1
|
He Q, Jin H, Shen J. Kaempferol Extends Male Lifespan Under Blue Light Irradiation in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70001. [PMID: 39449366 DOI: 10.1002/arch.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Short-wavelength blue light is ubiquitous in daily life and has a lasting destructive influence. Its potential harm to biological health is significant. This study used Drosophila as a model organism to investigate the protective effects of kaempferol, a flavonoid, against the toxicity of blue light. It also examined its physiological effects on Drosophila under blue light irradiation. In this experiment, fruit flies were fed with three different concentrations of kaempferol solutions (0.1, 0.01, and 0.001 mol/L) dissolved in food. The survival rate and physiological indexes of Drosophila were investigated under blue light irradiation of 2500 lux. The results showed that 0.1 mol/L kaempferol increased the activity of male flies during the day and significantly extended the male survival time under blue light irradiation. However, the study found that kaempferol did not significantly prolong the survival time of Drosophila in the oxidative stress experiment, and no significant difference was observed in the feeding experiment. In summary, our research found that kaempferol, at the concentration of 0.1 mol/L, has a protective effect on Drosophila under blue light irradiation, potentially achieved through alterations in circadian rhythm.
Collapse
Affiliation(s)
- Qimeng He
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Hui Jin
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Roubeix C, Nous C, Augustin S, Ronning KE, Mathis T, Blond F, Lagouge-Roussey P, Crespo-Garcia S, Sullivan PM, Gautier EL, Reichhart N, Sahel JA, Burns ME, Paques M, Sørensen TL, Strauss O, Guillonneau X, Delarasse C, Sennlaub F. Splenic monocytes drive pathogenic subretinal inflammation in age-related macular degeneration. J Neuroinflammation 2024; 21:22. [PMID: 38233865 PMCID: PMC10792815 DOI: 10.1186/s12974-024-03011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Age-related macular degeneration (AMD) is invariably associated with the chronic accumulation of activated mononuclear phagocytes in the subretinal space. The mononuclear phagocytes are composed of microglial cells but also of monocyte-derived cells, which promote photoreceptor degeneration and choroidal neovascularization. Infiltrating blood monocytes can originate directly from bone marrow, but also from a splenic reservoir, where bone marrow monocytes develop into angiotensin II receptor (ATR1)+ splenic monocytes. The involvement of splenic monocytes in neurodegenerative diseases such as AMD is not well understood. Using acute inflammatory and well-phenotyped AMD models, we demonstrate that angiotensin II mobilizes ATR1+ splenic monocytes, which we show are defined by a transcriptional signature using single-cell RNA sequencing and differ functionally from bone marrow monocytes. Splenic monocytes participate in the chorio-retinal infiltration and their inhibition by ATR1 antagonist and splenectomy reduces the subretinal mononuclear phagocyte accumulation and pathological choroidal neovascularization formation. In aged AMD-risk ApoE2-expressing mice, a chronic AMD model, ATR1 antagonist and splenectomy also inhibit the chronic retinal inflammation and associated cone degeneration that characterizes these mice. Our observation of elevated levels of plasma angiotensin II in AMD patients, suggests that similar events take place in clinical disease and argue for the therapeutic potential of ATR1 antagonists to inhibit splenic monocytes for the treatment of blinding AMD.
Collapse
Affiliation(s)
- Christophe Roubeix
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Experimental Ophthalmology, Department of Ophthalmology, Charitéplatz 1, 10117, Berlin, Germany
| | - Caroline Nous
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | - Kaitryn E Ronning
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | - Thibaud Mathis
- Service d'Ophtalmologie, Centre Hospitalier Universitaire de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004, Lyon, France
| | - Frédéric Blond
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | | | - Sergio Crespo-Garcia
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Experimental Ophthalmology, Department of Ophthalmology, Charitéplatz 1, 10117, Berlin, Germany
| | - Patrick M Sullivan
- Department of Medicine, Centers for Aging and Geriatric Research Education and Clinical Center, Durham Veteran Affairs Medical Center, Duke University, Durham, NC, 27710, USA
| | - Emmanuel L Gautier
- Sorbonne Université, INSERM, UMR_S 1166, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Nadine Reichhart
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Experimental Ophthalmology, Department of Ophthalmology, Charitéplatz 1, 10117, Berlin, Germany
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | - Marie E Burns
- Center for Neuroscience, Department of Cell Biology and Human Anatomy, Department of Ophthalmology and Vision Science, University of California, Davis, CA, 95616, USA
| | - Michel Paques
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS Clinical Investigation Center 1423, Paris, France
| | - Torben Lykke Sørensen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital Roskilde, Roskilde, Denmark
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Olaf Strauss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Experimental Ophthalmology, Department of Ophthalmology, Charitéplatz 1, 10117, Berlin, Germany
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | - Cécile Delarasse
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Experimental Ophthalmology, Department of Ophthalmology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Retinal Pigment Epithelial Abnormality and Choroidal Large Vascular Flow Imbalance Are Associated with Choriocapillaris Flow Deficits in Age-Related Macular Degeneration in Fellow Eyes. J Clin Med 2023; 12:jcm12041360. [PMID: 36835897 PMCID: PMC9965486 DOI: 10.3390/jcm12041360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Choriocapillaris flow deficits detected on optical coherence tomography angiographs were retrospectively analyzed. In 38 age-related macular degeneration (AMD) fellow eyes, without fundus findings (26 men, 71.7 ± 1.9 years old), and 22 control eyes (11 men, 69.4 ± 1.8), the choriocapillaris flow area (CCFA) ratio and coefficient of variation (CV) of the CCFA ratio (which represented the heterogeneity of the ratio), negatively and positively correlated with age (all p < 0.01), respectively. Moreover, the respective mean values were lower (p = 0.0031) and greater (p = 0.002) in AMD fellow eyes than in the control eyes. The high-risk condition of AMD fellow eyes was defined by a CCFA ratio <58.5%, and the CV of the CCFA ratio ≥0.165 (odds ratio (OR), 5.408; 95% confidence interval (CI): 1.117-21.118, p = 0.035, after adjusting for age and sex) was related to the presence of fundus autofluorescence abnormality (OR, 16.440; 95% CI, 1.262-214.240; p = 0.033) and asymmetrically dilated choroidal large vasculature (OR, 4.176; 95% CI, 1.057-16.503; p = 0.042), after adjusting for age and sex. The presence of fundus autofluorescence abnormality indicated a retinal pigment epithelium (RPE) abnormality. The RPE volume was reduced in the latter eye group, particularly in the thinner choroidal vasculature. In addition to aging, RPE abnormality and choroidal large vascular flow imbalances were associated with exacerbated heterogeneous choriocapillaris flow deficits in AMD fellow eyes without macular neovascularization.
Collapse
|
4
|
Zhou YY, Zhou TC, Chen N, Zhou GZ, Zhou HJ, Li XD, Wang JR, Bai CF, Long R, Xiong YX, Yang Y. Risk factor analysis and clinical decision tree model construction for diabetic retinopathy in Western China. World J Diabetes 2022; 13:986-1000. [PMID: 36437866 PMCID: PMC9693737 DOI: 10.4239/wjd.v13.i11.986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the driving force of blindness in patients with type 2 diabetes mellitus (T2DM). DR has a high prevalence and lacks effective therapeutic strategies, underscoring the need for early prevention and treatment. Yunnan province, located in the southwest plateau of China, has a high pre-valence of DR and an underdeveloped economy.
AIM To build a clinical prediction model that will enable early prevention and treatment of DR.
METHODS In this cross-sectional study, 1654 Han population with T2DM were divided into groups without (n = 826) and with DR (n = 828) based on fundus photography. The DR group was further subdivided into non-proliferative DR (n = 403) and proliferative DR (n = 425) groups. A univariate analysis and logistic regression analysis were conducted and a clinical decision tree model was constructed.
RESULTS Diabetes duration ≥ 10 years, female sex, standing- or supine systolic blood pressure (SBP) ≥ 140 mmHg, and cholesterol ≥ 6.22 mmol/L were risk factors for DR in logistic regression analysis (odds ratio = 2.118, 1.520, 1.417, 1.881, and 1.591, respectively). A greater severity of chronic kidney disease (CKD) or hemoglobin A 1c increased the risk of DR in patients with T2DM. In the decision tree model, diabetes duration was the primary risk factor affecting the occurrence of DR in patients with T2DM, followed by CKD stage, supine SBP, standing SBP, and body mass index (BMI). DR classification outcomes were obtained by evaluating standing SBP or BMI according to the CKD stage for diabetes duration < 10 years and by evaluating CKD stage according to the supine SBP for diabetes duration ≥ 10 years.
CONCLUSION Based on the simple and intuitive decision tree model constructed in this study, DR classification outcomes were easily obtained by evaluating diabetes duration, CKD stage, supine or standing SBP, and BMI.
Collapse
Affiliation(s)
- Yuan-Yuan Zhou
- Department of Endocrinology and Metabolism, The Sixth Affiliated Hospital of Kunming Medical University, The People’s Hospital of Yuxi City, Yuxi 653100, Yunnan Province, China
| | - Tai-Cheng Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan Province, China
| | - Nan Chen
- Department of Endocrinology and Metabolism, The Frist People’s Hospital of Anning City, Anning City 650300, Yunnan Province, China
| | - Guo-Zhong Zhou
- Department of Endocrinology and Metabolism, The Frist People’s Hospital of Anning City, Anning City 650300, Yunnan Province, China
| | - Hong-Jian Zhou
- Department of Endocrinology and Metabolism, The Sixth Affiliated Hospital of Kunming Medical University, The People’s Hospital of Yuxi City, Yuxi 653100, Yunnan Province, China
| | - Xing-Dong Li
- Department of Endocrinology and Metabolism, The Sixth Affiliated Hospital of Kunming Medical University, The People’s Hospital of Yuxi City, Yuxi 653100, Yunnan Province, China
| | - Jin-Rui Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan Province, China
| | - Chao-Fang Bai
- Department of Endocrinology and Metabolism, Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan Province, China
| | - Rong Long
- Department of Endocrinology and Metabolism, Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan Province, China
| | - Yu-Xin Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan Province, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan Province, China
| |
Collapse
|
5
|
Mushiga Y, Nagai N, Ozawa Y. Retinal circulation time/arm-to-retina time ratio in the fluorescein angiography to evaluate retina-specific hemodynamics. Sci Rep 2022; 12:17457. [PMID: 36261478 PMCID: PMC9581933 DOI: 10.1038/s41598-022-21117-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 01/12/2023] Open
Abstract
To evaluate dynamic circulatory flow in the retinal or choroidal circulatory disease, we retrospectively reviewed medical charts of 128 eyes of 128 patients who underwent video recorded fluorescein angiography (FA), at Department of Ophthalmology, St Luke's International Hospital, between April and September 2020. Mean age was 64.2 ± 14.0 (range 37-93) years, and 87 (67.9%) patients were men. Mean arm-to-retina (AR) time was 16.2 ± 4.1 s, and mean retinal circulation (RC) time was 10.9 ± 3.3 s. Mean RC time/AR time (RC/AR) ratio was 0.69 ± 0.22. AR time was correlated with age, whereas RC time was not. RC time was positively correlated with AR time (R = 0.360, P = 0.017). Moreover, mean RC time was significantly longer, and RC/AR ratio was greater, in the retinal-disease group after adjusting for age and sex. Patients who had an RC/AR ratio ≥ 0.8 more frequently presented with retinal diseases. RC time and RC/AR ratio were negatively correlated with systolic blood pressure only in the retinal-disease group. Given that AR time reflects systemic hemodynamics, RC time, which reflects local circulatory fluency, was influenced by the systemic circulatory condition. Moreover, RC/AR ratio revealed that circulatory changes peculiar to the retina may also be involved in retinal-disease pathogenesis. This study may help elucidate the mechanisms of retinal diseases and assist in diagnosis, although further studies are required.
Collapse
Affiliation(s)
- Yasuaki Mushiga
- grid.430395.8Department of Ophthalmology, St. Luke’s International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560 Japan ,grid.419588.90000 0001 0318 6320St. Luke’s International University, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560 Japan ,grid.26091.3c0000 0004 1936 9959Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Norihiro Nagai
- grid.430395.8Department of Ophthalmology, St. Luke’s International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560 Japan ,grid.419588.90000 0001 0318 6320St. Luke’s International University, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560 Japan ,grid.26091.3c0000 0004 1936 9959Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan ,grid.26091.3c0000 0004 1936 9959Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yoko Ozawa
- grid.430395.8Department of Ophthalmology, St. Luke’s International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560 Japan ,grid.419588.90000 0001 0318 6320St. Luke’s International University, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560 Japan ,grid.26091.3c0000 0004 1936 9959Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan ,grid.26091.3c0000 0004 1936 9959Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
6
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
7
|
Effects of Epigenetic Modification of PGC-1α by a Chemical Chaperon on Mitochondria Biogenesis and Visual Function in Retinitis Pigmentosa. Cells 2022; 11:cells11091497. [PMID: 35563803 PMCID: PMC9099608 DOI: 10.3390/cells11091497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary blinding disease characterized by gradual photoreceptor death, which lacks a definitive treatment. Here, we demonstrated the effect of 4-phenylbutyric acid (PBA), a chemical chaperon that can suppress endoplasmic reticulum (ER) stress, in P23H mutant rhodopsin knock-in RP models. In the RP models, constant PBA treatment led to the retention of a greater number of photoreceptors, preserving the inner segment (IS), a mitochondrial- and ER-rich part of the photoreceptors. Electroretinography showed that PBA treatment preserved photoreceptor function. At the early point, ER-associated degradation markers, xbp1s, vcp, and derl1, mitochondrial kinetic-related markers, fis1, lc3, and mfn1 and mfn2, as well as key mitochondrial regulators, pgc-1α and tfam, were upregulated in the retina of the models treated with PBA. In vitro analyses showed that PBA upregulated pgc-1α and tfam transcription, leading to an increase in the mitochondrial membrane potential, cytochrome c oxidase activity, and ATP levels. Histone acetylation of the PGC-1α promoter was increased by PBA, indicating that PBA affected the mitochondrial condition through epigenetic changes. Our findings constituted proof of concept for the treatment of ER stress-related RP using PBA and revealed PBA’s neuroprotective effects, paving the way for its future clinical application.
Collapse
|
8
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
9
|
Guzmán Mendoza NA, Homma K, Osada H, Toda E, Ban N, Nagai N, Negishi K, Tsubota K, Ozawa Y. Neuroprotective Effect of 4-Phenylbutyric Acid against Photo-Stress in the Retina. Antioxidants (Basel) 2021; 10:1147. [PMID: 34356380 PMCID: PMC8301054 DOI: 10.3390/antiox10071147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Exposure to excessive visible light causes retinal degeneration and may influence the progression of retinal blinding diseases. However, there are currently no applied treatments. Here, we focused on endoplasmic reticulum (ER) stress, which can cause cellular degeneration and apoptosis in response to stress. We analyzed functional, histological, and molecular changes in the light-exposed retina and the effects of administering an ER-stress inhibitor, 4-phenylbutyric acid (4-PBA), in mice. We found that light-induced visual function impairment related to photoreceptor cell loss and outer segment degeneration were substantially suppressed by 4-PBA administration, following attenuated photoreceptor apoptosis. Induction of retinal ER stress soon after light exposure, represented by upregulation of the immunoglobulin heavy chain binding protein (BiP) and C/EBP-Homologous Protein (CHOP), were suppressed by 4-PBA. Concurrently, light-induced oxidative stress markers, Nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme Oxygenase 1 (HO-1), and mitochondrial apoptotic markers, B-cell lymphoma 2 apoptosis regulator (Bcl-2)-associated death promoter (Bad), and Bcl-2-associated X protein (Bax), were suppressed by 4-PBA administration. Increased expression of glial fibrillary acidic protein denoted retinal neuroinflammation, and inflammatory cytokines were induced after light exposure; however, 4-PBA acted as an anti-inflammatory. Suppression of ER stress by 4-PBA may be a new therapeutic approach to suppress the progression of retinal neurodegeneration and protect visual function against photo-stress.
Collapse
Affiliation(s)
- Naymel Alejandra Guzmán Mendoza
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Norimitsu Ban
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
- Department of Ophthalmology, St. Luke’s International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
- Laboratory of Retinal Cell Biology, St. Luke’s International University, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Kazuo Tsubota
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
- Department of Ophthalmology, St. Luke’s International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
- Laboratory of Retinal Cell Biology, St. Luke’s International University, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
| |
Collapse
|
10
|
Nagai N, Kawashima H, Toda E, Homma K, Osada H, Guzman NA, Shibata S, Uchiyama Y, Okano H, Tsubota K, Ozawa Y. Renin-angiotensin system impairs macrophage lipid metabolism to promote age-related macular degeneration in mouse models. Commun Biol 2020; 3:767. [PMID: 33299105 PMCID: PMC7725839 DOI: 10.1038/s42003-020-01483-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome, a condition involving obesity and hypertension, increases the risk of aging-associated diseases such as age-related macular degeneration (AMD). Here, we demonstrated that high-fat diet (HFD)-fed mice accumulated oxidized low-density lipoprotein (ox-LDL) in macrophages through the renin–angiotensin system (RAS). The ox-LDL-loaded macrophages were responsible for visual impairment in HFD mice along with a disorder of the retinal pigment epithelium (RPE), which is required for photoreceptor outer segment renewal. RAS repressed ELAVL1, which reduced PPARγ, impeding ABCA1 induction to levels that are sufficient to excrete overloaded cholesterol within the macrophages. The ox-LDL-loaded macrophages expressed inflammatory cytokines and attacked the RPE. An antihypertensive drug, angiotensin II type 1 receptor (AT1R) blocker, resolved the decompensation of lipid metabolism in the macrophages and reversed the RPE condition and visual function in HFD mice. AT1R signaling could be a future therapeutic target for macrophage-associated aging diseases, such as AMD. Nagai et al. show that mice fed high-fat diet (HFD) accumulate oxidized low-density lipoprotein in macrophages through the renin–angiotensin system, which impairs visual function. They find that angiotensin II type 1 receptor (AT1R) improves the visual function of HFD mice, suggesting AT1R signaling as a potential therapeutic target for age-related macular degeneration.
Collapse
Affiliation(s)
- Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Naymel A Guzman
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, St. Luke's International Hospital, 9-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-8560, Japan. .,St. Luke's International University, 9-1 Akashi-Cho, Tokyo, 104-8560, Japan.
| |
Collapse
|
11
|
Ozawa Y. Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration. Redox Biol 2020; 37:101779. [PMID: 33172789 PMCID: PMC7767731 DOI: 10.1016/j.redox.2020.101779] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023] Open
Abstract
The retina continuously receives light to enable vision, and the related processes require a marked amount of energy. During active metabolism, reactive oxygen species (ROS) are generated in exchange. Although physiologically generated ROS may be removed by endogenous antioxidant systems, and the effects of oxidative stress may be recovered by repair systems to retain homeostasis and health, when ROS and oxidative stress exceed the capacity of the antioxidant and repair systems, the condition becomes pathological. Multiple mechanisms of oxidative stress and the effects of antioxidant and repair systems in the retina have long been analyzed using light-induced retinal degeneration models. Among the mechanisms, a positive feedback loop of oxidative stress and related inflammation may be involved in the pathogenesis of a blinding aging disease, age-related macular degeneration. Treatments for suppressing ROS and oxidative stress by administrating antioxidant products may support the tissue-protective function of antioxidant systems. Moreover, recent studies have proposed a new concept for maintaining homeostasis by supplying sufficient energy to activate the repair systems. The current review will help elucidate the influence of oxidative stress and guide future analyses to explore new therapeutic approaches for oxidative stress-mediated diseases. Vision formation requires marked amounts of energy and produces ROS. Balanced oxidative stress and antioxidant/repair systems determine cellular health. ROS-modified molecules affect multiple pathways to cause cell death and disorders. A positive feedback loop of oxidative stress/related inflammation may lead to AMD. Homeostasis can be retained by supplying enough energy to activate repair systems.
Collapse
Affiliation(s)
- Yoko Ozawa
- St Luke's International University, Department of Ophthalmology, St Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan; Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
12
|
Kawashima H, Ozawa Y, Toda E, Homma K, Osada H, Narimatsu T, Nagai N, Tsubota K. Neuroprotective and vision-protective effect of preserving ATP levels by AMPK activator. FASEB J 2020; 34:5016-5026. [PMID: 32090372 DOI: 10.1096/fj.201902387rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Progression of blinding diseases, such as age-related macular degeneration, is accelerated by light exposure. However, no particular intervention is applied to the photostress. Here, we report neuroprotective effects of the adenosine monophosphate (AMP)-activated protein kinase (AMPK) activator, 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), on light-induced visual function impairment, photoreceptor disorders and death in mice. Increase in retinal ATP levels in response to photostress was transient, because oxygen consumption rate (OCR) and cytochrome c oxidase (CcO) activity were reduced under photostress. However, AICAR treatment preserved OCR, CcO activity, and high levels of retinal ATP after light exposure. AMPK knockdown in the photoreceptor-derived cell line revealed that AMPK targeted CcO activity. Further, our data indicated that photostress reduced mitochondrial respiratory function and ATP levels, while AICAR treatment promoted neuronal survival and retained visual function, stabilizing ATP levels through preserved CcO activity. The current study has provided proof of concept for providing cells with sufficient energy to promote cell survival in the presence of cellular stress. This is in contrast to the previous reports which primarily investigated therapeutic approaches to suppress stress signals. Hence, stabilization of the ATP supply may serve as a novel therapeutic approach to support tissue survival under stress and prevent neurodegeneration.
Collapse
Affiliation(s)
- Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
| | - Toshio Narimatsu
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Okamoto T, Kawashima H, Osada H, Toda E, Homma K, Nagai N, Imai Y, Tsubota K, Ozawa Y. Dietary Spirulina Supplementation Protects Visual Function From Photostress by Suppressing Retinal Neurodegeneration in Mice. Transl Vis Sci Technol 2019; 8:20. [PMID: 31788349 PMCID: PMC6871545 DOI: 10.1167/tvst.8.6.20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/29/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE We investigated whether daily consumption of Spirulina, an antioxidant generating cyanobacterial nutritional supplement, would suppress photostress-induced retinal damage and prevent vision loss in mice. METHODS Six-week-old male BALB/cAJcl mice were allowed constant access to either a standard or Spirulina-supplemented diet (20% Spirulina) that included the antioxidants, β-carotene and zeaxanthin, and proteins for 4 weeks. Following dark adaptation, mice were exposed to 3000-lux white light for 1 hour and returned to their cages. Visual function was analyzed by electroretinogram, and retinal histology by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated, deoxyuridine triphosphate nick-end labeling (TUNEL) assay, and immunohistochemistry. Retinal expression of proteins, reactive oxygen species (ROS), and mRNAs were measured using immunoblot analysis, enzyme-linked immunosorbent assay (ELISA), 2',7'-dichlorofluorescein-diacetate, or ROS Brite 700 Dyes, and real-time reverse-transcription polymerase chain reaction, respectively. RESULTS Light-induced visual function impairment was suppressed by constant Spirulina intake. Thinning of the photoreceptor layer and outer segments, photoreceptor cell death, decreased rhodopsin protein, and induction of glial fibrillary acidic protein were ameliorated in the Spirulina-intake group. Increased retinal ROS levels after light exposure were reduced by Spirulina supplementation. Light-induced superoxide dismutase 2 and heme oxygenase-1 mRNAs in the retina, and Nrf2 activation in the photoreceptor cells, were preserved with Spirulina supplementation, despite reduced ROS levels, suggesting two pathways for suppressing ROS, scavenging and induction of endogenous antioxidative enzymes. Light-induced MCP-1 retinal mRNA and proteins were also suppressed by Spirulina. CONCLUSIONS Spirulina ingestion protected retinal photoreceptors from photostress in the retina. TRANSLATIONAL RELEVANCE Spirulina has potential as a nutrient supplement to prevent vision loss related to oxidative damage in the future.
Collapse
Affiliation(s)
- Tomohiro Okamoto
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Reichhart N, Figura A, Skosyrski S, Strauß O. Control of the retinal local RAS by the RPE: An interface to systemic RAS activity. Exp Eye Res 2019; 189:107838. [PMID: 31622617 DOI: 10.1016/j.exer.2019.107838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/19/2019] [Accepted: 10/11/2019] [Indexed: 01/07/2023]
Abstract
As many other organs, the retina has a local renin-angiotensin-system (RAS). All main elements of the RAS are active in the retina: renin, angiotensinogen, angiotensin-converting enzymes. The functional role of the intraretinal RAS is not fully understood. So far, histological and functional analysis point to a regulation of ganglion cell activity and maybe also of bipolar cell activity, but it is not clear how RAS contributes to retinal signal processing. In contrast to local RAS in other organs, the retinal RAS is clearly separated from the systemic RAS. The angiotensin-2 (AngII)/AngI ratio in the retina is different to that in the plasma. However, it appears that the retinal pigment epithelium (RPE), that forms the outer blood/retina barrier, is a major regulator of the retinal RAS by producing renin. Interestingly, comparable to the kidney, the renin production in the RPE is under control of the angiotensin-2 receptor type-1 (AT1). AT1 localizes to the basolateral membrane of the RPE and faces the blood side of the blood/retina barrier. Increases in systemic AngII reduce renin production in the RPE and therefore decrease the intraretinal RAS activity. The relevance of the local RAS for retinal function remains unclear. Nevertheless, it is of fundamental significance to understand the pathology of systemically induced retinal diseases such as hypertension or diabetes.
Collapse
Affiliation(s)
- Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany
| | - Aleksandar Figura
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany
| | - Sergej Skosyrski
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
16
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
17
|
Nakamura M, Kuse Y, Tsuruma K, Shimazawa M, Hara H. The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model. Biol Pharm Bull 2018; 40:1219-1225. [PMID: 28769003 DOI: 10.1248/bpb.b16-01008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of study was to establish a mouse model of blue light emitting diode (LED) light-induced retinal damage and to evaluate the effects of the antioxidant N-acetylcysteine (NAC). Mice were exposed to 400 or 800 lx blue LED light for 2 h, and were evaluated for retinal damage 5 d later by electroretinogram amplitude and outer nuclear layer (ONL) thickness. Additionally, we investigated the effect of blue LED light exposure on shorts-wave-sensitive opsin (S-opsin), and rhodopsin expression by immunohistochemistry. Blue LED light induced light intensity dependent retinal damage and led to collapse of S-opsin and altered rhodopsin localization from inner and outer segments to ONL. Conversely, NAC administered at 100 or 250 mg/kg intraperitoneally twice a day, before dark adaptation and before light exposure. NAC protected the blue LED light-induced retinal damage in a dose-dependent manner. Further, blue LED light-induced decreasing of S-opsin levels and altered rhodopsin localization, which were suppressed by NAC. We established a mouse model of blue LED light-induced retinal damage and these findings indicated that oxidative stress was partially involved in blue LED light-induced retinal damage.
Collapse
Affiliation(s)
- Maho Nakamura
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Yoshiki Kuse
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Kazuhiro Tsuruma
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| |
Collapse
|
18
|
Neuroprotective role of retinal SIRT3 against acute photo-stress. NPJ Aging Mech Dis 2017; 3:19. [PMID: 29214052 PMCID: PMC5712523 DOI: 10.1038/s41514-017-0017-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022] Open
Abstract
SIRT3 is a key regulator of mitochondrial reactive oxygen species as well as mitochondrial function. The retina is one of the highest energy-demanding tissues, in which the regulation of reactive oxygen species is critical to prevent retinal neurodegeneration. Although previous reports have demonstrated that SIRT3 is highly expressed in the retina and important in neuroprotection, function of SIRT3 in regulating reactive oxygen species in the retina is largely unknown. In this study, we investigated the role of retinal SIRT3 in a light-induced retinal degeneration model using SIRT3 knockout mice. We demonstrate that SIRT3 deficiency causes acute reactive oxygen species accumulation and endoplasmic reticulum stress in the retina after the light exposure, which leads to increased photoreceptor death, retinal thinning, and decreased retinal function. Using a photoreceptor-derived cell line, we revealed that reactive oxygen species were the upstream initiators of endoplasmic reticulum stress. Under SIRT3 knockdown condition, we demonstrated that decreased superoxide dismutase 2 activity led to elevated intracellular reactive oxygen species. These studies have helped to elucidate the critical role of SIRT3 in photoreceptor neuronal survival, and suggest that SIRT3 might be a therapeutic target for oxidative stress-induced retinal disorders.
Collapse
|
19
|
Xue L, Zeng Y, Li Q, Li Y, Li Z, Xu H, Yin Z. Transplanted olfactory ensheathing cells restore retinal function in a rat model of light-induced retinal damage by inhibiting oxidative stress. Oncotarget 2017; 8:93087-93102. [PMID: 29190980 PMCID: PMC5696246 DOI: 10.18632/oncotarget.21857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
There is still not an effective treatment for continuous retinal light exposure and subsequent photoreceptor degeneration. Olfactory ensheathing cell (OEC) transplantation has been shown to be neuroprotective in spinal cord, and optic nerve injury and retinitis pigmentosa. However, whether OECs protect rat photoreceptors against light-induced damage and how this may work is unclear. Thus, to elucidate this mechanism, purified rat OECs were grafted into the subretinal space of a Long-Evans rat model with light-induced photoreceptor damage. Light exposure decreased a- and b- wave amplitudes and outer nuclear layer (ONL) thickness, whereas the ONL of rats exposed to light for 24 h after having received OEC transplants in their subretinal space was thicker than the PBS control and untreated groups. A- and b- wave amplitudes from electroretinogram of OEC-transplanted rats were maintained until 8 weeks post OEC transplantation. Also, transplanted OECs inhibited formation of reactive oxygen species in retinas exposed to light. In vitro experiments showed that OECs had more total antioxidant capacity in a co-cultured 661W photoreceptor cell line, and cells were protected from damage induced by hydrogen-peroxide. Thus, transplanted OECs preserved retinal structure and function in a rat model of light-induced degeneration by suppressing retinal oxidative stress reactions.
Collapse
Affiliation(s)
- Langyue Xue
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zhengya Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zhengqin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
20
|
Osada H, Okamoto T, Kawashima H, Toda E, Miyake S, Nagai N, Kobayashi S, Tsubota K, Ozawa Y. Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina. PLoS One 2017; 12:e0178627. [PMID: 28570634 PMCID: PMC5453571 DOI: 10.1371/journal.pone.0178627] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/16/2017] [Indexed: 12/03/2022] Open
Abstract
Excessive exposure to light promotes degenerative and blinding retinal diseases such as age-related macular degeneration and retinitis pigmentosa. However, the underlying mechanisms of photo-induced retinal degeneration are not fully understood, and a generalizable preventive intervention has not been proposed. Bilberry extract is an antioxidant-rich supplement that ameliorates ocular symptoms. However, its effects on photo-stressed retinas have not been clarified. In this study, we examined the neuroprotective effects of bilberry extract against photo-stress in murine retinas. Light-induced visual function impairment recorded by scotopic and phototopic electroretinograms showing respective rod and cone photoreceptor function was attenuated by oral administration of bilberry extract through a stomach tube in Balb/c mice (750 mg/kg body weight). Bilberry extract also suppressed photo-induced apoptosis in the photoreceptor cell layer and shortening of the outer segments of rod and cone photoreceptors. Levels of photo-induced reactive oxygen species (ROS), oxidative and endoplasmic reticulum (ER) stress markers, as measured by real-time reverse transcriptase polymerase chain reaction, were reduced by bilberry extract treatment. Reduction of ROS by N-acetyl-L-cysteine, a well-known antioxidant also suppressed ER stress. Immunohistochemical analysis of activating transcription factor 4 expression showed the presence of ER stress in the retina, and at least in part, in Müller glial cells. The photo-induced disruption of tight junctions in the retinal pigment epithelium was also attenuated by bilberry extract, repressing an oxidative stress marker, although ER stress markers were not repressed. Our results suggest that bilberry extract attenuates photo-induced apoptosis and visual dysfunction most likely, and at least in part, through ROS reduction, and subsequent ER stress attenuation in the retina. This study can help understand the mechanisms of photo-stress and contribute to developing a new, potentially useful therapeutic approach using bilberry extract for preventing retinal photo-damage.
Collapse
Affiliation(s)
- Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Okamoto
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Miyake
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Wakasa Seikatsu Co., Ltd., Kyoto, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
21
|
Lin CH, Wu MR, Li CH, Cheng HW, Huang SH, Tsai CH, Lin FL, Ho JD, Kang JJ, Hsiao G, Cheng YW. Editor's Highlight: Periodic Exposure to Smartphone-Mimic Low-Luminance Blue Light Induces Retina Damage Through Bcl-2/BAX-Dependent Apoptosis. Toxicol Sci 2017; 157:196-210. [DOI: 10.1093/toxsci/kfx030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
22
|
Lutein acts via multiple antioxidant pathways in the photo-stressed retina. Sci Rep 2016; 6:30226. [PMID: 27444056 PMCID: PMC4957151 DOI: 10.1038/srep30226] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/01/2016] [Indexed: 11/08/2022] Open
Abstract
Lutein slows the progression of age-related macular degeneration (AMD), a leading cause of blindness in ageing societies. However, the underlying mechanisms remain elusive. Here, we evaluated lutein's effects on light-induced AMD-related pathological events. Balb/c mice exposed to light (2000 lux, 3 h) showed tight junction disruption in the retinal pigment epithelium (RPE) at 12 h, as detected by zona occludens-1 immunostaining. Substantial disruption remained 48 h after light exposure in the vehicle-treated group; however, this was ameliorated in the mice treated with intraperitoneal lutein at 12 h, suggesting that lutein promoted tight junction repair. In the photo-stressed RPE and the neighbouring choroid tissue, lutein suppressed reactive oxygen species and increased superoxide dismutase (SOD) activity at 24 h, and produced sustained increases in sod1 and sod2 mRNA levels at 48 h. SOD activity was induced by lutein in an RPE cell line, ARPE19. We also found that lutein suppressed upregulation of macrophage-related markers, f4/80 and mcp-1, in the RPE-choroid tissue at 18 h. In ARPE19, lutein reduced mcp-1 mRNA levels. These findings indicated that lutein promoted tight junction repair and suppressed inflammation in photo-stressed mice, reducing local oxidative stress by direct scavenging and most likely by induction of endogenous antioxidant enzymes.
Collapse
|
23
|
El-Hadidy AR, El-Mohandes EM, Asker SA, Ghonaim FM. A histological and immunohistochemical study of the effects of N-acetyl cysteine on retinopathy of prematurity by modifying insulin-like growth factor-1. Biotech Histochem 2016; 91:401-11. [PMID: 27149563 DOI: 10.1080/10520295.2016.1180428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder that occurs in premature infants and may lead to permanent visual impairment. We investigated both the possible protective role of N-acetyl cysteine (NAC) for preventing ROP and the role of IGF-1 in the disorder. Forty-five newborn rats were divided into three groups. Group 1 was raised in room air as controls. Group 2 was exposed to 60% oxygen for 14 days after birth, then transferred to room air. Group 3 was exposed to the same conditions as group 2, but received intraperitoneal injections of NAC on postnatal days 7-17. After 35 days, both eyes of all rats were processed for histology. Some sections were stained with hematoxylin and eosin to assess structural changes and other sections were immunostained to determine the location of IGF-1. Frozen sections also were prepared and stained for adenosine triphosphatase to detect retinal blood vessels. Compared to the controls, more blood vessels, many of which were abnormal, and increased IGF-1 expression were observed in group 2. In group 3, abnormal blood vessels and IGF-1 expression were less evident. NAC appeared to be an effective vascular-protective agent for ROP by decreasing IGF-1 expression.
Collapse
Affiliation(s)
- A R El-Hadidy
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - E M El-Mohandes
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - S A Asker
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - F M Ghonaim
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| |
Collapse
|
24
|
Ueda H, Halder SK, Matsunaga H, Sasaki K, Maeda S. Neuroprotective impact of prothymosin alpha-derived hexapeptide against retinal ischemia-reperfusion. Neuroscience 2016; 318:206-18. [PMID: 26779836 DOI: 10.1016/j.neuroscience.2016.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 01/13/2023]
Abstract
Prothymosin alpha (ProTα) has robustness roles against brain and retinal ischemia or serum-starvation stress. In the ProTα sequence, the active core 30-amino acid peptide/P30 (a.a.49-78) is necessary for the original neuroprotective actions against ischemia. Moreover, the 9-amino acid peptide sequence/P9 (a.a.52-60) in P30 still shows neuroprotective activity against brain and retinal ischemia, though P9 is less potent than P30. As the previous structure-activity relationship study for ProTα may not be enough, the possibility still exists that any sequence smaller than P9 retains potent neuroprotective activity. When different P9- and P30-related peptides were intravitreally injected 24h after retinal ischemia in mice, the 6-amino acid peptide/P6 (NEVDEE, a.a.51-56) showed potent protective effects against ischemia-induced retinal functional deficits, which are equipotent to the level of P30 peptide in electroretinography (ERG) and histological damage in Hematoxylin and Eosin (HE) staining. Further studies using ERG and HE staining suggested that intravitreal or intravenous (i.v.) injection with modified P6 peptide/P6Q (NEVDQE) potently inhibited retinal ischemia-induced functional and histological damage. In an immunohistochemical analysis, the ischemia-induced loss of retinal ganglion, bipolar, amacrine and photoreceptor cells were inhibited by a systemic administration with P6Q peptide 24h after the ischemic stress. In addition, systemic post-treatment with P6Q peptide significantly inhibited retinal ischemia-induced microglia and astrocyte activation in terms of increased ionized calcium-binding adaptor molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) intensity, respectively, as well as their morphological changes, increased number and migration. Thus, this study demonstrates the therapeutic significance of modified P6 peptide P6Q (NEVDQE) derived from 6-amino acid peptide (P6) in ProTα against ischemic damage.
Collapse
Affiliation(s)
- H Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan.
| | - S K Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - H Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - K Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - S Maeda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
25
|
Hennig R, Ohlmann A, Staffel J, Pollinger K, Haunberger A, Breunig M, Schweda F, Tamm ER, Goepferich A. Multivalent nanoparticles bind the retinal and choroidal vasculature. J Control Release 2015; 220:265-274. [DOI: 10.1016/j.jconrel.2015.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
|
26
|
Narimatsu T, Negishi K, Miyake S, Hirasawa M, Osada H, Kurihara T, Tsubota K, Ozawa Y. Blue light-induced inflammatory marker expression in the retinal pigment epithelium-choroid of mice and the protective effect of a yellow intraocular lens material in vivo. Exp Eye Res 2015; 132:48-51. [DOI: 10.1016/j.exer.2015.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/07/2014] [Accepted: 01/06/2015] [Indexed: 01/31/2023]
|