Kekulandara DN, Nagi S, Seo H, Chow CS, Ahn YH. Redox-Inactive Peptide Disrupting Trx1-Ask1 Interaction for Selective Activation of Stress Signaling. Biochemistry 2018; 57:772-780. [PMID: 29261301 DOI: 10.1021/acs.biochem.7b01083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thioredoxin 1 (Trx1) and glutaredoxin 1 (Grx1) are two ubiquitous redox enzymes that are central for redox homeostasis but also are implicated in many other processes, including stress sensing, inflammation, and apoptosis. In addition to their enzymatic redox activity, a growing body of evidence shows that Trx1 and Grx1 play regulatory roles via protein-protein interactions with specific proteins, including Ask1. The currently available inhibitors of Trx1 and Grx1 are thiol-reactive electrophiles or disulfides that may suffer from low selectivity because of their thiol reactivity. In this report, we used a phage peptide library to identify a 7-mer peptide, 2GTP1, that binds to both Trx1 and Grx1. We further showed that a cell-permeable derivative of 2GTP1, TAT-2GTP1, disrupts the Trx1-Ask1 interaction, which induces Ask1 phosphorylation with subsequent activation of JNK, stabilization of p53, and reduced viability of cancer cells. Notably, as opposed to a disulfide-derived Trx1 inhibitor (PX-12), TAT-2GTP1 was selective for activating the Ask1 pathway without affecting other stress signaling pathways, such as endoplasmic reticulum stress and AMPK activation. Overall, 2GTP1 will serve as a useful probe for investigating protein interactions of Trx1.
Collapse
Affiliation(s)
- Dilini N Kekulandara
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Shima Nagi
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Hyosuk Seo
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
20
|
Pitner MK, Taliaferro JM, Dalby KN, Bartholomeusz C. MELK: a potential novel therapeutic target for TNBC and other aggressive malignancies. Expert Opin Ther Targets 2017; 21:849-859. [PMID: 28764577 DOI: 10.1080/14728222.2017.1363183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION There is an unmet need in triple-negative breast cancer (TNBC) patients for targeted therapies. Maternal embryonic leucine zipper kinase (MELK) is a promising target for inhibition based on the abundance of correlative and functional data supporting its role in various cancer types. Areas covered: This review endeavors to outline the role of MELK in cancer. Studies covering a range of biological functions including proliferation, apoptosis, cancer stem cell phenotypes, epithelial-to-mesenchymal transition, metastasis, and therapy resistance are discussed here in order to understand the potential of MELK as a clinically significant target for TNBC patients. Expert opinion: Targeting MELK may offer a novel therapeutic opportunity in TNBC and other cancers. Despite the abundance of correlative data, there is still much we do not know. There are a lack of potent, specific inhibitors against MELK, as well as an insufficient understanding of MELK's downstream substrates. Addressing these issues is the first step toward identifying a patient population that could benefit from MELK inhibition in combination with other therapies.
Collapse
Affiliation(s)
- Mary Kathryn Pitner
- a Section of Translational Breast Cancer Research, Department of Breast Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Juliana M Taliaferro
- b Division of Medicinal Chemistry , The University of Texas at Austin, College of Pharmacy , Austin , TX , USA
| | - Kevin N Dalby
- b Division of Medicinal Chemistry , The University of Texas at Austin, College of Pharmacy , Austin , TX , USA
| | - Chandra Bartholomeusz
- a Section of Translational Breast Cancer Research, Department of Breast Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
21
|
Ren X, Li C, Liu J, Zhang C, Fu Y, Wang N, Ma H, Lu H, Kong H, Kong L. Thioredoxin plays a key role in retinal neuropathy prior to endothelial damage in diabetic mice. Oncotarget 2017; 8:61350-61364. [PMID: 28977868 PMCID: PMC5617428 DOI: 10.18632/oncotarget.18134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
Diabetes is a chronic metabolic syndrome that results in changes in carbohydrate, lipid and protein metabolism. With diabetes for a long time, it increases the risk of diabetic retinopathy (DR) and long-term morbidity and mortality. Moreover, emerging evidence suggests that neuron damage occurs earlier than microvascular complications in DR patients, but the underlying mechanism is unclear. We investigated diabetes-induced retinal neuropathy and elucidated key molecular events to identify new therapeutic targets for the clinical treatment and prevention of DR. For in vivo studies, a high-fat diet and streptozotocin (STZ) injection were used to generate the diabetes model. Hematoxylin-eosin staining was used for morphological observations and measurements of the outer nuclear layer thickness. Electroretinography (ERG) was used to assess retinal function. For in vitro studies, Neuro2a cells were incubated in normal (5.5 mM) and high-glucose (30 mM) conditions. Flow cytometry assays were performed to analyze apoptosis. Additionally, real-time PCR and Western blotting analyses were carried out to determine gene and protein expression in vitro and in vivo. Taken together, the results indicated that retinal neuropathy occurred prior to endothelial damage induced by diabetes, and thioredoxin (Trx) plays a key role in this process. This underlying mechanism may be related to activation of the Trx/ASK1/p-p38/Trx-interacting protein pathway.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Chen Li
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Junli Liu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Chenghong Zhang
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yuzhen Fu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Nina Wang
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Haiying Ma
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Heyuan Lu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hui Kong
- Department of Otorhinolaryngology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Li Kong
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
22
|
Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017; 66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
23
|
Zinc finger protein ZPR9 functions as an activator of AMPK-related serine/threonine kinase MPK38/MELK involved in ASK1/TGF-β/p53 signaling pathways. Sci Rep 2017; 7:42502. [PMID: 28195154 PMCID: PMC5307367 DOI: 10.1038/srep42502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
Murine protein serine-threonine kinase 38 (MPK38), an AMP-activated protein kinase (AMPK)-related kinase, has been implicated in the induction of apoptosis signal-regulating kinase 1 (ASK1)-, transforming growth factor-β (TGF-β)-, and p53-mediated activity involved in metabolic homeostasis. Here, zinc finger protein ZPR9 was found to be an activator of MPK38. The association of MPK38 and ZPR9 was mediated by cysteine residues present in each of these two proteins, Cys269 and Cys286 of MPK38 and Cys305 and Cys308 of ZPR9. MPK38 phosphorylated ZPR9 at Thr252. Wild-type ZPR9, but not the ZPR9 mutant T252A, enhanced ASK1, TGF-β, and p53 function by stabilizing MPK38. The requirement of ZPR9 Thr252 phosphorylation was validated using CRISPR/Cas9-mediated ZPR9 (T252A) knockin cell lines. The knockdown of endogenous ZPR9 showed an opposite trend, resulting in the inhibition of MPK38-dependent ASK1, TGF-β, and p53 function. This effect was also demonstrated in mouse embryonic fibroblast (MEF) cells that were haploinsufficient (+/-) for ZPR9, NIH 3T3 cells with inducible knockdown of ZPR9, and CRISPR/Cas9-mediated ZPR9 knockout cells. Furthermore, high-fat diet (HFD)-fed mice displayed reduced MPK38 kinase activity and ZPR9 expression compared to that in mice on control chow, suggesting that ZPR9 acts as a physiological activator of MPK38 that may participate in obesity.
Collapse
|
24
|
Jiang M, Yu Y, Luo J, Gao Q, Zhang L, Wang Q, Zhao J. Bone Marrow-Derived Mesenchymal Stem Cells Expressing Thioredoxin 1 Attenuate Bleomycin-Induced Skin Fibrosis and Oxidative Stress in Scleroderma. J Invest Dermatol 2017; 137:1223-1233. [PMID: 28132855 DOI: 10.1016/j.jid.2017.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 11/19/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disorder that affects multiple organs. It is characterized by a thickening of the dermis and connective tissue caused by collagen accumulation, and vascular injuries that induce hypoxia. The present study investigated the therapeutic potential of bone marrow-derived mesenchymal stem cells (BMSCs) expressing thioredoxin 1 (Trx-1) in treating SSc-mediated skin disease after transplantation into a bleomycin-induced murine model. Mice with bleomycin-induced SSc were subcutaneously injected with BMSCs or Trx-1-overexpressing BMSCs and exposed to hypoxic conditions for 48 hours. Two weeks later, skin tissue samples were collected to assess fibrosis, oxidative stress, and angiogenesis by western blotting, ELISA, and histologic and immunofluorescence approaches. In vivo experiments showed that Trx-1-overexpressing BMSCs inhibited hypoxia-induced apoptosis and inhibited fibrosis under hypoxic conditions, possibly by downregulating transforming growth factor-β. Trx-1-overexpressing BMSCs also promoted the formation of tubular-like structures by endothelial progenitor cells, indicating that Trx-1 can promote angiogenesis in bleomycin-induced SSc. These results demonstrate that the transplantation of Trx-1-overexpressing BMSCs restored normal skin tissue in a mouse model of bleomycin-induced SSc, highlighting the therapeutic potential of engineered BMSCs for treating SSc.
Collapse
Affiliation(s)
- Miao Jiang
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiwu Yu
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingying Luo
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingyun Gao
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lili Zhang
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiangxiong Wang
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Manna A, De Sarkar S, De S, Bauri AK, Chattopadhyay S, Chatterjee M. Impact of MAPK and PI3K/AKT signaling pathways on Malabaricone-A induced cytotoxicity in U937, a histiocytic lymphoma cell line. Int Immunopharmacol 2016; 39:34-40. [DOI: 10.1016/j.intimp.2016.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 01/24/2023]
|
26
|
Patwardhan RS, Sharma D, Checker R, Thoh M, Sandur SK. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance. Free Radic Res 2016; 49:1218-32. [PMID: 26021764 DOI: 10.3109/10715762.2015.1056180] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ionizing radiation (IR)-induced oxidative stress in tumor cells is effectively managed by constitutive and inducible antioxidant defense systems. This study was initiated to understand the relative contribution of different redox regulatory systems in determining the tumor radio-resistance. In this study, human T-cell lymphoma (Jurkat) cells were exposed to IR (4 Gy) and monitored for the spatio-temporal changes in cellular redox regulatory parameters. We monitored the changes in the levels of reactive oxygen species (ROS) (total, mitochondrial, primary, and secondary), thiols (total, surface, and intracellular), GSH/GSSG ratio, antioxidant enzyme activity viz. thioredoxin (Trx), Trx reductase (TrxR), glutathione peroxidase, and glutathione reductase with respect to time. We have also measured protein glutathionylation. We observed that tumor cells mount a biphasic response after IR exposure which can be divided into early (0-6 h) and late (16-48 h) responses in terms of changes in cellular redox parameters. During early response, constitutively active GSH and Trx systems respond to restore cellular redox balance to pre-exposure levels and help in activation of redox-sensitive transcription factor Nrf-2. During late response, increase in the levels of antioxidants GSH and Trx rescue cells against IR-mediated damage. We observed that disruption of either glutathione or thioredoxin metabolism led to partial impairment of ability of cells to survive against IR-induced damage. But simultaneous disruption of both the pathways significantly increased radio sensitivity of Jurkat cells. This highlighted the importance of these two antioxidant pathways in regulating redox homeostasis under conditions of IR-induced oxidative stress.
Collapse
Affiliation(s)
- R S Patwardhan
- a Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre , Trombay, Mumbai , India
| | | | | | | | | |
Collapse
|
27
|
Seong HA, Manoharan R, Ha H. Coordinate Activation of Redox-Dependent ASK1/TGF-β Signaling by a Multiprotein Complex (MPK38, ASK1, SMADs, ZPR9, and TRX) Improves Glucose and Lipid Metabolism in Mice. Antioxid Redox Signal 2016; 24:434-52. [PMID: 26421442 DOI: 10.1089/ars.2015.6325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS To explore the molecular connections between redox-dependent apoptosis signal-regulating kinase 1 (ASK1) and transforming growth factor-β (TGF-β) signaling pathways and to examine the physiological processes in which coordinated regulation of these two signaling pathways plays a critical role. RESULTS We provide evidence that the ASK1 and TGF-β signaling pathways are interconnected by a multiprotein complex harboring murine protein serine-threonine kinase 38 (MPK38), ASK1, Sma- and Mad-related proteins (SMADs), zinc-finger-like protein 9 (ZPR9), and thioredoxin (TRX) and demonstrate that the activation of either ASK1 or TGF-β activity is sufficient to activate both the redox-dependent ASK1 and TGF-β signaling pathways. Physiologically, the restoration of the downregulated activation levels of ASK1 and TGF-β signaling in genetically and diet-induced obese mice by adenoviral delivery of SMAD3 or ZPR9 results in the amelioration of adiposity, hyperglycemia, hyperlipidemia, and impaired ketogenesis. INNOVATION AND CONCLUSION Our data suggest that the multiprotein complex linking ASK1 and TGF-β signaling pathways may be a potential target for redox-mediated metabolic complications.
Collapse
Affiliation(s)
- Hyun-A Seong
- Department of Biochemistry, School of Life Sciences, Chungbuk National University , Cheongju, Korea
| | - Ravi Manoharan
- Department of Biochemistry, School of Life Sciences, Chungbuk National University , Cheongju, Korea
| | - Hyunjung Ha
- Department of Biochemistry, School of Life Sciences, Chungbuk National University , Cheongju, Korea
| |
Collapse
|
28
|
Sadeghirizi A, Yazdanparast R, Aghazadeh S. Combating trastuzumab resistance by targeting thioredoxin-1/PTEN interaction. Tumour Biol 2015; 37:6737-47. [DOI: 10.1007/s13277-015-4424-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/10/2015] [Indexed: 01/30/2023] Open
|
29
|
Cha JY, Kim WY, Kang SB, Kim JI, Baek D, Jung IJ, Kim MR, Li N, Kim HJ, Nakajima M, Asami T, Sabir JSM, Park HC, Lee SY, Bohnert HJ, Bressan RA, Pardo JM, Yun DJ. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nat Commun 2015; 6:8041. [PMID: 26314500 PMCID: PMC4560777 DOI: 10.1038/ncomms9041] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/11/2015] [Indexed: 11/10/2022] Open
Abstract
YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sun Bin Kang
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Im Kim
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Dongwon Baek
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - In Jung Jung
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Mi Ri Kim
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ning Li
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.,Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Jamal S M Sabir
- Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Hyeong Cheol Park
- Department of Ecological Adaptation, National Institute of Ecology, Seocheon 325-813, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hans J Bohnert
- Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ray A Bressan
- Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jose M Pardo
- Instituto de Recursos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Sevilla 41012, Spain
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| |
Collapse
|
30
|
Seong HA, Manoharan R, Ha H. A crucial role for the phosphorylation of STRAP at Ser(188) by MPK38 in STRAP-dependent cell death through ASK1, TGF-β, p53, and PI3K/PDK1 signaling pathways. Cell Cycle 2015; 13:3357-74. [PMID: 25485581 DOI: 10.4161/15384101.2014.952165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Serine-threonine kinase receptor-associated protein (STRAP) is a TGF-β receptor-interacting protein that participates in the regulation of cell proliferation and cell death in response to various stresses. Here, we demonstrate that STRAP phosphorylation plays an important role in determining the pro- or anti-apoptotic function of STRAP. Murine protein serine/threonine kinase 38 (MPK38) phosphorylates STRAP at Ser(188) via direct interaction. Complex formation between STRAP and MPK38 is mediated by Cys(152) and Cys(270) of STRAP and Cys(339) and Cys(377) of MPK38, suggesting the redox dependency of this interaction. MPK38-mediated STRAP Ser(188) phosphorylation contributes to the pro-apoptotic function of STRAP by modulating key steps in STRAP-dependent ASK1, TGF-β, p53, and PI3K/PDK1 signaling pathways. Moreover, knockdown of endogenous MPK38 using an inducible MPK38 shRNA system and in vivo activation of MPK38 by treatment of HEK293 and STRAP-null MEF cells with 1-chloro-2,4-dinitrobenzene (DNCB), a specific inhibitor of Trx reductase, provide evidence that STRAP Ser(188) phosphorylation plays a key role in STRAP-dependent cell death. Adenoviral delivery of MPK38 in mice also demonstrates that STRAP Ser(188) phosphorylation in the liver is tightly associated with cell death and proliferation through ASK1, TGF-β, p53, and PI3K/PDK1 pathways, resulting in apoptotic cell death.
Collapse
Affiliation(s)
- Hyun-A Seong
- a Department of Biochemistry; School of Life Sciences ; Chungbuk National University ; Cheongju , Republic of Korea
| | | | | |
Collapse
|
31
|
Ren X, Ma H, Qiu Y, Liu B, Qi H, Li Z, Kong H, Kong L. The downregulation of thioredoxin accelerated Neuro2a cell apoptosis induced by advanced glycation end product via activating several pathways. Neurochem Int 2015; 87:128-35. [PMID: 26142569 DOI: 10.1016/j.neuint.2015.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 06/02/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022]
Abstract
Thioredoxin (Trx), a 12 kDa protein, has different functions in different cellular environments, playing important anti-oxidative and anti-apoptotic roles and regulating the expression of transcription factors. Advanced glycation end products (AGEs) are a heterogeneous group of irreversible adducts from glucose-protein condensation reactions and are considered crucial to the development of diabetic nephropathy, retinopathy, neurodegeneration and atherosclerosis. The aim of this study was to use a Trx inhibitor to investigate the effects and mechanism of Trx down-regulation on AGE-induced Neuro2a cell apoptosis. Neuro2a cells were cultured in vitro and treated with different conditions. The apoptosis and proliferation of Neuro2a cells were detected using flow cytometry, DNA-Ladder and CCK8 assays. Rho 123 was used to detect the mitochondrial membrane potential. ROS generation and caspase3 activity were detected using a DCFH-DA probe and micro-plate reader. Western blotting and real-time PCR were used to detect the expression of proteins and genes. We found that the down-regulation of thioredoxin could accelerate AGE-induced apoptosis in Neuro2a cells. A possible underlying mechanism is that the down-regulation of thioredoxin stimulated the up-regulation of ASK1, p-JNK, PTEN, and Txnip, as well as the down-regulation of p-AKT, ultimately increasing ROS levels and caspase3 activity.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Haiying Ma
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Yuanyuan Qiu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Bo Liu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Hui Qi
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Zeyu Li
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Hui Kong
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China.
| | - Li Kong
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China.
| |
Collapse
|
32
|
Deletion of thioredoxin interacting protein (TXNIP) augments hyperoxia-induced vaso-obliteration in a mouse model of oxygen induced-retinopathy. PLoS One 2014; 9:e110388. [PMID: 25329456 PMCID: PMC4199686 DOI: 10.1371/journal.pone.0110388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023] Open
Abstract
We have recently shown that thioredoxin interacting protein (TXNIP) is required for VEGF-mediated VEGFR2 receptor activation and angiogenic signal. Retinas from TXNIP knockout mice (TKO) exhibited higher cellular antioxidant defense compared to wild type (WT). This study aimed to examine the impact of TXNIP deletion on hyperoxia-induced vaso-obliteration in ischemic retinopathy. TKO and WT pups were subjected to oxygen-induced retinopathy model. Retinal central capillary dropout was measured at p12. Retinal redox and nitrative state were assessed by reduced-glutathione (GSH), thioredoxin reductase activity and nitrotyrosine formation. Western blot and QT-PCR were used to assess VEGF, VEGFR-2, Akt, iNOS and eNOS, thioredoxin expression, ASK-1 activation and downstream cleaved caspase-3 and PARP in retinal lysates. Retinas from TKO mice exposed to hyperoxia showed significant increases (1.5-fold) in vaso-obliteration as indicated by central capillary drop out area compared to WT. Retinas from TKO showed minimal nitrotyrosine levels (10% of WT) with no change in eNOS or iNOS mRNA expression. There was no change in levels of VEGF or activation of VEGFR2 and its downstream Akt in retinas from TKO and WT. In comparison to WT, retinas from TKO showed significantly higher level of GSH and thioredoxin reductase activity in normoxia but comparable levels under hyperoxia. Exposure of TKO to hyperoxia significantly decreased the anti-apoptotic thioredoxin protein (∼50%) level compared with WT. This effect was associated with a significant increase in activation of the apoptotic ASK-1, PARP and caspase-3 pathway. Our results showed that despite comparable VEGF level and signal in TKO, exposure to hyperoxia significantly decreased Trx expression compared to WT. This effect resulted in liberation and activation of the apoptotic ASK-1 signal. These findings suggest that TXNIP is required for endothelial cell survival and homeostasis especially under stress conditions including hyperoxia.
Collapse
|