1
|
Zhao S, Song Y, Nakashima Y, Zou X, Koga T, Ishida T, Li R, Hirota Y, Tanaka Y, Ishii Y. Ablation of Mouse Selenium-Binding Protein 1 and 2 Elevates LDL by Disruption of Cholesterol Efflux and Lipid Metabolism. Int J Mol Sci 2025; 26:3363. [PMID: 40244197 PMCID: PMC11989624 DOI: 10.3390/ijms26073363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Selenium-binding protein 1 (SeBP1) is an anticancer factor that affects lipid metabolism in mouse kidneys via the peroxisome proliferator-activated receptor-alpha (PPARA) pathway. However, its physiological role in the liver is difficult to explain because of the presence of the highly homologous selenium-binding protein 2 (SeBP2). To investigate the role of these proteins in the liver, we generated SeBP1 and SeBP2 double-knockout mice (SeBP1/2-DK). SeBP1/2 deletion did not significantly alter the mice phenotypic compared to that of the wild-type strain. Then, we identified the genes involved in hepatic lipid metabolism. The double knockout did not affect fatty acid and cholesterol synthesis, but inhibited fatty acid oxidation and cholesterol efflux. Furthermore, transfection of HepG2 cells with human selenium-binding protein 1 (hSeBP1) positively regulated PPARA and the genes controlled by it. Overexpression of hSeBP1 reduced the levels of non-esterified fatty acids in the culture medium. The serum levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides were significantly different among the three groups. In summary, we elucidated the potential signaling pathways of SeBP1 and SeBP2 in fatty acid oxidation and hepatic cholesterol efflux. Our findings provide insights relevant for developing new strategies to prevent and treat lipid metabolism disorders.
Collapse
Grants
- Scientific Research (A) JSPS KAKENHI JP17H00788, Recipient YI Japan Society for the Promotion of Science
- Scientific Research (A) JSPS KAKENHI JP21H04928, Recipient YI Japan Society for the Promotion of Science
- JSPS Fellows JSPS KAKENHI 24KJ1773, Recipient SZ Japan Society for the Promotion of Science
- Research on Food Safety (H30-Designated Research-005, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
- the Ministry of Health, Labor and Welfare, Japan [Research on Food Safety (R3-Designated Research JP21KA2003, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
- Research on Food Safety ( R6-Designated Research JP24KA2001, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
Collapse
Affiliation(s)
- Shuangli Zhao
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yingxia Song
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yuko Nakashima
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Xing Zou
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Takayuki Koga
- Laboratory of Hygienic Chemistry, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
| | - Takumi Ishida
- School of Pharmacy, International University of Health and Welfare Fukuoka, Ohkawa 831-8501, Japan;
| | - Renshi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| |
Collapse
|
2
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
3
|
Zhao W, Nikolic-Paterson DJ, Li K, Li Y, Wang Y, Chen X, Duan Z, Zhang Y, Liu P, Lu S, Fu R, Tian L. Selenium binding protein 1 protects renal tubular epithelial cells from ferroptosis by upregulating glutathione peroxidase 4. Chem Biol Interact 2024; 393:110944. [PMID: 38518851 DOI: 10.1016/j.cbi.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Ferroptosis is a form of programmed cell death involved in various types of acute kidney injury (AKI). It is characterized by inactivation of the selenoprotein, glutathione peroxidase 4 (GPX4), and upregulation of acyl-CoA synthetase long-chain family member 4 (ACSL4). Since urinary selenium binding protein 1 (SBP1/SELENBP1) is a potential biomarker for AKI, this study investigated whether SBP1 plays a role in AKI. First, we showed that SBP1 is expressed in proximal tubular cells in normal human kidney, but is significant downregulated in cases of AKI in association with reduced GPX4 expression and increased ACSL4 expression. In mouse renal ischemia-reperfusion injury (I/R), the rapid downregulation of SBP1 protein levels preceded downregulation of GPX4 and the onset of necrosis. In vitro, hypoxia/reoxygenation (H/R) stimulation in human proximal tubular epithelial (HK-2) cells induced ferroptotic cell death in associated with an acute reduction in SBP1 and GPX4 expression, and increased oxidative stress. Knockdown of SBP1 reduced GPX4 expression and increased the susceptibility of HK-2 cells to H/R-induced cell death, whereas overexpression of SBP1 reduced oxidative stress, maintained GPX4 expression, reduced mitochondrial damage, and reduced H/R-induced cell death. Finally, selenium deficiency reduced GPX4 expression and promoted H/R-induced cell death, whereas addition of selenium was protective against H/R-induced oxidative stress. In conclusion, SBP1 plays a functional role in hypoxia-induced tubular cell death. Enhancing SBP1 expression is a potential therapeutic approach for the treatment of AKI.
Collapse
Affiliation(s)
- Weihao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - David J Nikolic-Paterson
- Department of Nephrology and Monash University of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Ke Li
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Li
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yinhong Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xianghui Chen
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaoyang Duan
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuzhan Zhang
- Department of Nephrology, Xijing Hospital, Xi'an, Shaanxi, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shemin Lu
- Institute of Molecular and Translational Medicine (IMTM), Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Rongguo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Lifang Tian
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Kumar B, Prasad P, Singh R, Sahu RK, Singh A, Magani SJ, Hedau S. Role of identified proteins in the proteome profiles of CDK4/6 inhibitor-resistant breast cancer cell lines. Mol Omics 2023. [PMID: 36938944 DOI: 10.1039/d2mo00285j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Abemaciclib (Ab) and palbociclib (Pb) are CDK4/6 inhibitors used to cure advanced breast cancer (BC). However, acquired resistance is a major challenge. The molecular mechanisms and signature proteins of therapy resistance for Ab and Pb drugs need to be explored. Here we developed resistant cells for Ab and Pb drugs in MCF-7 cell lines and explored the mechanisms and signature proteins of therapy resistance in BC. Proteome profiling was performed using the label-free proteome-orbitrap-fusion-MS-MS technique. Gene ontology (GO)-terms, KEGG pathways and network analysis were performed for the proteome data. Drug-resistant cells showed increased drug tolerance, enhanced colony formation potential and an increased gap-healing tendency for the respective drug. Up-regulation of survival genes (BCL-2 and MCL-1) and down-regulation of apoptosis inducers were observed. Drug-resistance markers (MDR-1 and ABCG2 (BCRP)) along with ESR-1, CDK4, CDK6, and cyclin-D1 genes were up-regulated in resistant cells. A total of 237 and 239 proteins were found to be differentially expressed in the Ab and Pb-resistant cells, respectively. Down-regulated proteins induce apoptosis signalling and nucleotide metabolisms and restrict EGFR signalling; however, up-regulated proteins induce Erk, wnt-β-catenin, VEGFR-PI3K-AKT, glucose transportation, and hypoxia signalling pathways and regulate hydrogen peroxide signalling pathways. The panel of identified proteins associated with these pathways might have characteristics of molecular signature and new drug targets for overcoming drug resistance in breast cancer.
Collapse
Affiliation(s)
- Binayak Kumar
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India.
| | - Peeyush Prasad
- Department of Research, Sir Ganga Ram Hospital, 110060, New Delhi, India
| | - Ragini Singh
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India.
| | - Ram Krishna Sahu
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India.
| | - Ashutosh Singh
- Department of Life Sciences, Shiv Nadar University, NH-91, Tahsil-Dadri, Distt-Gautam Budhaa Nagar, Uttar Pradesh, 201314, India.
| | - Srikrishna Jayadev Magani
- Department of Life Sciences, Shiv Nadar University, NH-91, Tahsil-Dadri, Distt-Gautam Budhaa Nagar, Uttar Pradesh, 201314, India.
| | - Suresh Hedau
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
5
|
Dávila-Vega JP, Gastelum-Hernández AC, Serrano-Sandoval SN, Serna-Saldívar SO, Guitiérrez-Uribe JA, Milán-Carrillo J, Martínez-Cuesta MC, Guardado-Félix D. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review. Biol Trace Elem Res 2022:10.1007/s12011-022-03467-1. [PMID: 36342630 DOI: 10.1007/s12011-022-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activation of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.
Collapse
Affiliation(s)
- Juan Pablo Dávila-Vega
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Ana Carolina Gastelum-Hernández
- Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Sayra N Serrano-Sandoval
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Sergio O Serna-Saldívar
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Janet A Guitiérrez-Uribe
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, Campus Puebla, Vía Atlixcáyotl 5718, C.P. 72453, Puebla, Pue, México
| | - Jorge Milán-Carrillo
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de La Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Daniela Guardado-Félix
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico.
| |
Collapse
|
6
|
Zhang Y, He Q. The role of SELENBP1 and its epigenetic regulation in carcinogenic progression. Front Genet 2022; 13:1027726. [PMID: 36386843 PMCID: PMC9663989 DOI: 10.3389/fgene.2022.1027726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
The initiation and progression of cancer is modulated through diverse genetic and epigenetic modifications. The epigenetic machinery regulates gene expression through intertwined DNA methylation, histone modifications, and miRNAs without affecting their genome sequences. SELENBP1 belongs to selenium-binding proteins and functions as a tumor suppressor. Its expression is significantly downregulated and correlates with carcinogenic progression and poor survival in various cancers. The role of SELENBP1 in carcinogenesis has not been fully elucidated, and its epigenetic regulation remains poorly understood. In this review, we summarize recent findings on the function and regulatory mechanisms of SELENBP1 during carcinogenic progression, with an emphasis on epigenetic mechanisms. We also discuss the potential cancer treatment targeting epigenetic modification of SELENBP1, either alone or in combination with selenium-containing compounds or dietary selenium.
Collapse
|
7
|
Zhu C, Wang S, Du Y, Dai Y, Huai Q, Li X, Du Y, Dai H, Yuan W, Yin S, Wang H. Tumor microenvironment-related gene selenium-binding protein 1 (SELENBP1) is associated with immunotherapy efficacy and survival in colorectal cancer. BMC Gastroenterol 2022; 22:437. [PMID: 36253721 PMCID: PMC9575293 DOI: 10.1186/s12876-022-02532-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Selenium-binding protein 1 (SELENBP1), a member of the selenium-containing protein family, plays an important role in malignant tumorigenesis and progression. However, it is currently lacking research about relationship between SELENBP1 and immunotherapy in colorectal cancer (CRC). Methods We first analyzed the expression levels of SELENBP1 based on the Cancer Genome Atlas (TCGA), Oncomine andUALCAN. Chisq.test, Fisher.test, Wilcoxon-Mann-Whitney test and logistic regression were used to analyze the relationship of clinical characteristics with SELENBP1 expression. Then Gene ontology/ Kyoto encyclopedia of genes and genomes (GO/KEGG), Gene set enrichment analysis (GSEA) enrichment analysis to clarify bio-processes and signaling pathways. The cBioPortal was used to perform analysis of mutation sites, types, etc. of SELENBP1. In addition, the correlation of SELENBP1 gene with tumor immune infiltration and prognosis was analyzed using ssGSEA, ESTIMATE, tumor immune dysfunction and rejection (TIDE) algorithm and Kaplan-Meier (KM) Plotter database. Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were used to validate the expression of SELENBP1 in CRC samples and matched normal tissues. Immunohistochemistry (IHC) was further performed to detect the expression of SELENBP1 in CRC samples and matched normal tissues. Results We found that SELENBP1 expression was lower in CRC compared to normal colorectal tissue and was associated with poor prognosis. The aggressiveness of CRC increased with decreased SELENBP1 expression. Enrichment analysis showed that the SELENBP1 gene was significantly enriched in several pathways, such as programmed death 1 (PD-1) signaling, signaling by interleukins, TCR signaling, collagen degradation, costimulation by the CD28 family. Decreased expression of SELENBP1 was associated with DNA methylation and mutation. Immune infiltration analysis identified that SELENBP1 expression was closely related to various immune cells and immune chemokines/receptors. With increasing SELENBP1 expression, immune and stromal components in the tumor microenvironment were significantly decreased. SELENBP1 expression in CRC patients affects patient prognosis by influencing tumor immune infiltration. Beside this, SELENBP1 expression is closely related to the sensitivity of chemotherapy and immunotherapy. Conclusions Survival analysis as well as enrichment and immunoassay results suggest that SELENBP1 can be considered as a promising prognostic biomarker for CRC. SELENBP1 expression is closely associated with immune infiltration and immunotherapy. Collectively, our study provided useful information on the oncogenic role of SELENBP1, contributing to further exploring the underlying mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02532-2.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230036, China
| | - Siya Wang
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230001, China
| | - Yishan Du
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230001, China
| | - Ying Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230036, China
| | - Qian Huai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230036, China
| | - Xiaolei Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230036, China
| | - Yingying Du
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230036, China
| | - Hanren Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230036, China
| | - Wenkang Yuan
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230036, China
| | - Shi Yin
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230001, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230036, China.
| |
Collapse
|
8
|
Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2022; 200:2069-2083. [PMID: 34365573 PMCID: PMC8349466 DOI: 10.1007/s12011-021-02851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation of selenoproteins dependent on the Sec insertion sequence element in the 3'UTR of mRNA at the UGA codon through a novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict the potential health risk of the human body in the physiological adaptation state of low selenium based on the results of animal experiments.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China.
| |
Collapse
|
9
|
An Integrated In Silico, In Vitro and Tumor Tissues Study Identified Selenoprotein S (SELENOS) and Valosin-Containing Protein (VCP/p97) as Novel Potential Associated Prognostic Biomarkers in Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030646. [PMID: 35158912 PMCID: PMC8833666 DOI: 10.3390/cancers14030646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Triple negative breast cancer (TNBC) represents a clinical challenge because its early relapse, poor overall survival and lack of effective treatments. Altered levels selenoproteins have been correlated with development and progression of some cancers, however, no consistent data are available about their involvement in TNBC. Here we analyzed the expression profile of all twenty-five human selenoproteins in TNBC cells and tissues by a systematic approach, integrating in silico and wet lab approaches. We showed that the expression profiles of five selenoproteins are specifically dysregulated in TNBC. Most importantly, by a bioinformatics analysis, we selected selenoprotein S and its interacting protein valosin-containing protein (VCP/p97) as inter-related with the others and whose coordinated over-expression is associated with poor prognosis in TNBC. Overall, we highlighted two mechanistically related novel proteins whose correlated expression could be exploited for a better definition of prognosis as well as suggested as novel therapeutic target in TNBC. Abstract Background. Triple negative breast cancer (TNBC) is a heterogeneous group of tumors with early relapse, poor overall survival, and lack of effective treatments. Hence, new prognostic biomarkers and therapeutic targets are needed. Methods. The expression profile of all twenty-five human selenoproteins was analyzed in TNBC by a systematic approach.In silicoanalysis was performed on publicly available mRNA expression datasets (Cancer Cell Line Encyclopedia, CCLE and Library of Integrated Network-based Cellular Signatures, LINCS). Reverse transcription quantitative PCR analysis evaluated selenoprotein mRNA expression in TNBC versus non-TNBC and normal breast cells, and in TNBC tissues versus normal counterparts. Immunohistochemistry was employed to study selenoproteins in TNBC tissues. STRING and Cytoscape tools were used for functional and network analysis. Results.GPX1, GPX4, SELENOS, TXNRD1 and TXNRD3 were specifically overexpressed in TNBC cells, tissues and CCLE/LINCS datasets. Network analysis demonstrated that SELENOS-binding valosin-containing protein (VCP/p97) played a critical hub role in the TNBCselenoproteins sub-network, being directly associated with SELENOS expression. The combined overexpression of SELENOS and VCP/p97 correlated with advanced stages and poor prognosis in TNBC tissues and the TCGA dataset. Conclusion. Combined evaluation of SELENOS and VCP/p97 might represent a novel potential prognostic signature and a therapeutic target to be exploited in TNBC.
Collapse
|
10
|
Li E, Wang Y, Li Q, Li L, Wei L. Protective Effects of Sal B on Oxidative Stress-Induced Aging by Regulating the Keap1/Nrf2 Signaling Pathway in Zebrafish. Molecules 2021; 26:5239. [PMID: 34500674 PMCID: PMC8434535 DOI: 10.3390/molecules26175239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
The models of oxidative damage-induced aging were established by adding ethanol (C2H5OH), hydrogen peroxide (H2O2) and 6-hydroxydopamine (6-OHDA) to zebrafish embryos in this research. To find effective protective drugs/foods, Salvianolic acid B (Sal B) was added after the embryos were treated by these oxidative reagents. After being treated with ethanol, H2O2 and 6-OHDA, the morphological changes were obvious and the deformities included spinal curvature, heart bleeding, liver bleeding, yolk sac deformity and pericardial edema, and the expression of oxidative stress-related genes Nrf2b, sod1 and sod2 and aging-related genes myl2a and selenbp1 were significantly up-regulated compared to the control group. While after adding 0.05 μg/mL and 0.5 μg/mL Sal B to the ethanol-treated group, death rates and MDA levels decreased, the activity of antioxidant enzyme (SOD, CAT and GSH-Px) changed and Nrf2b, sod1, sod2, myl2a, selenbp1, p53 and p21 were down-regulated compared to the ethanol-treated group. The bioinformatics analysis also showed that oxidative stress-related factors were associated with a variety of cellular functions and physiological pathways. In conclusion, Sal B can protect against aging through regulating the Keap1/Nrf2 pathway as well as antioxidative genes and enzyme activity.
Collapse
Affiliation(s)
- Erzhuo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China;
- School of Life Science and Technology, Harbin Instituted of Technology, Harbin 150001, China; (Y.W.); (Q.L.)
| | - Yunhao Wang
- School of Life Science and Technology, Harbin Instituted of Technology, Harbin 150001, China; (Y.W.); (Q.L.)
| | - Qiao Li
- School of Life Science and Technology, Harbin Instituted of Technology, Harbin 150001, China; (Y.W.); (Q.L.)
| | - Li Li
- School of Life Science and Technology, Harbin Instituted of Technology, Harbin 150001, China; (Y.W.); (Q.L.)
| | - Lijun Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China;
- School of Life Science and Technology, Harbin Instituted of Technology, Harbin 150001, China; (Y.W.); (Q.L.)
| |
Collapse
|
11
|
Köhnlein K, Urban N, Steinbrenner H, Guerrero-Gómez D, Miranda-Vizuete A, Kaether C, Klotz LO. Selenite-induced Expression of a Caenorhabditis elegans Pro-aging Factor and Ortholog of Human Selenium-binding Protein 1. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2665978601666200212105825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background:
The essential trace element and micronutrient selenium exerts most of its
biological actions through incorporation into selenoproteins as selenocysteine. Two further types of
Se-containing proteins exist, including those that have selenomethionine incorporated instead of
methionine, and the group of selenium-binding proteins. We previously described an ortholog of
selenium-binding protein 1 (SELENBP1) in the nematode Caenorhabditis elegans, Y37A1B.5, and
demonstrated that it confers resistance to toxic selenite concentrations while impairing general
stress resistance and life expectancy of C. elegans.
Objective:
We tested for the effect of selenite on Y37A1B.5 expression, and we analyzed whether
Y37A1B.5 also shows a lifespan-modulating effect when the nematodes are deficient in the
selenoenzyme thioredoxin reductase-1 (TRXR-1).
Methods:
C. elegans expressing a translational reporter construct encoding GFP-tagged Y37A1B.5
under the control of the Y37A1B.5 promoter were exposed to selenite, followed by fluorescence
microscopic analysis of GFP levels. Lifespan analyses and RNA interference experiments were
performed in trxr-1-deficient worms.
Results:
We here demonstrate that selenite at toxic concentrations stimulates the expression of the
translational Y37A1B.5 reporter. The lifespan-extending effect of Y37A1B.5 deficiency was
preserved upon the deletion of the only selenoprotein in C. elegans, TRXR-1.
Conclusion:
These data suggest that (1) Y37A1B.5 may serve as a selenite-responsive buffer
against high environmental selenium concentrations and that (2) lifespan extension elicited by
Y37A1B.5 knockdown does not require functional TRXR-1.
Collapse
Affiliation(s)
- Karl Köhnlein
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Nadine Urban
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - David Guerrero-Gómez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
12
|
Wang Y, Zhu W, Chen X, Wei G, Jiang G, Zhang G. Selenium-binding protein 1 transcriptionally activates p21 expression via p53-independent mechanism and its frequent reduction associates with poor prognosis in bladder cancer. J Transl Med 2020; 18:17. [PMID: 31918717 PMCID: PMC6953137 DOI: 10.1186/s12967-020-02211-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 01/03/2020] [Indexed: 01/31/2023] Open
Abstract
Background Recent studies have shown that selenium-binding protein 1 (SELENBP1) is significantly down-regulated in a variety of solid tumors. Nevertheless, the clinical relevance of SELENBP1 in human bladder cancer has not been described in any detail, and the molecular mechanism underlying its inhibitory role in cancer cell growth is largely unknown. Methods SELENBP1 expression levels in tumor tissues and adjacent normal tissues were evaluated using immunoblotting assay. The association of SELENBP1 expression, clinicopathological features, and clinical outcome was determined using publicly available dataset from The Cancer Genome Atlas bladder cancer (TCGA-BLCA) cohort. DNA methylation in SELENBP1 gene was assessed using online MEXPRESS tool. We generated stable SELENBP1-overexpression and their corresponding control cell lines to determine its potential effect on cell cycle and transcriptional activity of p21 by using flow cytometry and luciferase reporter assay, respectively. The dominant-negative mutant constructs, TAM67 and STAT1 Y701F, were employed to define the roles of c-Jun and STAT1 in the regulation of p21 protein. Results Here, we report that the reduction of SELENBP1 is a frequent event and significantly correlates with tumor progression as well as unfavorable prognosis in human bladder cancer. By utilizing TCGA-BLCA cohort, DNA hypermethylation, especially in gene body, is shown to be likely to account for the reduction of SELENBP1 expression. However, an apparent paradox is observed in its 3′-UTR region, in which DNA methylation is positively related to SELENBP1 expression. More importantly, we verify the growth inhibitory role for SELENBP1 in human bladder cancer, and further report a novel function for SELENBP1 in transcriptionally modulating p21 expression through a p53-independent mechanism. Instead, ectopic expression of SELENBP1 pronouncedly attenuates the phosphorylation of c-Jun and STAT1, both of which are indispensable for SELENBP1-mediated transcriptional induction of p21, thereby resulting in the G0/G1 phase cell cycle arrest in bladder cancer cell. Conclusions Taken together, our findings provide clinical and molecular insights into improved understanding of the tumor suppressive role for SELENBP1 in human bladder cancer, suggesting that SELENBP1 could potentially be utilized as a prognostic biomarker as well as a therapeutic target in future cancer therapy.
Collapse
Affiliation(s)
- Yulei Wang
- Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China. .,School of Medicine, South China University of Technology, Guangzhou, 510641, China.
| | - Wenzhen Zhu
- Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Xiaoqing Chen
- Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Guangnan Wei
- School of Medicine, South China University of Technology, Guangzhou, 510641, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guochun Zhang
- Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China. .,School of Medicine, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
13
|
Köhnlein K, Urban N, Guerrero-Gómez D, Steinbrenner H, Urbánek P, Priebs J, Koch P, Kaether C, Miranda-Vizuete A, Klotz LO. A Caenorhabditis elegans ortholog of human selenium-binding protein 1 is a pro-aging factor protecting against selenite toxicity. Redox Biol 2019; 28:101323. [PMID: 31557719 PMCID: PMC6812014 DOI: 10.1016/j.redox.2019.101323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022] Open
Abstract
Human selenium-binding protein 1 (SELENBP1) was originally identified as a protein binding selenium, most likely as selenite. SELENBP1 is associated with cellular redox and thiol homeostasis in several respects, including its established role as a methanethiol oxidase that is involved in degradation of methanethiol, a methionine catabolite, generating hydrogen sulfide (H2S) and hydrogen peroxide (H2O2). As both H2S and reactive oxygen species (such as H2O2) are major regulators of Caenorhabditis elegans lifespan and stress resistance, we hypothesized that a SELENBP1 ortholog in C. elegans would likely be involved in regulating these aspects. Here we characterize Y37A1B.5, a putative selenium-binding protein 1 ortholog in C. elegans with 52% primary structure identity to human SELENBP1. While conferring resistance to toxic concentrations of selenite, Y37A1B.5 also attenuates resistance to oxidative stress and lowers C. elegans lifespan: knockdown of Y37A1B.5 using RNA interference resulted in an approx. 10% increase of C. elegans lifespan and an enhanced resistance against the redox cycler paraquat, as well as enhanced motility. Analyses of transgenic reporter strains suggest hypodermal expression and cytoplasmic localization of Y37A1B.5, whose expression decreases with worm age. We identify the transcriptional coregulator MDT-15 and transcription factor EGL-27 as regulators of Y37A1B.5 levels and show that the lifespan extending effect elicited by downregulation of Y37A1B.5 is independent of known MDT-15 interacting factors, such as DAF-16 and NHR-49. In summary, Y37A1B.5 is an ortholog of SELENBP1 that shortens C. elegans lifespan and lowers resistance against oxidative stress, while allowing for a better survival under toxic selenite concentrations.
Collapse
Affiliation(s)
- Karl Köhnlein
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Nadine Urban
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - David Guerrero-Gómez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Pavel Urbánek
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Josephine Priebs
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | | | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany.
| |
Collapse
|
14
|
Fang Y, Pan X, Zhao E, Shi Y, Shen X, Wu J, Pei F, Hu Q, Qiu W. Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates. Food Chem 2019; 275:696-702. [DOI: 10.1016/j.foodchem.2018.09.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/15/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023]
|
15
|
Samavarchi Tehrani S, Mahmoodzadeh Hosseini H, Yousefi T, Abolghasemi M, Qujeq D, Maniati M, Amani J. The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer. J Cell Biochem 2019; 120:1080-1105. [PMID: 30378148 DOI: 10.1002/jcb.27617] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 01/24/2023]
Abstract
DNA damage response (DDR) is a regulatory system responsible for maintaining genome integrity and stability, which can sense and transduce DNA damage signals. The severity of damage appears to determine DDRs, which can include damage repair, cell-cycle arrest, and apoptosis. Furthermore, defective components in DNA damage and repair machinery are an underlying cause for the development and progression of various types of cancers. Increasing evidence indicates that there is an association between trace elements and DDR/repair mechanisms. In fact, trace elements seem to affect mediators of DDR. Besides, it has been revealed that oxidative stress (OS) and trace elements are associated with cancer development. In this review, we discuss the role of some critical trace elements in the risk of cancer. In addition, we provide a brief introduction on DDR and OS in cancer. Finally, we will further review the interactions between some important trace elements including selenium, zinc, chromium, cadmium, and arsenic, and DDR, and OS in cancer.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Abolghasemi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Selenium-Binding Protein 1 in Human Health and Disease. Int J Mol Sci 2018; 19:ijms19113437. [PMID: 30400135 PMCID: PMC6274749 DOI: 10.3390/ijms19113437] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/05/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022] Open
Abstract
Selenium-binding protein 1 (SBP1) is a highly conserved protein that covalently binds selenium. SBP1 may play important roles in several fundamental physiological functions, including protein degradation, intra-Golgi transport, cell differentiation, cellular motility, redox modulation, and the metabolism of sulfur-containing molecules. SBP1 expression is often reduced in many cancer types compared to the corresponding normal tissues and low levels of SBP1 are frequently associated with poor clinical outcome. In this review, the transcriptional regulation of SBP1, the different physiological roles reported for SBP1, as well as the implications of SBP1 function in cancer and other diseases are presented.
Collapse
|
17
|
Nair D, Rådestad E, Khalkar P, Diaz-Argelich N, Schröder A, Klynning C, Ungerstedt J, Uhlin M, Fernandes AP. Methylseleninic Acid Sensitizes Ovarian Cancer Cells to T-Cell Mediated Killing by Decreasing PDL1 and VEGF Levels. Front Oncol 2018; 8:407. [PMID: 30324091 PMCID: PMC6172341 DOI: 10.3389/fonc.2018.00407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Redox active selenium (Se) compounds at sub toxic doses act as pro-oxidants with cytotoxic effects on tumor cells and are promising future chemotherapeutic agents. However, little is known about how Se compounds affect immune cells in the tumor microenvironment. We demonstrate that the inorganic Se compound selenite and the organic methylseleninic acid (MSA) do not, despite their pro-oxidant function, influence the viability of immune cells, at doses that gives cytotoxic effects in ovarian cancer cell lines. Treatment of the ovarian cancer cell line A2780 with selenite and MSA increases NK cell mediated lysis, and enhances the cytolytic activity of T cells. Increased T cell function was observed after incubation of T cells in preconditioned media from tumor cells treated with MSA, an effect that was coupled to decreased levels of PDL1, HIF-1α, and VEGF. In conclusion, redox active selenium compounds do not kill or inactivate immune cells at doses required for anti-cancer treatment, and we demonstrate that MSA enhances T cell-mediated tumor cell killing via PDL1 and VEGF inhibition.
Collapse
Affiliation(s)
- Deepika Nair
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emelie Rådestad
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Prajakta Khalkar
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nuria Diaz-Argelich
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Organic and Pharmaceutical Chemistry, University of Navarra, Pamplona, Spain
| | - Axel Schröder
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Klynning
- Department of Gynecological Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Ungerstedt
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Combination cancer treatment through photothermally controlled release of selenous acid from gold nanocages. Biomaterials 2018; 178:517-526. [DOI: 10.1016/j.biomaterials.2018.03.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/14/2018] [Accepted: 03/31/2018] [Indexed: 12/25/2022]
|
19
|
Cheng R, Kong F, Tong L, Liu X, Xu K, Tang B. Simultaneous Detection of Mitochondrial Hydrogen Selenide and Superoxide Anion in HepG2 Cells under Hypoxic Conditions. Anal Chem 2018; 90:8116-8122. [PMID: 29879841 DOI: 10.1021/acs.analchem.8b01345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies proposed that sodium selenite (Na2SeO3) was reduced to hydrogen selenide (H2Se) and that H2Se subsequently reacted with oxygen to generate superoxide anion (O2•-), resulting in tumor cell oxidative stress and apoptosis. However, under the hypoxic conditions of a solid tumor, the anticancer mechanism of sodium selenite remains unclear. To reveal the exact anticancer mechanism of selenite in the real tumor microenvironment, we developed a mitochondria-targeting fluorescent nanosensor, Mito-N-D-MSN, which was fabricated from mesoporous silica nanoparticles (MSNs) loaded with two small-molecule fluorescent probes and a triphenylphosphonium ion as a mitochondria-targeting moiety. With Mito-N-D-MSN, the fluctuations in the contents of mitochondrial hydrogen selenide (H2Se) and superoxide anion (O2•-) in HepG2 cells induced by Na2SeO3 were investigated in detail under normoxic and hypoxic conditions. The results showed that the mitochondrial H2Se content increased gradually, while the O2•- content remained unchanged in HepG2 cells under hypoxic conditions, which indicated that the anticancer mechanism of selenite involves nonoxidative stress in the real tumor microenvironment.
Collapse
Affiliation(s)
- Ranran Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| |
Collapse
|
20
|
Feng S, Wang S, Wang Y, Yang Q, Wang D, Li H. Identification and expression of carbonic anhydrase 2, myosin regulatory light chain 2 and selenium-binding protein 1 in zebrafish Danio rerio: Implication for age-related biomarkers. Gene Expr Patterns 2018; 29:47-58. [PMID: 29738878 DOI: 10.1016/j.gep.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/26/2018] [Accepted: 04/30/2018] [Indexed: 11/19/2022]
Abstract
Proteomic study has determined age-related changes in synthesis of carbonic anhydrase 2, myosin regulatory light chain 2 and selenium-binding protein 1 in muscle of post-menopausal women. However, little information is available regarding the expression and role of these proteins in early development and life span. In this study we showed that zebrafish ca2, myl2a, myl2b and selenbp1 were highly identical to their mammalian counterparts in primary and tertiary structures as well as genomic organization and syntenic map. They displayed distinct spatiotemporal expression patterns in embryos and larvae of zebrafish. Moreover, their transcription levels in the respective tissues were obviously remodeled in an age-dependent fashion, i.e. some mRNA levels were increased, while others remained unchanged or even decreased, suggesting that CA2, MYL2a, MYL2b and SELENBP1 can be used as aging biomarkers. Our study also lays a foundation for further illumination of the functions of these genes in early development and aging processes.
Collapse
Affiliation(s)
- Shuoqi Feng
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Su Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Yashuo Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Qingyun Yang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Dejing Wang
- No. 2 High School of Qingdao, Shandong Province, China
| | - Hongyan Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
21
|
Schott M, de Jel MM, Engelmann JC, Renner P, Geissler EK, Bosserhoff AK, Kuphal S. Selenium-binding protein 1 is down-regulated in malignant melanoma. Oncotarget 2018. [PMID: 29535818 PMCID: PMC5828193 DOI: 10.18632/oncotarget.23853] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Selenium-binding protein 1 (SELENBP1) expression is reduced in various epithelial cancer entities compared to corresponding normal tissue and has already been described as a tumor suppressor involved in the regulation of cell proliferation, senescence, migration and apoptosis. We identified SELENBP1 to be down-regulated in cutaneous melanoma, a malignant cancer of pigment-producing melanocytes in the skin, which leads to the assumption that SELENBP1 also functions as tumor suppressor in the skin, as shown by others e.g. for prostate or lung carcinoma. However, in vitro analyses indicate that SELENBP1 re-expression in human melanoma cell lines has no impact on cell proliferation, migration or tube formation of the tumor cells themselves when compared to control-transfected cells. Interestingly, supernatant taken from melanoma cell lines transfected with a SELENBP1 re-expression plasmid led to suppression of vessel formation of HMEC cells. Furthermore, SELENBP1 re-expression alters the sensitivity of melanoma cells for Vemurafenib treatment. The data also hint to a functional interaction of SELENBP1 with GPX1 (Glutathione peroxidase 1). Low SELENBP1 mRNA levels correlate inversely with GPX1 expression in melanoma. The re-expression of SELENBP1 combined with down-regulation of GPX1 expression led to reduction of the proliferation of melanoma cells. In summary, SELENBP1 influences the tumor microenvironment and SELENBP1 action is functionally influenced by GPX1.
Collapse
Affiliation(s)
- Mandy Schott
- University of Erlangen, Institute of Biochemistry, Biochemistry and Molecular Medicine, Erlangen, Germany
| | - Miriam M de Jel
- University of Erlangen, Institute of Biochemistry, Biochemistry and Molecular Medicine, Erlangen, Germany
| | - Julia C Engelmann
- University of Regensburg, Institute of Functional Genomics, Statistical Bioinformatics, Regensburg, Germany
| | - Philipp Renner
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Anja K Bosserhoff
- University of Erlangen, Institute of Biochemistry, Biochemistry and Molecular Medicine, Erlangen, Germany
| | - Silke Kuphal
- University of Erlangen, Institute of Biochemistry, Biochemistry and Molecular Medicine, Erlangen, Germany
| |
Collapse
|
22
|
Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells. Oncotarget 2017; 8:18832-18847. [PMID: 27902968 PMCID: PMC5386651 DOI: 10.18632/oncotarget.13600] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Glutaminolysis is important for metabolism and biosynthesis of cancer cells, and GLS is essential in the process. Selenite is widely regarded as a chemopreventive agent against cancer risk. Emerging evidence suggests that it also has chemotherapeutic potential in various cancer types, but the mechanism remains elusive. We demonstrate for the first time that supranutritional dose of selenite suppresses glutaminolysis by promoting GLS1 protein degradation and apoptosis. Mechanistically, selenite promotes association of APC/C-CDH1 with GLS1 and leads to GLS1 degradation by ubiquitination, this process is related to induction of PTEN expression. In addition, GLS1 expression is increased in human colorectal cancer tissues compared with normal mucosae. Our data provide a novel mechanistic explanation for the anti-cancer effect of selenite from a perspective of cell metabolism. Moreover, our results indicate that glutaminolysis especially GLS1 could be an attractive therapeutic target in colorectal cancer.
Collapse
|
23
|
Fontelles CC, Ong TP. Selenium and Breast Cancer Risk: Focus on Cellular and Molecular Mechanisms. Adv Cancer Res 2017; 136:173-192. [PMID: 29054418 DOI: 10.1016/bs.acr.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selenium (Se) is a micronutrient with promising breast cancer prevention and treatment potential. There is extensive preclinical evidence of Se mammary carcinogenesis inhibition. Evidence from epidemiological studies is, however, unclear and intervention studies are rare. Here, we examine Se chemoprotection, chemoprevention, and chemotherapy effects in breast cancer, focusing on associated cellular and molecular mechanisms. Se exerts its protective actions through multiple mechanisms that involve antioxidant activities, induction of apoptosis, and inhibition of DNA damage, cell proliferation, angiogenesis, and invasion. New aspects of Se actions in breast cancer have emerged such as the impact of genetic polymorphisms on Se metabolism and response, new functions of selenoproteins, epigenetic modulation of gene expression, and long-term influence of early-life exposure on disease risk. Opportunity exists to design interventional studies with Se for breast cancer prevention and treatment taking into consideration these key aspects.
Collapse
|
24
|
A Critical Role for Cysteine 57 in the Biological Functions of Selenium Binding Protein-1. Int J Mol Sci 2015; 16:27599-608. [PMID: 26593911 PMCID: PMC4661901 DOI: 10.3390/ijms161126043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/19/2015] [Accepted: 11/10/2015] [Indexed: 12/02/2022] Open
Abstract
The concentration of selenium-binding protein1 (SBP1) is often lower in tumors than in the corresponding tissue and lower levels have been associated with poor clinical outcomes. SBP1 binds tightly selenium although what role selenium plays in its biological functions remains unknown. Previous studies indicated that cysteine 57 is the most likely candidate amino acid for selenium binding. In order to investigate the role of cysteine 57 in SBP1, this amino acid was altered to a glycine and the mutated protein was expressed in human cancer cells. The SBP1 half-life, as well as the cellular response to selenite cytotoxicity, was altered by this change. The ectopic expression of SBP1GLY also caused mitochondrial damage in HCT116 cells. Taken together, these results indicated that cysteine 57 is a critical determinant of SBP1 function and may play a significant role in mitochondrial function.
Collapse
|
25
|
Barshishat-Kupper M, McCart EA, Freedy JG, Tipton AJ, Nagy V, Kim SY, Landauer MR, Mueller GP, Day RM. Protein Oxidation in the Lungs of C57BL/6J Mice Following X-Irradiation. Proteomes 2015; 3:249-265. [PMID: 28248270 PMCID: PMC5217375 DOI: 10.3390/proteomes3030249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
Damage to normal lung tissue is a limiting factor when ionizing radiation is used in clinical applications. In addition, radiation pneumonitis and fibrosis are a major cause of mortality following accidental radiation exposure in humans. Although clinical symptoms may not develop for months after radiation exposure, immediate events induced by radiation are believed to generate molecular and cellular cascades that proceed during a clinical latent period. Oxidative damage to DNA is considered a primary cause of radiation injury to cells. DNA can be repaired by highly efficient mechanisms while repair of oxidized proteins is limited. Oxidized proteins are often destined for degradation. We examined protein oxidation following 17 Gy (0.6 Gy/min) thoracic X-irradiation in C57BL/6J mice. Seventeen Gy thoracic irradiation resulted in 100% mortality of mice within 127-189 days postirradiation. Necropsy findings indicated that pneumonitis and pulmonary fibrosis were the leading cause of mortality. We investigated the oxidation of lung proteins at 24 h postirradiation following 17 Gy thoracic irradiation using 2-D gel electrophoresis and OxyBlot for the detection of protein carbonylation. Seven carbonylated proteins were identified using mass spectrometry: serum albumin, selenium binding protein-1, alpha antitrypsin, cytoplasmic actin-1, carbonic anhydrase-2, peroxiredoxin-6, and apolipoprotein A1. The carbonylation status of carbonic anhydrase-2, selenium binding protein, and peroxiredoxin-6 was higher in control lung tissue. Apolipoprotein A1 and serum albumin carbonylation were increased following X-irradiation, as confirmed by OxyBlot immunoprecipitation and Western blotting. Our findings indicate that the profile of specific protein oxidation in the lung is altered following radiation exposure.
Collapse
Affiliation(s)
- Michal Barshishat-Kupper
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Elizabeth A McCart
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - James G Freedy
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Ashlee J Tipton
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Vitaly Nagy
- Operational Dosimetry Division, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Sung-Yop Kim
- Operational Dosimetry Division, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Michael R Landauer
- Radiation Countermeasures Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Gregory P Mueller
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Regina M Day
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
26
|
Guo CH, Hsia S, Shih MY, Hsieh FC, Chen PC. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells. Int J Med Sci 2015; 12:748-58. [PMID: 26392813 PMCID: PMC4571553 DOI: 10.7150/ijms.12177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/17/2015] [Indexed: 11/12/2022] Open
Abstract
Recent evidence suggests that selenium (Se) yeast may exhibit potential anti-cancer properties; whereas the precise mechanisms remain unknown. The present study was aimed at evaluating the effects of Se yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. Treatments of ER-positive MCF-7 and triple-negative MDA-MB-231 cells with Se yeast (100, 750, and 1500 ng Se/mL), methylseleninic acid (MSA, 1500 ng Se/mL), or methylselenocysteine (MSC, 1500 ng Se/mL) at a time course experiment (at 24, 48, 72, and 96 h) were analyzed. Se yeast inhibited the growth of these cancer cells in a dose- and time-dependent manner. Compared with the same level of MSA, cancer cells exposure to Se yeast exhibited a lower growth-inhibitory response. The latter has also lower superoxide production and reduced antioxidant enzyme activities. Furthermore, MSA (1500 ng Se/mL)-exposed non-tumorigenic human mammary epithelial cells (HMEC) have a significant growth inhibitory effect, but not Se yeast and MSC. Compared with MSA, Se yeast resulted in a greater increase in the early apoptosis in MCF-7 cells as well as a lower proportion of early and late apoptosis in MDA-MB-231 cells. In addition, nuclear morphological changes and loss of mitochondrial membrane potential were observed. In conclusion, a dose of 100 to 1500 ng Se/mL of Se yeast can increase oxidative stress, and stimulate growth inhibitory effects and apoptosis induction in breast cancer cell lines, but does not affect non-tumorigenic cells.
Collapse
Affiliation(s)
- Chih-Hung Guo
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan ; 2. Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan ; 3. Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan ; 4. Taiwan Nutraceutical Association, Taipei 115, Taiwan
| | - Simon Hsia
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan ; 4. Taiwan Nutraceutical Association, Taipei 115, Taiwan
| | - Min-Yi Shih
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan
| | - Fang-Chin Hsieh
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan
| | - Pei-Chung Chen
- 4. Taiwan Nutraceutical Association, Taipei 115, Taiwan ; 5. College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan ; 6. College of Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|