1
|
Tong L, Zha ML, Hu J, Li HY, Kuai L, Li B, Dang Y, Zhao Q, Liao R, Lin GQ, He QL. Adenanthin exhibits anti-inflammatory effects by covalently targeting the p65 subunit in the NF-κB signaling pathway. Eur J Med Chem 2024; 280:116946. [PMID: 39383653 DOI: 10.1016/j.ejmech.2024.116946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Adenanthin is a structurally unique ent-kaurane diterpenoid isolated from Rabdosia adenantha, a traditional Chinese medicinal plant with potent anti-cancer and anti-inflammatory activities. However, its anti-inflammatory molecular mechanism remains largely elusive to date. Here, we developed an affinity-based label-free protein profiling (ALFPP) to identify potential covalent targets of electrophilic natural products with ketone or aldehyde groups. Using ALFPP, we identified 27 potential covalent targets of adenanthin, among which p65 (RelA) has been associated with its anti-inflammatory activities. Through a series of experiments, including LC-MS/MS, molecular docking, electrophoretic mobility shift assays (EMSA), and genome editing, we demonstrated that adenanthin could covalently modify the Cys38 residue of p65 to affect the binding of DNA to p65, thereby inhibiting the NF-κB signaling pathway. ALFPP will facilitate the target identification of electrophilic carbonylated natural products, especially those containing α, β-unsaturated keto groups. Furthermore, the elucidation of the molecular mechanism of adenanthin will contribute to new drug development of adenanthin to treat inflammations and cancers, enhancing the possibility for its clinical application.
Collapse
Affiliation(s)
- Lu Tong
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Meng-Li Zha
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Hai-Yang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Guan X, Ruan Y, Che X, Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Radic Biol Med 2024; 210:120-129. [PMID: 37977211 DOI: 10.1016/j.freeradbiomed.2023.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Tumour cells often display an active metabolic profile, leading to the intracellular accumulation of reactive oxygen species. As a member of the peroxidase family, peroxiredoxin 1 (PRDX1) functions generally in protecting against cell damage caused by H2O2. Additionally, PRDX1 plays a role as a molecular chaperone in various malignant tumours, exhibiting either tumour-promoting or tumour-suppressing effects. Currently, PRDX1-targeting drugs have demonstrated in vitro anticancer effects, indicating the potential of PRDX1 as a molecular target. Here we discussed the diverse functions of PRDX1 in tumour biology and provided a comprehensive analysis of the therapeutic potential of targeting PRDX1 signalling across various types of cancer.
Collapse
Affiliation(s)
- Xin Guan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyin Ruan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Che
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weiwei Feng
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Di Giacomo C, Malfa GA, Tomasello B, Bianchi S, Acquaviva R. Natural Compounds and Glutathione: Beyond Mere Antioxidants. Antioxidants (Basel) 2023; 12:1445. [PMID: 37507985 PMCID: PMC10376414 DOI: 10.3390/antiox12071445] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The tripeptide glutathione plays important roles in many cell processes, including differentiation, proliferation, and apoptosis; in fact, disorders in glutathione homeostasis are involved both in the etiology and in the progression of several human diseases, including cancer. Natural compounds have been found to modulate glutathione levels and function beyond their role as mere antioxidants. For example, certain compounds can upregulate the expression of glutathione-related enzymes, increase the availability of cysteine, the limiting amino acid for glutathione synthesis, or directly interact with glutathione and modulate its function. These compounds may have therapeutic potential in a variety of disease states where glutathione dysregulation is a contributing factor. On the other hand, flavonoids' potential to deplete glutathione levels could be significant for cancer treatment. Overall, while natural compounds may have potential therapeutic and/or preventive properties and may be able to increase glutathione levels, more research is needed to fully understand their mechanisms of action and their potential benefits for the prevention and treatment of several diseases. In this review, particular emphasis will be placed on phytochemical compounds belonging to the class of polyphenols, terpenoids, and glucosinolates that have an impact on glutathione-related processes, both in physiological and pathological conditions. These classes of secondary metabolites represent the most food-derived bioactive compounds that have been intensively explored and studied in the last few decades.
Collapse
Affiliation(s)
- Claudia Di Giacomo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
4
|
Sadowska-Bartosz I, Bartosz G. Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte. Antioxidants (Basel) 2023; 12:antiox12051012. [PMID: 37237878 DOI: 10.3390/antiox12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M-1 s-1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| |
Collapse
|
5
|
Montanhero Cabrera VI, do Nascimento Sividanes G, Quintiliano NF, Hikari Toyama M, Ghilardi Lago JH, de Oliveira MA. Exploring functional and structural features of chemically related natural prenylated hydroquinone and benzoic acid from Piper crassinervium (Piperaceae) on bacterial peroxiredoxin inhibition. PLoS One 2023; 18:e0281322. [PMID: 36827425 PMCID: PMC9956870 DOI: 10.1371/journal.pone.0281322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 02/26/2023] Open
Abstract
Multiple drug resistance (MDR) bacterial strains are responsible by 1.2 million of human deaths all over the world. The pathogens possess efficient enzymes which are able to mitigate the toxicity of reactive oxygen species (ROS) produced by some antibiotics and the host immune cells. Among them, the bacterial peroxiredoxin alkyl hydroperoxide reductase C (AhpC) is able to decompose efficiently several kinds of hydroperoxides. To decompose their substrates AhpC use a reactive cysteine residue (peroxidatic cysteine-CysP) that together with two other polar residues (Thr/Ser and Arg) comprise the catalytic triad of these enzymes and are involved in the substrate targeting/stabilization to allow a bimolecular nucleophilic substitution (SN2) reaction. Additionally to the high efficiency the AhpC is very abundant in the cells and present virulent properties in some bacterial species. Despite the importance of AhpC in bacteria, few studies aimed at using natural compounds as inhibitors of this class of enzymes. Some natural products were identified as human isoforms, presenting as common characteristics a bulk hydrophobic moiety and an α, β-unsaturated carbonylic system able to perform a thiol-Michael reaction. In this work, we evaluated two chemically related natural products: 1,4-dihydroxy-2-(3',7'-dimethyl-1'-oxo-2'E,6'-octadienyl) benzene (C1) and 4-hydroxy-2-(3',7'-dimethyl-1'-oxo-2'E,6'-octadienyl) benzoic acid (C2), both were isolated from branches Piper crassinervium (Piperaceae), over the peroxidase activity of AhpC from Pseudomonas aeruginosa (PaAhpC) and Staphylococcus epidermidis (SeAhpC). By biochemical assays we show that although both compounds can perform the Michael addition reaction, only compound C2 was able to inhibit the PaAhpC peroxidase activity but not SeAhpC, presenting IC50 = 20.3 μM. SDS-PAGE analysis revealed that the compound was not able to perform a thiol-Michael addition, suggesting another inhibition behavior. Using computer-assisted simulations, we also show that an acidic group present in the structure of compound C2 may be involved in the stabilization by polar interactions with the Thr and Arg residues from the catalytic triad and several apolar interactions with hydrophobic residues. Finally, C2 was not able to interfere in the peroxidase activity of the isoform Prx2 from humans or even the thiol proteins of the Trx reducing system from Escherichia coli (EcTrx and EcTrxR), indicating specificity for P. aeruginosa AhpC.
Collapse
Affiliation(s)
| | | | | | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, SP, Brazil
| | - João Henrique Ghilardi Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
- * E-mail: (MAO); (JHGL)
| | - Marcos Antonio de Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, SP, Brazil
- * E-mail: (MAO); (JHGL)
| |
Collapse
|
6
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
7
|
Dos Santos MC, Tairum CA, Cabrera VIM, Guimarães Cauz AC, Ribeiro LF, Toledo Junior JC, Toyama MH, Lago JHG, Brocchi M, Netto LES, de Oliveira MA. Adenanthin Is an Efficient Inhibitor of Peroxiredoxins from Pathogens, Inhibits Bacterial Growth, and Potentiates Antibiotic Activities. Chem Res Toxicol 2022; 36:570-582. [PMID: 35537067 DOI: 10.1021/acs.chemrestox.2c00049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence and re-emergence of bacterial strains resistant to multiple drugs represent a global health threat, and the search for novel biological targets is a worldwide concern. AhpC are enzymes involved in bacterial redox homeostasis by metabolizing diverse kinds of hydroperoxides. In pathogenic bacteria, AhpC are related to several functions, as some isoforms are characterized as virulence factors. However, no inhibitor has been systematically evaluated to date. Here we show that the natural ent-kaurane Adenanthin (Adn) efficiently inhibits AhpC and molecular interactions were explored by computer assisted simulations. Additionally, Adn interferes with growth and potentializes the effect of antibiotics (kanamycin and PMBN), positioning Adn as a promising compound to treat infections caused by multiresistant bacterial strains.
Collapse
Affiliation(s)
- Melina Cardoso Dos Santos
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - Carlos Abrunhosa Tairum
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo 05508-090, Brazil
| | | | - Ana Carolina Guimarães Cauz
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-862, Brazil
| | - Luiz Fernando Ribeiro
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - José Carlos Toledo Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - João Henrique Ghilardi Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-862, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo 05508-090, Brazil
| | - Marcos Antonio de Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| |
Collapse
|
8
|
Dulay RM, Valdez BC, Li Y, Chakrabarti S, Dhillon B, Kalaw SP, Reyes RG, Cabrera EC. Cytotoxicity of Gymnopilus purpureosquamulosus extracts on hematologic malignant cells through activation of the SAPK/JNK signaling pathway. PLoS One 2021; 16:e0252541. [PMID: 34048499 PMCID: PMC8162692 DOI: 10.1371/journal.pone.0252541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Treatment of hematologic malignancies is a formidable challenge for hematologists and there is an urgent need to identify safe and efficacious agents either via synthesis in the laboratory or isolation from natural products. Here, we report the cytotoxicity of extracts from mushroom Gymnopilus purpureosquamulosus Høil (G. pps) and describe its molecular mechanisms. Using leukemia, lymphoma and multiple myeloma cell lines, 28-35 ppm G. pps extract inhibited cell proliferation by ~46-79%, which correlates with activation of apoptosis as indicated by increase in annexin V-positive cells (~5-8-fold), production of reactive oxygen species (~2-3-fold), cells in sub G0/G1 phase (~3-13-fold), caspase 3 enzymatic activity (~1.6-2.9-fold), DNA fragmentation, PARP1 cleavage and down-regulation of prosurvival proteins. Mitochondrial membrane potential decreased and leakage of pro-apoptotic factors to cytoplasm was observed, consistent with the activation of intrinsic apoptosis. Western blot analysis showed activation of the ASK1-MEK-SAPK/JNK and ASK1-P38 MAPK pathways possibly due to changes in the cellular redox status as suggested by decreased protein levels of peroxiredoxin, thioredoxin and thioredoxin reductase. Moreover, antioxidant N-acetylcysteine alleviated the cytotoxicity of G. pps. Pharmacological inhibition of SAPK/JNK and P38 alleviated the G. pps-mediated cytotoxicity. The extract activated apoptosis in leukemia and lymphoma patient cell samples but not in mononuclear cells from healthy donors further supporting the therapeutic values of G. pps for hematologic malignancies.
Collapse
Affiliation(s)
- Rich Milton Dulay
- Center for Tropical Mushroom Research and Development, Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| | - Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Yang Li
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Seemanti Chakrabarti
- Department of Plant Pathology, University of Florida, Ft. Lauderdale Research and Education Center, Davie, Florida, United States of America
| | - Braham Dhillon
- Department of Plant Pathology, University of Florida, Ft. Lauderdale Research and Education Center, Davie, Florida, United States of America
| | - Sofronio P. Kalaw
- Center for Tropical Mushroom Research and Development, Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Renato G. Reyes
- Center for Tropical Mushroom Research and Development, Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Esperanza C. Cabrera
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| |
Collapse
|
9
|
Zhang J, Duan D, Osama A, Fang J. Natural Molecules Targeting Thioredoxin System and Their Therapeutic Potential. Antioxid Redox Signal 2021; 34:1083-1107. [PMID: 33115246 DOI: 10.1089/ars.2020.8213] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Thioredoxin (Trx) and thioredoxin reductase are two core members of the Trx system. The system bridges the gap between the universal reducing equivalent NADPH and various biological molecules and plays an essential role in maintaining cellular redox homeostasis and regulating multiple cellular redox signaling pathways. Recent Advance: In recent years, the Trx system has been well documented as an important regulator of many diseases, especially tumorigenesis. Thus, the development of potential therapeutic molecules targeting the system is of great significance for disease treatment. Critical Issues: We herein first discuss the physiological functions of the Trx system and the role that the Trx system plays in various diseases. Then, we focus on the introduction of natural small molecules with potential therapeutic applications, especially the anticancer activity, and review their mechanisms of pharmacological actions via interfering with the Trx system. Finally, we further discuss several natural molecules that harbor therapeutic potential and have entered different clinical trials. Future Directions: Further studies on the functions of the Trx system in multiple diseases will not only improve our understanding of the pathogenesis of many human disorders but also help develop novel therapeutic strategies against these diseases. Antioxid. Redox Signal. 34, 1083-1107.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| |
Collapse
|
10
|
Peskin AV, Winterbourn CC. The Enigma of 2-Cys Peroxiredoxins: What Are Their Roles? BIOCHEMISTRY (MOSCOW) 2021; 86:84-91. [PMID: 33705284 DOI: 10.1134/s0006297921010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
2-Cys peroxiredoxins are abundant thiol proteins that react efficiently with a wide range of peroxides. Unlike other enzymes, their exceptionally high reactivity does not rely on cofactors. The mechanism of oxidation and reduction of peroxiredoxins places them in a good position to act as antioxidants as well as key players in redox signaling. Understanding of the intimate details of peroxiredoxin functioning is important for translational research.
Collapse
Affiliation(s)
- Alexander V Peskin
- Centre for Free Radical Research, University of Otago Christchurch, Christchurch, Otago, 8140, New Zealand.
| | - Christine C Winterbourn
- Centre for Free Radical Research, University of Otago Christchurch, Christchurch, Otago, 8140, New Zealand
| |
Collapse
|
11
|
Joardar N, Guevara-Flores A, Martínez-González JDJ, Sinha Babu SP. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era. Int J Biol Macromol 2020; 165:249-267. [DOI: 10.1016/j.ijbiomac.2020.09.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
|
12
|
Lim HM, Park SH, Nam MJ. Induction of apoptosis in indole-3-carbinol-treated lung cancer H1299 cells via ROS level elevation. Hum Exp Toxicol 2020; 40:812-825. [DOI: 10.1177/0960327120969968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study was focused on investigating the anticancer potential of indole-3-carbinol (I3C) against lung cancer H1299 cells via an increase in ROS levels. To investigate the induction of growth arrest and/or cell death in H1299 cells, a cell cycle arrest assay, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling (TUNEL) assay, and reactive oxygen species (ROS) detection assay were performed. Through the TUNEL assay, we detected I3C-induced DNA fragmentation. Fluorescence-activated cell sorting (FACS) analysis showed that I3C induced an increase in ROS levels and apoptotic rate in a dose- and time-dependent manner in H1299 cells. Western blotting demonstrated that activated forms of caspase-3, caspase-7, caspase-9, and poly (ADP-ribose) polymerase (PARP) were increased in I3C-treated H1299 cells following treatment with I3C. Furthermore, protein expression levels of FOXO3, bim, bax, and phosphorylated ERK and JNK were increased, while those of pAkt, Bcl-xL, and Bcl-2 were decreased by I3C treatment of H1299 cells. To confirm the relationship between cell apoptosis and ROS generation, H1299 cells were treated with I3C simultaneously with N-acetylcysteine (NAC), and it was shown that ROS levels decreased and viability increased. Moreover, in western blot analysis, expression of anti-apoptotic proteins (thioredoxin1, peroxiredoxin-1, Bcl-2, and Bcl-xL) in I3C-treated cells was evidently downregulated and pro-apoptotic proteins (active ASK1 and cleaved PARP) were upregulated compared to cells co-treated with NAC. The study showed that I3C induced downregulation of ROS regulator proteins and elevation of ROS, thus activating apoptotic signaling cascades in human lung cancer H1299 cells.
Collapse
Affiliation(s)
- Heui Min Lim
- Department of Biological Science, Gachon University, Gyeonggi-do, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong-si, Republic of Korea
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Chen X, Zhao Y, Luo W, Chen S, Lin F, Zhang X, Fan S, Shen X, Wang Y, Liang G. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. Am J Cancer Res 2020; 10:10290-10308. [PMID: 32929349 PMCID: PMC7481428 DOI: 10.7150/thno.46728] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Oxidative stress from elevated reactive oxygen species (ROS) has been reported to induce cell apoptosis and may provide a means to target cancer cells. Celastrol is a natural bioactive compound that was recently shown to increase ROS levels and cause apoptosis in cancer cells. However, the underlying mechanism for this cytotoxic action remains unclear and direct molecular targets of Celastrol have not been identified. Methods: Proteome microarray, surface plasmon resonance, isothermal titration calorimetry and molecular simulation were used to identify the molecular target of Celastrol. Binding and activity assays were used to validate the interaction of Celastrol with target protein in cell-free and gastric cancer cell lysates. We then assessed target transcript levels in in biopsy specimens obtained from patients with gastric cancer. Gastric cancer growth-limiting and cytotoxic activity of Celastrol was evaluated in BALB/c nu/nu mice. Results: Our data show that Celastrol directly binds to an antioxidant enzyme, peroxiredoxin-2 (Prdx2), which then inhibits its enzyme activity at both molecular and cellular level. Inhibition of Prdx2 by Celastrol increased cellular ROS levels and led to ROS-dependent endoplasmic reticulum stress, mitochondrial dysfunction, and apoptosis in gastric cancer cells. Functional tests demonstrated that Celastrol limits gastric cancer cells, at least in part, through targeting Prdx2. Celastrol treatment of mice implanted with gastric cancer cells also inhibited tumor growth, associated with Prdx2 inhibition and increased ROS. Analysis of human gastric cancer also showed increased Prdx2 levels and correlation with survival. Conclusion: Our studies have uncovered a potential Celastrol-interacting protein Prdx2 and a ROS-dependent mechanism of its action. The findings also highlight Prdx2 as a potential target for the treatment of gastric cancer.
Collapse
|
14
|
Abstract
Peroxiredoxins are most central to the cellular adaptation against oxidative stress. They act as oxidant scavengers, stress sensors, transmitters of signals, and chaperones, and they possess a unique quaternary switch that is intimately related to these functions. However, so far it has not been possible to monitor peroxiredoxin structural changes in the intact cellular environment. This study presents genetically encoded probes, based on homo-FRET (Förster resonance energy transfer between identical fluorophores) fluorescence polarization, that allow following these quaternary changes in real time, in living cells. We envisage that these probes can be used to address a broad range of questions related to the function of peroxiredoxins. Peroxiredoxins are central to cellular redox homeostasis and signaling. They serve as peroxide scavengers, sensors, signal transducers, and chaperones, depending on conditions and context. Typical 2-Cys peroxiredoxins are known to switch between different oligomeric states, depending on redox state, pH, posttranslational modifications, and other factors. Quaternary states and their changes are closely connected to peroxiredoxin activity and function but so far have been studied, almost exclusively, outside the context of the living cell. Here we introduce the use of homo-FRET (Förster resonance energy transfer between identical fluorophores) fluorescence polarization to monitor dynamic changes in peroxiredoxin quaternary structure inside the crowded environment of living cells. Using the approach, we confirm peroxide- and thioredoxin-related quaternary transitions to take place in cellulo and observe that the relationship between dimer–decamer transitions and intersubunit disulfide bond formation is more complex than previously thought. Furthermore, we demonstrate the use of the approach to compare different peroxiredoxin isoforms and to identify mutations and small molecules affecting the oligomeric state inside cells. Mutagenesis experiments reveal that the dimer–decamer equilibrium is delicately balanced and can be shifted by single-atom structural changes. We show how to use this insight to improve the design of peroxiredoxin-based redox biosensors.
Collapse
|
15
|
Narayanan D, Ma S, Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071706. [PMID: 32605023 PMCID: PMC7407119 DOI: 10.3390/cancers12071706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are produced predominantly by the mitochondrial electron transport chain and by NADPH oxidases in peroxisomes and in the endoplasmic reticulum. The antioxidative defense counters overproduction of ROS with detoxifying enzymes and molecular scavengers, for instance, superoxide dismutase and glutathione, in order to restore redox homeostasis. Mutations in the redox landscape can induce carcinogenesis, whereas increased ROS production can perpetuate cancer development. Moreover, cancer cells can increase production of antioxidants, leading to resistance against chemo- or radiotherapy. Research has been developing pharmaceuticals to target the redox landscape in cancer. For instance, inhibition of key players in the redox landscape aims to modulate ROS production in order to prevent tumor development or to sensitize cancer cells in radiotherapy. Besides the redox landscape of a single cell, alternative strategies take aim at the multi-cellular level. Extracellular vesicles, such as exosomes, are crucial for the development of the hypoxic tumor microenvironment, and hence are explored as target and as drug delivery systems in cancer therapy. This review summarizes the current pharmaceutical and experimental interventions of the cancer redox landscape.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Sana Ma
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Dennis Özcelik
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
- current address: Chemistry | Biology | Pharmacy Information Center, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
16
|
Firczuk M, Bajor M, Graczyk-Jarzynka A, Fidyt K, Goral A, Zagozdzon R. Harnessing altered oxidative metabolism in cancer by augmented prooxidant therapy. Cancer Lett 2020; 471:1-11. [DOI: 10.1016/j.canlet.2019.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022]
|
17
|
Sharapov MG, Novoselov VI. Catalytic and Signaling Role of Peroxiredoxins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:79-100. [PMID: 31216969 DOI: 10.1134/s0006297919020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer cells experience strong oxidative stress caused by disorders in cell metabolism and action of external factors. For survival, cancer cells have developed a highly efficient system of antioxidant defense, some of the most important elements of which are peroxiredoxins (Prxs). Prxs are an evolutionarily ancient family of selenium-independent peroxidases that reduce a wide range of organic and inorganic hydroperoxides in the cell and the extracellular space. In addition, some Prxs exhibit chaperone and phospholipase activities. Prxs play an important role in the maintenance of the cell redox homeostasis; they prevent oxidation and aggregation of regulatory proteins, thereby affecting many cell signaling pathways. Prxs are involved in the regulation of cell growth, differentiation, and apoptosis. Due to their versatility and wide representation in all tissues and organs, Prxs participate in the development/suppression of many pathological conditions, among which cancer occupies a special place. This review focuses on the role of Prxs in the development of various forms of cancer. Understanding molecular mechanisms of Prx involvement in these processes will allow to develop new approaches to the prevention and treatment of cancer.
Collapse
Affiliation(s)
- M G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - V I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
18
|
Overview of thioredoxin system and targeted therapies for acute leukemia. Mitochondrion 2019; 47:38-46. [PMID: 31029641 DOI: 10.1016/j.mito.2019.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/15/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
|
19
|
de Souza LF, Pearson AG, Pace PE, Dafre AL, Hampton MB, Meotti FC, Winterbourn CC. Peroxiredoxin expression and redox status in neutrophils and HL-60 cells. Free Radic Biol Med 2019; 135:227-234. [PMID: 30862546 DOI: 10.1016/j.freeradbiomed.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023]
Abstract
Peroxiredoxins (Prxs) are thiol peroxidases with a key role in antioxidant defense and redox signaling. They could be important in neutrophils for handling the large amount of oxidants that these cells produce. We investigated the redox state of Prx1 and Prx2 in HL-60 promyelocytic cells differentiated to neutrophil-like cells (dHL-60) and in human neutrophils. HL-60 cell differentiation with dimethyl sulfoxide caused a large decrease in expression of both Prxs, and all-trans retinoic acid also decreased Prx1 expression. Prx1 was mostly reduced in dHL-60 cells. NADPH oxidase activation by phorbol myristate acetate (PMA) or ingestion of Staphylococcus aureus induced rapid oxidation to disulfide-linked dimers, and eventually hyperoxidation. The NADPH oxidase inhibitor, diphenyleneiodonium, prevented Prx1 dimerization in stimulated dHL-60 cells, and decreased the extent of oxidation under resting conditions. In contrast, Prx1 and Prx2 were present in neutrophils from human blood as disulfides, and PMA or S. aureus caused no further oxidation. They remained oxidized on incubation with diphenyleneiodonium in media. Although this suggests that Prx redox cycling could be deficient in neutrophils, thioredoxin expression and thioredoxin reductase activity were similar in neutrophils and dHL-60 cells. Additionally, neutrophil thioredoxin was initially reduced and underwent oxidation after PMA activation. Thus, although the Prxs respond to oxidant generation in dHL-60 cells, in neutrophils they appear "locked" as disulfides. On this basis we propose that neutrophil Prxs are inefficient antioxidants and contribute little to peroxide removal during the oxidative burst, and speculate that they might be involved in other cell processes.
Collapse
Affiliation(s)
- Luiz F de Souza
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, CEP 05508-000, Brazil
| | - Andree G Pearson
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, PO Box 4345, Christchurch, 8040, New Zealand
| | - Paul E Pace
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, PO Box 4345, Christchurch, 8040, New Zealand
| | - Alcir L Dafre
- Departamento de Bioquímica, Centro de ciências biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, CEP 88040-900, Brazil
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, PO Box 4345, Christchurch, 8040, New Zealand
| | - Flávia C Meotti
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, CEP 05508-000, Brazil.
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, PO Box 4345, Christchurch, 8040, New Zealand.
| |
Collapse
|
20
|
Chen L, Yang Q, Hu K, Li XN, Sun HD, Puno PT. Isoforrethins A–D, four ent-abietane diterpenoids from Isodon forrestii var. forrestii. Fitoterapia 2019; 134:158-164. [DOI: 10.1016/j.fitote.2019.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/25/2022]
|
21
|
Cancer-Associated Function of 2-Cys Peroxiredoxin Subtypes as a Survival Gatekeeper. Antioxidants (Basel) 2018; 7:antiox7110161. [PMID: 30423872 PMCID: PMC6262534 DOI: 10.3390/antiox7110161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer cells are abnormal cells that do not comply with tissue homeostasis but undergo uncontrolled proliferation. Such abnormality is driven mostly by somatic mutations on oncogenes and tumor suppressors. Cancerous mutations show intra-tumoral heterogeneity across cancer types and eventually converge into the self-activation of proliferative signaling. While transient production of intracellular reactive oxygen species (ROS) is essential for cell signaling, its persistent production is cytotoxic. Thus, cancer cells require increased levels of intracellular ROS for continuous proliferation, but overexpress cellular peroxidase enzymes, such as 2-Cys peroxiredoxins, to maintain ROS homeostasis. However, suppression of 2-Cys peroxiredoxins has also been reported in some metastatic cancers. Hence, the cancer-associated functions of 2-Cys peroxiredoxins must be illuminated in the cellular context. In this review, we describe the distinctive signaling roles of 2-Cys peroxiredoxins beyond their intrinsic ROS-scavenging role in relation to cancer cell death and survival.
Collapse
|
22
|
Scalcon V, Bindoli A, Rigobello MP. Significance of the mitochondrial thioredoxin reductase in cancer cells: An update on role, targets and inhibitors. Free Radic Biol Med 2018; 127:62-79. [PMID: 29596885 DOI: 10.1016/j.freeradbiomed.2018.03.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 12/26/2022]
Abstract
Thioredoxin reductase 2 (TrxR2) is a key component of the mitochondrial thioredoxin system able to transfer electrons to peroxiredoxin 3 (Prx3) in a reaction mediated by thioredoxin 2 (Trx2). In this way, both the level of hydrogen peroxide and thiol redox state are modulated. TrxR2 is often overexpressed in cancer cells conferring apoptosis resistance. Due to their exposed flexible arm containing selenocysteine, both cytosolic and mitochondrial TrxRs are inhibited by a large number of molecules. The various classes of inhibitors are listed and the molecules acting specifically on TrxR2 are extensively described. Particular emphasis is given to gold(I/III) complexes with phosphine, carbene or other ligands and to tamoxifen-like metallocifens. Also chemically unrelated organic molecules, including natural compounds and their derivatives, are taken into account. An important feature of many TrxR2 inhibitors is provided by their nature of delocalized lipophilic cations that allows their accumulation in mitochondria exploiting the organelle membrane potential. The consequences of TrxR2 inhibition are presented focusing especially on the impact on mitochondrial pathophysiology. Inhibition of TrxR2, by hindering the activity of Trx2 and Prx3, increases the mitochondrial concentration of reactive oxygen species and shifts the thiol redox state toward a more oxidized condition. This is reflected by alterations of specific targets involved in the release of pro-apoptotic factors such as cyclophilin D which acts as a regulator of the mitochondrial permeability transition pore. Therefore, the selective inhibition of TrxR2 could be utilized to induce cancer cell apoptosis.
Collapse
Affiliation(s)
- Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| | - Alberto Bindoli
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Institute of Neuroscience (CNR), Padova Section, c/o Department of Biomedical Sciences, Viale G. Colombo 3, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
23
|
Lu Y, Zhang XS, Zhou XM, Gao YY, Chen CL, Liu JP, Ye ZN, Zhang ZH, Wu LY, Li W, Hang CH. Peroxiredoxin 1/2 protects brain against H 2O 2-induced apoptosis after subarachnoid hemorrhage. FASEB J 2018; 33:3051-3062. [PMID: 30351993 DOI: 10.1096/fj.201801150r] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies suggest that peroxiredoxin1/2 (Prx1/2) may be involved in the pathophysiology of postischemic inflammatory responses in the brain. In this study, we assessed the distribution and function of Prx1/2 in mice after experimental subarachnoid hemorrhage (SAH). We investigated the distribution of Prx1/2 in the brains of mice both in vivo and in vitro using immunofluorescence staining. The expression of Prx1/2 after SAH was determined by Western blot. Adenanthin was used to inhibit Prx1/2 function, and Prx1/2 overexpression was achieved by injecting adeno-associated virus. Oxidative stress and neuronal apoptosis were assessed both in vivo and in vitro. The neurologic function, inflammatory response, and related cellular signals were analyzed. The results showed that Prx1 was mainly expressed in astrocytes, and Prx2 was abundant in neurons. The expression of Prx1/2 was elevated after SAH, and their expression levels peaked before proinflammatory cytokines. Inhibiting Prx1/2 promoted neuronal apoptosis by increasing the hydrogen peroxide (H2O2) levels via the apoptosis signal-regulating kinase 1/p38 pathway. By contrast, overexpression of Prx1/2 attenuated oxidative stress and neuronal apoptosis after SAH. Thus, early expression of Prx1/2 may protect the brain from oxidative damage after SAH and may provide a novel target for treating SAH.-Lu, Y., Zhang, X.-S., Zhou, X.-M., Gao, Y.-Y., Chen, C.-L., Liu, J.-P., Ye, Z.-N., Zhang, Z.-H., Wu, L.-Y., Li, W., Hang, C.-H. Peroxiredoxin 1/2 protects brain against H2O2-induced apoptosis after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Yue Lu
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chun-Lei Chen
- Department of Neurosurgery, Nanjing Medical University, Nanjing, China
| | - Jing-Peng Liu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, South Medical University, Nanjing, China
| | - Zhen-Nan Ye
- Department of Neurosurgery, Jinling Hospital, School of Medicine, South Medical University, Nanjing, China
| | - Zi-Huan Zhang
- Department of Neurosurgery, Zhongdu Hospital, Bengbu, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Zhang B, Liu Y, Li X, Xu J, Fang J. Small Molecules to Target the Selenoprotein Thioredoxin Reductase. Chem Asian J 2018; 13:3593-3600. [DOI: 10.1002/asia.201801136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| | - Yuxin Liu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| | - Jianqiang Xu
- School of Life Science and Medicine & Panjin Industrial Technology Institute; Dalian University of Technology; Panjin 124221 China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| |
Collapse
|
25
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
26
|
Li X, Hou Y, Meng X, Ge C, Ma H, Li J, Fang J. Selective Activation of a Prodrug by Thioredoxin Reductase Providing a Strategy to Target Cancer Cells. Angew Chem Int Ed Engl 2018; 57:6141-6145. [PMID: 29582524 DOI: 10.1002/anie.201801058] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/14/2018] [Indexed: 12/19/2022]
Abstract
Elevated reactive oxygen species and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. As a major regulator of the cellular redox homeostasis, the selenoprotein thioredoxin reductase (TrxR) is increasingly considered as a promising target for anticancer drug development. The current approach to inhibit TrxR predominantly relies on the modification of the selenocysteine residue in the C-terminal active site of the enzyme, in which it is hard to avoid the off-target effects. By conjugating the anticancer drug gemcitabine with a 1,2-dithiolane scaffold, an unprecedented prodrug strategy is disclosed that achieves a specific release of gemcitabine by TrxR in cells. As overexpression of TrxR is frequently found in different types of tumors, the TrxR-dependent prodrugs are promising for further development as cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Xinming Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Xianke Meng
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Chunpo Ge
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Huilong Ma
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Jin Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| |
Collapse
|
27
|
Li X, Hou Y, Meng X, Ge C, Ma H, Li J, Fang J. Selective Activation of a Prodrug by Thioredoxin Reductase Providing a Strategy to Target Cancer Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xinming Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Xianke Meng
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Chunpo Ge
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Huilong Ma
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Jin Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| |
Collapse
|
28
|
Wirthschaft P, Bode J, Simon AEM, Hoffmann E, van Laack R, Krüwel T, Dietrich F, Bucher D, Hahn A, Sahm F, Breckwoldt MO, Kurz FT, Hielscher T, Fischer B, Dross N, Ruiz de Almodovar C, von Deimling A, Herold-Mende C, Plass C, Boulant S, Wiestler B, Reifenberger G, Lichter P, Wick W, Tews B. A PRDX1-p38α heterodimer amplifies MET-driven invasion of IDH-wildtype and IDH-mutant gliomas. Int J Cancer 2018; 143:1176-1187. [PMID: 29582423 DOI: 10.1002/ijc.31404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/12/2018] [Accepted: 03/08/2018] [Indexed: 12/26/2022]
Abstract
The Peroxiredoxin 1 (PRDX1) gene maps to chromosome arm 1p and is hemizygously deleted and epigenetically silenced in isocitrate dehydrogenase 1 or 2 (IDH)-mutant and 1p/19q-codeleted oligodendroglial tumors. In contrast, IDH-wildtype astrocytic gliomas including glioblastomas mostly lack epigenetic silencing and express PRDX1 protein. In our study, we investigated how PRDX1 contributes to the infiltrative growth of IDH-wildtype gliomas. Focusing on p38α-dependent pathways, we analyzed clinical data from 133 patients of the NOA-04 trial cohort to look for differences in the gene expression profiles of gliomas with wildtype or mutant IDH. Biochemical interaction studies as well as in vitro and ex vivo migration studies were used to establish a biological role of PRDX1 in maintaining pathway activity. Whole-brain high-resolution ultramicroscopy and survival analyses of pre-clinical mouse models for IDH-wildtype gliomas were then used for in vivo confirmation. Based on clinical data, we found that the absence of PRDX1 is associated with changes in the expression of MET/HGF signaling components. PRDX1 forms a heterodimer with p38α mitogen-activated protein kinase 14 (MAPK14), stabilizing phospho-p38α in glioma cells. This process amplifies hepatocyte growth factor (HGF)-mediated signaling and stimulates actin cytoskeleton dynamics that promote glioma cell migration. Whole-brain high-resolution ultramicroscopy confirms these findings, indicating that PRDX1 promotes glioma brain invasion in vivo. Finally, reduced expression of PRDX1 increased survival in mouse glioma models. Thus, our preclinical findings suggest that PRDX1 expression levels may serve as a molecular marker for patients who could benefit from targeted inhibition of MET/HGF signaling.
Collapse
Affiliation(s)
- Peter Wirthschaft
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Anika E M Simon
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Elisa Hoffmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Rebecca van Laack
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Fabio Dietrich
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Delia Bucher
- Schaller Research Group at Cell Networks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, DKFZ, Heidelberg, Germany
| | - Artur Hahn
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Michael O Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Felix T Kurz
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Bernd Fischer
- Junior Research Group Computational Genome Biology, DKFZ, Heidelberg, Germany
| | - Nicolas Dross
- Centre for Organismal Studies, Nikon Imaging Center at the University of Heidelberg, Heidelberg, Germany
| | - Carmen Ruiz de Almodovar
- Heidelberg University Biochemistry Center BZH, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, DKFZ, Heidelberg, Germany
| | - Steeve Boulant
- Schaller Research Group at Cell Networks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, DKFZ, Heidelberg, Germany
| | - Benedikt Wiestler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Hospital Düsseldorf, and DKTK, DKFZ Heidelberg, Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Peter Lichter
- Division of Molecular Genetics, DKFZ, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| |
Collapse
|
29
|
Hampton MB, Vick KA, Skoko JJ, Neumann CA. Peroxiredoxin Involvement in the Initiation and Progression of Human Cancer. Antioxid Redox Signal 2018; 28:591-608. [PMID: 29237274 PMCID: PMC9836708 DOI: 10.1089/ars.2017.7422] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE It has been proposed that cancer cells are heavily dependent on their antioxidant defenses for survival and growth. Peroxiredoxins are a family of abundant thiol-dependent peroxidases that break down hydrogen peroxide, and they have a central role in the maintenance and response of cells to alterations in redox homeostasis. As such, they are potential targets for disrupting tumor growth. Recent Advances: Genetic disruption of peroxiredoxin expression in mice leads to an increased incidence of neoplastic disease, consistent with a role for peroxiredoxins in protecting genomic integrity. In contrast, many human tumors display increased levels of peroxiredoxin expression, suggesting that strengthened antioxidant defenses provide a survival advantage for tumor progression. Peroxiredoxin inhibitors are being developed and explored as therapeutic agents in different cancer models. CRITICAL ISSUES It is important to complement peroxiredoxin knockout and expression studies with an improved understanding of the biological function of the peroxiredoxins. Although current results can be interpreted within the context that peroxiredoxins scavenge hydroperoxides, some peroxiredoxin family members appear to have more complex roles in regulating the response of cells to oxidative stress through protein interactions with constituents of other signaling pathways. FUTURE DIRECTIONS Further mechanistic information is required for understanding the role of oxidative stress in cancer, the function of peroxiredoxins in normal versus cancer cells, and for the design and testing of specific peroxiredoxin inhibitors that display selectivity to malignant cells. Antioxid. Redox Signal. 28, 591-608.
Collapse
Affiliation(s)
- Mark B Hampton
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - Kate A Vick
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - John J Skoko
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Carola A Neumann
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Zhang J, Li X, Han X, Liu R, Fang J. Targeting the Thioredoxin System for Cancer Therapy. Trends Pharmacol Sci 2017; 38:794-808. [PMID: 28648527 DOI: 10.1016/j.tips.2017.06.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 01/04/2023]
Abstract
Thioredoxin (Trx) and thioredoxin reductase (TrxR) are essential components of the Trx system which plays pivotal roles in regulating multiple cellular redox signaling pathways. In recent years TrxR/Trx have been increasingly recognized as an important modulator of tumor development, and hence targeting TrxR/Trx is a promising strategy for cancer treatment. In this review we first discuss the structural details of TrxR, the functions of the Trx system, and the rational of targeting TrxR/Trx for cancer treatment. We also highlight small-molecule TrxR/Trx inhibitors that have potential anticancer activity and review their mechanisms of action. Finally, we examine the challenges of developing TrxR/Trx inhibitors as anticancer agents and perspectives for selectively targeting TrxR/Trx.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
31
|
Zhang J, Yao J, Peng S, Li X, Fang J. Securinine disturbs redox homeostasis and elicits oxidative stress-mediated apoptosis via targeting thioredoxin reductase. Biochim Biophys Acta Mol Basis Dis 2017; 1863:129-138. [DOI: 10.1016/j.bbadis.2016.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/28/2016] [Accepted: 10/20/2016] [Indexed: 12/30/2022]
|
32
|
Allan KM, Loberg MA, Chepngeno J, Hurtig JE, Tripathi S, Kang MG, Allotey JK, Widdershins AH, Pilat JM, Sizek HJ, Murphy WJ, Naticchia MR, David JB, Morano KA, West JD. Trapping redox partnerships in oxidant-sensitive proteins with a small, thiol-reactive cross-linker. Free Radic Biol Med 2016; 101:356-366. [PMID: 27816612 PMCID: PMC5154803 DOI: 10.1016/j.freeradbiomed.2016.10.506] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/14/2016] [Accepted: 10/27/2016] [Indexed: 12/15/2022]
Abstract
A broad range of redox-regulated proteins undergo reversible disulfide bond formation on oxidation-prone cysteine residues. Heightened reactivity of the thiol groups in these cysteines also increases susceptibility to modification by organic electrophiles, a property that can be exploited in the study of redox networks. Here, we explored whether divinyl sulfone (DVSF), a thiol-reactive bifunctional electrophile, cross-links oxidant-sensitive proteins to their putative redox partners in cells. To test this idea, previously identified oxidant targets involved in oxidant defense (namely, peroxiredoxins, methionine sulfoxide reductases, sulfiredoxin, and glutathione peroxidases), metabolism, and proteostasis were monitored for cross-link formation following treatment of Saccharomyces cerevisiae with DVSF. Several proteins screened, including multiple oxidant defense proteins, underwent intermolecular and/or intramolecular cross-linking in response to DVSF. Specific redox-active cysteines within a subset of DVSF targets were found to influence cross-linking; in addition, DVSF-mediated cross-linking of its targets was impaired in cells first exposed to oxidants. Since cross-linking appeared to involve redox-active cysteines in these proteins, we examined whether potential redox partners became cross-linked to them upon DVSF treatment. Specifically, we found that several substrates of thioredoxins were cross-linked to the cytosolic thioredoxin Trx2 in cells treated with DVSF. However, other DVSF targets, like the peroxiredoxin Ahp1, principally formed intra-protein cross-links upon DVSF treatment. Moreover, additional protein targets, including several known to undergo S-glutathionylation, were conjugated via DVSF to glutathione. Our results indicate that DVSF is of potential use as a chemical tool for irreversibly trapping and discovering thiol-based redox partnerships within cells.
Collapse
Affiliation(s)
- Kristin M Allan
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Matthew A Loberg
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Juliet Chepngeno
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jennifer E Hurtig
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Susmit Tripathi
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Min Goo Kang
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jonathan K Allotey
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Afton H Widdershins
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jennifer M Pilat
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Herbert J Sizek
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Wesley J Murphy
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Matthew R Naticchia
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Joseph B David
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States.
| |
Collapse
|
33
|
Duan D, Zhang J, Yao J, Liu Y, Fang J. Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells. J Biol Chem 2016; 291:10021-10031. [PMID: 27002142 PMCID: PMC4858956 DOI: 10.1074/jbc.m115.700591] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/15/2016] [Indexed: 02/05/2023] Open
Abstract
Parthenolide (PTL), a major active sesquiterpene lactone from the herbal plant Tanacetum parthenium, has been applied in traditional Chinese medicine for centuries. Although PTL demonstrates potent anticancer efficacy in numerous types of malignant cells, the cellular targets of PTL have not been well defined. We reported here that PTL interacts with both cytosolic thioredoxin reductase (TrxR1) and mitochondrial thioredoxin reductase (TrxR2), two ubiquitous selenocysteine-containing antioxidant enzymes, to elicit reactive oxygen species-mediated apoptosis in HeLa cells. PTL selectively targets the selenocysteine residue in TrxR1 to inhibit the enzyme function, and further shifts the enzyme to an NADPH oxidase to generate superoxide anions, leading to reactive oxygen species accumulation and oxidized thioredoxin. Under the conditions of inhibition of TrxRs in cells, PTL does not cause significant alteration of cellular thiol homeostasis, supporting selective target of TrxRs by PTL. Importantly, overexpression of functional TrxR1 or Trx1 confers protection, whereas knockdown of the enzymes sensitizes cells to PTL treatment. Targeting TrxRs by PTL thus discloses an unprecedented mechanism underlying the biological activity of PTL, and provides deep insights to understand the action of PTL in treatment of cancer.
Collapse
Affiliation(s)
- Dongzhu Duan
- From the State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 and the Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Junmin Zhang
- From the State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 and
| | - Juan Yao
- From the State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 and
| | - Yaping Liu
- From the State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 and
| | - Jianguo Fang
- From the State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 and
| |
Collapse
|
34
|
Angelucci F, Miele AE, Ardini M, Boumis G, Saccoccia F, Bellelli A. Typical 2-Cys peroxiredoxins in human parasites: Several physiological roles for a potential chemotherapy target. Mol Biochem Parasitol 2016; 206:2-12. [PMID: 27002228 DOI: 10.1016/j.molbiopara.2016.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023]
Abstract
Peroxiredoxins (Prxs) are ubiquitary proteins able to play multiple physiological roles, that include thiol-dependent peroxidase, chaperone holdase, sensor of H2O2, regulator of H2O2-dependent signal cascades, and modulator of the immune response. Prxs have been found in a great number of human pathogens, both eukaryotes and prokaryotes. Gene knock-out studies demonstrated that Prxs are essential for the survival and virulence of at least some of the pathogens tested, making these proteins potential drug targets. However, the multiplicity of roles played by Prxs constitutes an unexpected obstacle to drug development. Indeed, selective inhibitors of some of the functions of Prxs are known (namely of the peroxidase and holdase functions) and are here reported. However, it is often unclear which function is the most relevant in each pathogen, hence which one is most desirable to inhibit. Indeed there are evidences that the main physiological role of Prxs may not be the same in different parasites. We here review which functions of Prxs have been demonstrated to be relevant in different human parasites, finding that the peroxidase and chaperone activities figure prominently, whereas other known functions of Prxs have rarely, if ever, been observed in parasites, or have largely escaped detection thus far.
Collapse
Affiliation(s)
- Francesco Angelucci
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Adriana Erica Miele
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Matteo Ardini
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Fulvio Saccoccia
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Bellelli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
35
|
He T, Hatem E, Vernis L, Lei M, Huang ME. PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:152. [PMID: 26689287 PMCID: PMC4687332 DOI: 10.1186/s13046-015-0270-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/11/2015] [Indexed: 12/23/2022]
Abstract
Background Many promising anticancer molecules are abandoned during the course from bench to bedside due to lack of clear-cut efficiency and/or severe side effects. Vitamin K3 (vitK3) is a synthetic naphthoquinone exhibiting significant in vitro and in vivo anticancer activity against multiple human cancers, and has therapeutic potential when combined with other anticancer molecules. The major mechanism for the anticancer activity of vitK3 is the generation of cytotoxic reactive oxygen species (ROS). We thus reasoned that a rational redox modulation of cancer cells could enhance vitK3 anticancer efficiency. Methods Cancer cell lines with peroxiredoxin 1 (PRX1) gene transiently or stably knocked-down and corresponding controls were exposed to vitK3 as well as a set of anticancer molecules, including vinblastine, taxol, doxorubicin, daunorubicin, actinomycin D and 5-fluorouracil. Cytotoxic effects and cell death events were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based assay, cell clonogenic assay, measurement of mitochondrial membrane potential and annexin V/propidium iodide double staining. Global ROS accumulation and compartment-specific H2O2 generation were determined respectively by a redox-sensitive chemical probe and H2O2-sensitive sensor HyPer. Oxidation of endogenous antioxidant proteins including TRX1, TRX2 and PRX3 was monitored by redox western blot. Results We observed that the PRX1 knockdown in HeLa and A549 cells conferred enhanced sensitivity to vitK3, reducing substantially the necessary doses to kill cancer cells. The same conditions (combination of vitK3 and PRX1 knockdown) caused little cytotoxicity in non-cancerous cells, suggesting a cancer-cell-selective property. Increased ROS accumulation had a crucial role in vitK3-induced cell death in PRX1 knockdown cells. The use of H2O2-specific sensors HyPer revealed that vitK3 lead to immediate accumulation of H2O2 in the cytosol, nucleus, and mitochondrial matrix. PRX1 silencing significantly up-regulated mRNA and protein levels of NRH:quinone oxidoreductase 2, which was partially responsible for vitK3-induced ROS accumulation and consequent cell death. Conclusion Our data suggest that PRX1 inactivation could represent an interesting strategy to enhance cancer cell sensitivity to vitK3, providing a potential new therapeutic perspective for this old molecule. Conceptually, a combination of drugs that modulate intracellular redox states and drugs that operate through the generation of ROS could be a new therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Tiantian He
- Centre National de la Recherche Scientifique, UMR3348 "Genotoxic Stress and Cancer", Centre Universitaire, Orsay, 91405, France. .,Institut Curie, Centre de Recherche, Orsay, 91405, France.
| | - Elie Hatem
- Centre National de la Recherche Scientifique, UMR3348 "Genotoxic Stress and Cancer", Centre Universitaire, Orsay, 91405, France. .,Institut Curie, Centre de Recherche, Orsay, 91405, France.
| | - Laurence Vernis
- Centre National de la Recherche Scientifique, UMR3348 "Genotoxic Stress and Cancer", Centre Universitaire, Orsay, 91405, France. .,Institut Curie, Centre de Recherche, Orsay, 91405, France.
| | - Ming Lei
- Northwest A&F University, College of Life Science, Key Laboratory of Agricultural Molecular Biology, Yangling, Shaanxi Province, 712100, China.
| | - Meng-Er Huang
- Centre National de la Recherche Scientifique, UMR3348 "Genotoxic Stress and Cancer", Centre Universitaire, Orsay, 91405, France. .,Institut Curie, Centre de Recherche, Orsay, 91405, France.
| |
Collapse
|
36
|
Natural products against hematological malignancies and identification of their targets. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1191-201. [DOI: 10.1007/s11427-015-4922-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/16/2015] [Indexed: 01/14/2023]
|
37
|
Siernicka M, Winiarska M, Bajor M, Firczuk M, Muchowicz A, Bobrowicz M, Fauriat C, Golab J, Olive D, Zagozdzon R. Adenanthin, a new inhibitor of thiol-dependent antioxidant enzymes, impairs the effector functions of human natural killer cells. Immunology 2015; 146:173-83. [PMID: 26094816 DOI: 10.1111/imm.12494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are considered critical components of the innate and adaptive immune responses. Deficiencies in NK cell activity are common, such as those that occur in cancer patients, and they can be responsible for dysfunctional immune surveillance. Persistent oxidative stress is intrinsic to many malignant tumours, and numerous studies have focused on the effects of reactive oxygen species on the anti-tumour activity of NK cells. Indeed, investigations in animal models have suggested that one of the most important thiol-dependent antioxidant enzymes, peroxiredoxin 1 (PRDX1), is essential for NK cell function. In this work, our analysis of the transcriptomic expression pattern of antioxidant enzymes in human NK cells has identified PRDX1 as the most prominently induced transcript out of the 18 transcripts evaluated in activated NK cells. The change in PRDX1 expression was followed by increased expression of two other enzymes from the PRDX-related antioxidant chain: thioredoxin and thioredoxin reductase. To study the role of thiol-dependent antioxidants in more detail, we applied a novel compound, adenanthin, to induce an abrupt dysfunction of the PRDX-related antioxidant chain in NK cells. In human primary NK cells, we observed profound alterations in spontaneous and antibody-dependent NK cell cytotoxicity against cancer cells, impaired degranulation, and a decreased expression of activation markers under these conditions. Collectively, our study pinpoints the unique role for the antioxidant activity of the PRDX-related enzymatic chain in human NK cell functions. Further understanding this phenomenon will prospectively lead to fine-tuning of the novel NK-targeted therapeutic approaches to human disease.
Collapse
Affiliation(s)
- Marta Siernicka
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Bajor
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Firczuk
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Angelika Muchowicz
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Bobrowicz
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Cyril Fauriat
- IBiSA Cancer Immunomonitoring Platform, Institut Paoli Calmettes, Inserm, U1068, CRCM, Institut Paoli-Calmettes, CNRS, UMR7258, Aix-Marseille Université, Marseille, France
| | - Jakub Golab
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Daniel Olive
- IBiSA Cancer Immunomonitoring Platform, Institut Paoli Calmettes, Inserm, U1068, CRCM, Institut Paoli-Calmettes, CNRS, UMR7258, Aix-Marseille Université, Marseille, France
| | - Radoslaw Zagozdzon
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
38
|
Hitting the Bull's-Eye in Metastatic Cancers-NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death. Pharmaceuticals (Basel) 2015; 8:62-106. [PMID: 25688484 PMCID: PMC4381202 DOI: 10.3390/ph8010062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Tumor metastases that impede the function of vital organs are a major cause of cancer related mortality. Mitochondrial oxidative stress induced by hypoxia, low nutrient levels, or other stresses, such as genotoxic events, act as key drivers of the malignant changes in primary tumors to enhance their progression to metastasis. Emerging evidence now indicates that mitochondrial modifications and mutations resulting from oxidative stress, and leading to OxPhos stimulation and/or enhanced reactive oxygen species (ROS) production, are essential for promoting and sustaining the highly metastatic phenotype. Moreover, the modified mitochondria in emerging or existing metastatic cancer cells, by their irreversible differences, provide opportunities for selectively targeting their mitochondrial functions with a one-two punch. The first blow would block their anti-oxidative defense, followed by the knockout blow—promoting production of excess ROS, capitulating the terminal stage—activation of the mitochondrial permeability transition pore (mPTP), specifically killing metastatic cancer cells or their precursors. This review links a wide area of research relevant to cellular mechanisms that affect mitochondria activity as a major source of ROS production driving the pro-oxidative state in metastatic cancer cells. Each of the important aspects affecting mitochondrial function are discussed including: hypoxia, HIFs and PGC1 induced metabolic changes, increased ROS production to induce a more pro-oxidative state with reduced antioxidant defenses. It then focuses on how the mitochondria, as a major source of ROS in metastatic cancer cells driving the pro-oxidative state of malignancy enables targeting drugs affecting many of these altered processes and why the NSAIDs are an excellent example of mitochondria-targeted agents that provide a one-two knockout activating the mPTP and their efficacy as selective anticancer metastasis drugs.
Collapse
|
39
|
Kang SW, Lee S, Lee EK. ROS and energy metabolism in cancer cells: alliance for fast growth. Arch Pharm Res 2015; 38:338-45. [PMID: 25599615 DOI: 10.1007/s12272-015-0550-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
In normal cells, the cellular reactive oxygen species (ROS) level is proportional to the activity of mitochondrial electron transport and tightly controlled by endogenous antioxidant system. However, energy metabolism and ROS homeostasis in cancer cells are much different from those in normal cells. For example, a majority of cellular glucose is metabolized through aerobic glycolysis ("Warburg effect") and the pentose phosphate pathway. Cancer cells harbor functional mitochondria, but many mutations in nuclear DNA-encoded mitochondrial genes and mitochondrial genome result in the mitochondrial metabolic reprogramming. The other characteristic of cancer cells is to maintain much higher ROS level than normal cells. Ironically, cancer cells overexpress the ROS-producing NADPH oxidase and the ROS-eliminating antioxidant enzymes, both of which enzyme systems share NADPH as a reducing power source. In this article, we review the complex connection between ROS and energy metabolisms in cancer cells.
Collapse
Affiliation(s)
- Sang Won Kang
- Department of Life Sciences, Research Center for Cell Homeostasis, Ewha Womans University, Seoul, 120-750, Republic of Korea,
| | | | | |
Collapse
|