1
|
Kubota Y, Kimura S. Current Understanding of the Role of Autophagy in the Treatment of Myeloid Leukemia. Int J Mol Sci 2024; 25:12219. [PMID: 39596291 PMCID: PMC11594995 DOI: 10.3390/ijms252212219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The most important issues in acute myeloid leukemia are preventing relapse and treating relapse. Although the remission rate has improved to approximately 80%, the 5-year survival rate is only around 30%. The main reasons for this are the high relapse rate and the limited treatment options. In chronic myeloid leukemia patients, when a deep molecular response is achieved for a certain period of time through tyrosine kinase inhibitor treatment, about half of them will reach treatment-free remission, but relapse is still a problem. Therefore, potential therapeutic targets for myeloid leukemias are eagerly awaited. Autophagy suppresses the development of cancer by maintaining cellular homeostasis; however, it also promotes cancer progression by helping cancer cells survive under various metabolic stresses. In addition, autophagy is promoted or suppressed in cancer cells by various genetic mutations. Therefore, the development of therapies that target autophagy is also being actively researched in the field of leukemia. In this review, studies of the role of autophagy in hematopoiesis, leukemogenesis, and myeloid leukemias are presented, and the impact of autophagy regulation on leukemia treatment and the clinical trials of autophagy-related drugs to date is discussed.
Collapse
MESH Headings
- Humans
- Autophagy
- Animals
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/therapy
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Hematopoiesis
Collapse
Affiliation(s)
- Yasushi Kubota
- Department of Clinical Laboratory Medicine, Saga-Ken Medical Centre Koseikan, Saga 840-8571, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| |
Collapse
|
2
|
Dutta A, Thakur S, Dey DK, Kumar A. Cisplatin and Starvation Differently Sensitize Autophagy in Renal Carcinoma: A Potential Therapeutic Pathway to Target Variegated Drugs Resistant Cancerous Cells. Cells 2024; 13:471. [PMID: 38534315 PMCID: PMC10968928 DOI: 10.3390/cells13060471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
Cisplatin, a powerful chemotherapy medication, has long been a cornerstone in the fight against cancer due to chemotherapeutic failure. The mechanism of cisplatin resistance/failure is a multifaceted and complex issue that consists mainly of apoptosis inhibition through autophagy sensitization. Currently, researchers are exploring ways to regulate autophagy in order to tip the balance in favor of effective chemotherapy. Based on this notion, the current study primarily identifies the differentially expressed genes (DEGs) in cisplatin-treated autophagic ACHN cells through the Illumina Hi-seq platform. A protein-protein interaction network was constructed using the STRING database and KEGG. GO classifiers were implicated to identify genes and their participating biological pathways. ClueGO, David, and MCODE detected ontological enrichment and sub-networking. The network topology was further examined using 12 different algorithms to identify top-ranked hub genes through the Cytoscape plugin Cytohubba to identify potential targets, which established profound drug efficacy under an autophagic environment. Considerable upregulation of genes related to autophagy and apoptosis suggests that autophagy boosts cisplatin efficacy in malignant ACHN cells with minimal harm to normal HEK-293 growth. Furthermore, the determination of cellular viability and apoptosis by AnnexinV/FITC-PI assay corroborates with in silico data, indicating the reliability of the bioinformatics method followed by qRT-PCR. Altogether, our data provide a clear molecular insight into drug efficacy under starved conditions to improve chemotherapy and will likely prompt more clinical trials on this aspect.
Collapse
Affiliation(s)
- Ankita Dutta
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Subarna Thakur
- Department of Bioinformatics, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Debasish Kumar Dey
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anoop Kumar
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Siliguri 734013, West Bengal, India
| |
Collapse
|
3
|
Torshin IY, Gromova OA, Tikhonova OV, Chuchalin AG. [Molecular mechanisms of the effect of standardized placental hydrolysate peptides on mitochondria functioning]. TERAPEVT ARKH 2023; 95:1133-1140. [PMID: 38785053 DOI: 10.26442/00403660.2023.12.202494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Human placenta hydrolysates (HPH), the study of which was initiated by the scientific school of Vladimir P. Filatov, are currently being investigated using modern proteomic technologies. HPH is a promising tool for maintaining the function of mitochondria and regenerating tissues and organs with a high content of mitochondria (liver, heart muscle, skeletal muscles, etc.). The molecular mechanisms of action of HPH are practically not studied. AIM Identification of mitochondrial support mitochondrial function-supporting peptides in HPH (Laennec, produced by Japan Bioproducts). MATERIALS AND METHODS Data on the chemical structure of the peptides were collected through a mass spectrometric experiment. Then, to establish the amino acid sequences of the peptides, de novo peptide sequencing algorithms based on the mathematical theory of topological and metric analysis of chemographs were applied. Bioinformatic analysis of the peptide composition of HPH was carried out using the integral protein annotation method. RESULTS The biological functions of 41 peptides in the composition of HPH have been identified and described. Among the target proteins, the activity of which is regulated by the identified peptides and significantly affects the function of mitochondria, are caspases (CASP1, CASP3, CASP4) and other proteins regulating apoptosis (BCL2, CANPL1, PPARA), MAP kinases (MAPK1, MAPK3, MAPK4, MAPK8, MAPK9 , MAPK10, MAPK14), AKT1/GSK3B/MTOR cascade kinases, and a number of other target proteins (ADGRG6 receptor, inhibitor of NF-êB kinase IKKE, pyruvate dehydrogenase 2/3/4, SIRT1 sirtuin deacetylase, ULK1 kinase). CONCLUSION HPH peptides have been identified that promote inhibition of mitochondrial pore formation, apoptosis, and excessive mitochondrial autophagy under conditions of oxidative/toxic stress, chronic inflammation, and/or hyperinsulinemia.
Collapse
Affiliation(s)
| | | | - O V Tikhonova
- Orekhovich Research Institute of Biomedical Chemistry
| | - A G Chuchalin
- Pirogov Russian National Research Medical University
| |
Collapse
|
4
|
Ke D, Zhang Z, Liu J, Chen P, Li J, Sun X, Chu Y, Li L. Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Front Cardiovasc Med 2023; 10:1135723. [PMID: 36970345 DOI: 10.3389/fcvm.2023.1135723if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/22/2023] [Indexed: 09/15/2024] Open
Abstract
Diabetes is a common chronic metabolic disease, and its incidence continues to increase year after year. Diabetic patients mainly die from various complications, with the most common being diabetic cardiomyopathy. However, the detection rate of diabetic cardiomyopathy is low in clinical practice, and targeted treatment is lacking. Recently, a large number of studies have confirmed that myocardial cell death in diabetic cardiomyopathy involves pyroptosis, apoptosis, necrosis, ferroptosis, necroptosis, cuproptosis, cellular burial, and other processes. Most importantly, numerous animal studies have shown that the onset and progression of diabetic cardiomyopathy can be mitigated by inhibiting these regulatory cell death processes, such as by utilizing inhibitors, chelators, or genetic manipulation. Therefore, we review the role of ferroptosis, necroptosis, and cuproptosis, three novel forms of cell death in diabetic cardiomyopathy, searching for possible targets, and analyzing the corresponding therapeutic approaches to these targets.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
5
|
Ke D, Zhang Z, Liu J, Chen P, Li J, Sun X, Chu Y, Li L. Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Front Cardiovasc Med 2023; 10:1135723. [PMID: 36970345 PMCID: PMC10036800 DOI: 10.3389/fcvm.2023.1135723] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Diabetes is a common chronic metabolic disease, and its incidence continues to increase year after year. Diabetic patients mainly die from various complications, with the most common being diabetic cardiomyopathy. However, the detection rate of diabetic cardiomyopathy is low in clinical practice, and targeted treatment is lacking. Recently, a large number of studies have confirmed that myocardial cell death in diabetic cardiomyopathy involves pyroptosis, apoptosis, necrosis, ferroptosis, necroptosis, cuproptosis, cellular burial, and other processes. Most importantly, numerous animal studies have shown that the onset and progression of diabetic cardiomyopathy can be mitigated by inhibiting these regulatory cell death processes, such as by utilizing inhibitors, chelators, or genetic manipulation. Therefore, we review the role of ferroptosis, necroptosis, and cuproptosis, three novel forms of cell death in diabetic cardiomyopathy, searching for possible targets, and analyzing the corresponding therapeutic approaches to these targets.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- Correspondence: Yanhui Chu Luxin Li
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- Correspondence: Yanhui Chu Luxin Li
| |
Collapse
|
6
|
Bhol CS, Mishra SR, Patil S, Sahu SK, Kirtana R, Manna S, Shanmugam MK, Sethi G, Patra SK, Bhutia SK. PAX9 reactivation by inhibiting DNA methyltransferase triggers antitumor effect in oral squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166428. [PMID: 35533906 DOI: 10.1016/j.bbadis.2022.166428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 01/07/2023]
Abstract
Aberrant DNA hypermethylation is associated with oral carcinogenesis. Procaine, a local anesthetic, is a DNA methyltransferase (DNMT) inhibitor that activates anticancer mechanisms. However, its effect on silenced tumor suppressor gene (TSG) activation and its biological role in oral squamous cell carcinoma (OSCC) remain unknown. Here, we report procaine inhibited DNA methylation by suppressing DNMT activity and increased the expression of PAX9, a differentiation gene in OSCC cells. Interestingly, the reactivation of PAX9 by procaine found to inhibit cell growth and trigger apoptosis in OSCC in vitro and in vivo. Likely, the enhanced PAX9 expression after exposure to procaine controls stemness and differentiation through the autophagy-dependent pathway in OSCC cells. PAX9 inhibition abrogated procaine-induced apoptosis, autophagy, and inhibition of stemness. In OSCC cells, procaine improved anticancer drug sensitivity through PAX9, and its deficiency significantly blunted the anticancer drug sensitivity mediated by procaine. Additionally, NRF2 activation by procaine facilitated the antitumor response of PAX9, and pharmacological inhibition of NRF2 by ML385 reduced death and prevented the decrease in the orosphere-forming potential of OSCC cells. Furthermore, procaine promoted antitumor activity in FaDu xenografts in athymic nude mice, and immunohistochemistry data showed that PAX9 expression was significantly enhanced in the procaine group compared to the vehicle control. In conclusion, PAX9 reactivation in response to DNMT inhibition could trigger a potent antitumor mechanism to provide a new therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Sunil Kumar Sahu
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - R Kirtana
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India.
| |
Collapse
|
7
|
Mukhopadhyay S, Mahapatra KK, Praharaj PP, Patil S, Bhutia SK. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Semin Cancer Biol 2021; 85:196-208. [PMID: 34500075 DOI: 10.1016/j.semcancer.2021.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Autophagy, a lysosomal catabolic process, involves degradation of cellular materials, protein aggregate, and dysfunctional organelles to maintain cellular homeostasis. Strikingly, autophagy exhibits a dual-sided role in cancer; on the one hand, it promotes clearance of transformed cells and inhibits tumorigenesis, while cytoprotective autophagy has a role in sustaining cancer. The autophagy signaling in the tumor microenvironment (TME) during cancer growth and therapy is not adequately understood. The review highlights the role of autophagy signaling pathways to support cancer growth and progression in adaptation to the oxidative and hypoxic context of TME. Furthermore, autophagy contributes to regulating the metabolic switch for generating sufficient levels of high-energy metabolites, including amino acids, ketones, glutamine, and free fatty acids for cancer cell survival. Interestingly, autophagy has a critical role in modulating the tumor-associated fibroblast resulting in different cytokines and paracrine signaling mediated angiogenesis and invasion of pre-metastatic niches to secondary tumor sites. Moreover, autophagy promotes immune evasion to inhibit antitumor immunity, and autophagy inhibitors enhance response to immunotherapy with infiltration of immune cells to the TME niche. Furthermore, autophagy in TME maintains and supports the survival of cancer stem cells resulting in chemoresistance and therapy recurrence. Presently, drug repurposing has enabled the use of lysosomal inhibitor-based antimalarial drugs like chloroquine and hydroxychloroquine as clinically available autophagy inhibitors in cancer therapy. We focus on the recent developments of multiple autophagy modulators from pre-clinical trials and the challenges in developing autophagy-based cancer therapy.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
8
|
Autophagy is required for proper cysteine homeostasis in pancreatic cancer through regulation of SLC7A11. Proc Natl Acad Sci U S A 2021; 118:2021475118. [PMID: 33531365 PMCID: PMC8017731 DOI: 10.1073/pnas.2021475118] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer and is highly refractory to current therapies. We had previously shown that PDAC can utilize its high levels of basal autophagy to support its metabolism and maintain tumor growth. Consistent with the importance of autophagy in PDAC, autophagy inhibition significantly enhances response of PDAC patients to chemotherapy in two randomized clinical trials. However, the specific metabolite(s) that autophagy provides to support PDAC growth is not yet known. In this study, we demonstrate that under nutrient-replete conditions, loss of autophagy in PDAC leads to a relatively restricted impairment of amino acid pools, with cysteine levels showing a significant drop. Additionally, we made the striking discovery that autophagy is critical for the proper membrane localization of the cystine transporter SLC7A11. Mechanistically, autophagy impairment results in the loss of SLC7A11 on the plasma membrane and increases its localization at the lysosome in an mTORC2-dependent manner. Our results demonstrate a critical link between autophagy and cysteine metabolism and provide mechanistic insights into how targeting autophagy can cause metabolic dysregulation in PDAC.
Collapse
|
9
|
Saleem S. Apoptosis, Autophagy, Necrosis and Their Multi Galore Crosstalk in Neurodegeneration. Neuroscience 2021; 469:162-174. [PMID: 34166763 DOI: 10.1016/j.neuroscience.2021.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
The progression of neurodegenerative disorders is mainly characterized by immense neuron loss and death of glial cells. The mechanisms which are active and regulate neuronal cell death are namely necrosis, necroptosis, autophagy and apoptosis. These death paradigms are governed by a set of molecular determinants that are pivotal in their performance and also exhibit remarkable overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the switching of death paradigms in various neurodegenerative diseases. In this review, we discuss various molecules and the concurrent crosstalk mediated by them. According to our present knowledge and research in neurodegeneration, molecules like Atg1, Beclin1, LC3, p53, TRB3, RIPK1 play switching roles toggling from one death mechanism to another. In addition, the review also focuses on the exorbitant number of newer molecules with the potential to cross communicate between death pathways and create a complex cell death scenario. This review highlights recent studies on the inter-dependent regulation of cell death paradigms in neurodegeneration, mediated by cross-communication between pathways. This will help in identifying potential targets for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Suraiya Saleem
- Stem Cell and Molecular Biology Laboratory Bhupat & Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
10
|
Mukhopadhyay S, Praharaj PP, Naik PP, Talukdar S, Emdad L, Das SK, Fisher PB, Bhutia SK. Identification of Annexin A2 as a key mTOR target to induce roller coaster pattern of autophagy fluctuation in stress. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165952. [PMID: 32841734 DOI: 10.1016/j.bbadis.2020.165952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023]
Abstract
Autophagy can either be cytoprotective or promote cell death in a context-dependent manner in response to stress. How autophagy leads to autophagy dependent cell death requires further clarification. In this study, we document a nonlinear roller coaster form of autophagy oscillation when cells are subjected to different stress conditions. Serum starvation induces an initial primary autophagic peak at 6 h, that helps to replenish cells with de novo fluxed nutrients, but protracted stress lead to a secondary autophagic peak around 48 h. Time kinetic studies indicate that the primary autophagic peak is reversible, whereas the secondary autophagic peak is irreversible and leads to cell death. Key players involved in different stages of autophagy including initiation, elongation and degradation during this oscillatory sequence were identified. A similar molecular pattern was intensified under apoptosis-deficient conditions. mTOR was the central molecule regulating this autophagic activity, and upon knockdown a steady increase of autophagy without any non-linear fluctuation was evident. An unbiased proteome screening approach was employed to identify the autophagy molecules potentially regulating these autophagic peaks. Our proteomics analysis has identified Annexin A2 as a stress-induced protein to implicate in autophagy fluctuation and its deficiency reduced autophagy. Moreover, we report that mTOR in its phosphorylated condition interacts with Annexin A2 to induce autophagy fluctuation by altering its cellular localization. The work highlights the molecular mechanism of a mTOR-dependent roller coaster fluctuation of autophagy and autophagy dependent cell death during prolong stress.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology Rourkela, Rourkela-769008, India
| | - Prakash P Praharaj
- Department of Life Science, National Institute of Technology Rourkela, Rourkela-769008, India
| | - Prajna P Naik
- Department of Life Science, National Institute of Technology Rourkela, Rourkela-769008, India
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela-769008, India.
| |
Collapse
|
11
|
Zhang L, Hou L, Liu Z, Huang S, Meng Z, Liang L. A mitophagic response to iron overload-induced oxidative damage associated with the PINK1/Parkin pathway in pancreatic beta cells. J Trace Elem Med Biol 2020; 60:126493. [PMID: 32179427 DOI: 10.1016/j.jtemb.2020.126493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Iron overload can result in a disorder in glucose metabolism. However, the underlining mechanism through which iron overload induces beta cell death remains unknown. METHODS According to the concentration of ferric ammonium citrate (FAC) and N-acetylcysteine, INS-1 cells were randomly divided into four groups: normal control (FAC 0 μM) group, FAC 80 μM group, FAC 160 μM group, FAC 160μM + NAC group. Cell proliferation was assessed by Cell Counting Kit-8. Reactive oxygen species (ROS) level was further evaluated using flow cytometer with a fluorescent probe. The mitochondrial membrane potential was detected by JC-1 kit, and transmission electron microscopy was used to observe the mitochondrial changes. The related protein expressions were detected by western bolt to evaluate mitophagy status. RESULTS It was shown that FAC treatment decreased INS-1 cell viability in vitro, resulted in a decline in mitochondrial membrane potential, increased oxidative stress level and suppressed mitophagy. Furthermore, these effects could be alleviated by the ROS scavenger. CONCLUSIONS We proved that increased iron overload primarily increased oxidative stress and further suppressed mitophagy via PTEN-induced putative kinase 1/Parkin pathway, resulting in cytotoxicity in INS-1 cells.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China
| | - Lele Hou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China
| | - Zulin Liu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China
| | - Siqi Huang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China
| | - Zhe Meng
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China
| | - Liyang Liang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China.
| |
Collapse
|
12
|
Saha S, Mahapatra KK, Mishra SR, Mallick S, Negi VD, Sarangi I, Patil S, Patra SK, Bhutia SK. Bacopa monnieri inhibits apoptosis and senescence through mitophagy in human astrocytes. Food Chem Toxicol 2020; 141:111367. [PMID: 32335210 DOI: 10.1016/j.fct.2020.111367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a potent neurotoxic agent that is responsible for impaired neuronal development and is associated with aging. Here, it was demonstrated that extracts of Bacopa monnieri (BM), a traditional Ayurvedic medicine, diminished the B[a]P-induced apoptosis and senescence in human astrocytes. BM was demonstrated to protect the immortalized primary fetal astrocytes (IMPHFA) from B[a]P-induced apoptosis and senescence by reducing the damaged mitochondria that produced reactive oxygen species (ROS). Furthermore, it was shown that B[a]P-triggered G2 arrest could be altered by BM, thus indicating that BM could reverse the cell cycle arrest and mediate a normal cell cycle in IMPHFA cells. In addition, the lifespan of Caenorhabditis elegans was assessed, which confirmed these effects in the presence of BM, compared to the B[a]P-treated group. Furthermore, the anti-senescence and anti-apoptotic activities of BM were observed to be mediated through the protective effect of mitophagy, and inhibition of mitophagy could not protect the astrocytes from mitochondrial ROS-induced apoptosis and senescence in BM-treated cells. Moreover, it was revealed that BM induced Parkin-dependent mitophagy to exert its cytoprotective activity in IMPHFA cells. In conclusion, the anti-senescence and anti-apoptotic effects of BM in astrocytes could combat pollution and aging-related neurological disorders.
Collapse
Affiliation(s)
- Sarbari Saha
- Department of Life Science, National Institute of Technology Rourkela, India
| | | | | | - Swarupa Mallick
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Vidya Devi Negi
- Department of Life Science, National Institute of Technology Rourkela, India
| | | | - Sankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Samir Kumar Patra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology Rourkela, India.
| |
Collapse
|
13
|
Ulasov I, Fares J, Timashev P, Lesniak MS. Editing Cytoprotective Autophagy in Glioma: An Unfulfilled Potential for Therapy. Trends Mol Med 2020; 26:252-262. [DOI: 10.1016/j.molmed.2019.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
|
14
|
Wei L, Qin Y, Jiang L, Yu X, Xi Z. PPARγ and mitophagy are involved in hypoxia/reoxygenation-induced renal tubular epithelial cells injury. J Recept Signal Transduct Res 2019; 39:235-242. [PMID: 31538845 DOI: 10.1080/10799893.2019.1660894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Renal tubular epithelial cell (RTEC) injury is the main cause and common pathological process of various renal diseases. Mitochondrial dysfunction (MtD) is a pathological process after renal injury. Mitophagy is vital for mitochondrial function. Hypoxia is a common cause of RTEC injury. Peroxisome proliferator-activated receptor γ (PPARγ) is involved in cell proliferation, apoptosis, and inflammation. Previous studies have shown that the low expression of PPARγ might be involved in hypoxia-induced RTEC injury. The present study aimed to investigate the correlation between PPARγ and mitophagy in damaged RTEC in the hypoxia/reoxygenation (HR) model. The results showed that HR inhibited the expression of PPARγ, but increased the expression of LC3II, Atg5, SQSTM1/P62, and PINK1 in a time-dependent manner. Moreover, mitochondrial DNA (mt DNA) copy number, mitochondria membrane potential (MMP) levels, ATP content, and cell viability were decreased in hypoxic RTECs, the expression of SQSTM1/P62 and PINK1, the release of cytochrome c (cyt C), and production of reactive oxygen species (ROS) were increased. Mitochondrial-containing autophagosomes (APs) were detected using transmission election microscope (TEM) and laser scanning confocal microscope (LSCM). Furthermore, PPARγ protein expression was negatively correlated with that of LC3II, PINK1, and the positive rate of RTEC-containing mitochondrial-containing APs (all p < .05), but positively correlated with cell viability, MMP level, and ATP content (all p < .05). These data suggested that PPARγ and mitophagy are involved in the RTEC injury process. Thus, a close association could be detected between PPARγ and mitophagy in HR-induced RTEC injury, albeit additional investigation is imperative.
Collapse
Affiliation(s)
- Luming Wei
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Yuanhan Qin
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Ling Jiang
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Xueyun Yu
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Zhiyang Xi
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| |
Collapse
|
15
|
Ganoderma lucidum Polysaccharides Prevent Palmitic Acid-Evoked Apoptosis and Autophagy in Intestinal Porcine Epithelial Cell Line via Restoration of Mitochondrial Function and Regulation of MAPK and AMPK/Akt/mTOR Signaling Pathway. Int J Mol Sci 2019; 20:ijms20030478. [PMID: 30678035 PMCID: PMC6387170 DOI: 10.3390/ijms20030478] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/01/2023] Open
Abstract
Ganoderma lucidum polysaccharide (GLP) extracted from Ganoderma lucidum (Leyss. ex Fr.) Karst, a traditional Chinese medicine, is a biologically active substance reported to possess anti-oxidative, anti-apoptotic, and neurological protection. However, it is unknown whether GLP have any protective effect against high-fat constituents-induced epithelial cell injury. The aim of this study was to investigate the protection and molecular mechanism of GLP on injury induced by palmitic acid (PA) in the intestinal porcine epithelial cell line (IPEC-J2). First, we tested whether the treatment of GLP attenuate PA-induced IPEC-J2 cell death. GLP markedly blocked PA-caused cytotoxicity and apoptosis in IPEC-J2 cells. Moreover, GLP recovered the decreased mitochondrial function and inhibited activation of caspase-dependent apoptotic pathway. Interestingly, PA promoted cell apoptosis and autophagy through stimulation of phosphorylation of mitogen-activated protein kinases (MAPKs), AMP-activated protein kinase (AMPK), and inhibition of phosphorylation of Akt and mammalian target of rapamycin (mTOR), which was reversed by GLP. Taken together, this study revealed a protective effect of GLP against PA-evoked IPEC-J2 cell death through anti-apoptotic and anti-autophagic properties.
Collapse
|
16
|
Metformin causes cancer cell death through downregulation of p53-dependent differentiated embryo chondrocyte 1. J Biomed Sci 2018; 25:81. [PMID: 30442142 PMCID: PMC6238313 DOI: 10.1186/s12929-018-0478-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Background Metformin is the most commonly used first-line medicine for type II diabetes mellitus. Acting via AMP-activated protein kinase, it has been used for more than 60 years and has an outstanding safety record. Metformin also offers protection against cancer, but its precise mechanisms remain unclear. Methods We first examined the cytotoxic effects of metformin in the HeLa human cervical carcinoma and ZR-75-1 breast cancer cell lines using assays of cell viability, cleaved poly-ADP-ribose polymerase, and Annexin V-fluorescein isothiocyanate apoptosis, as well as flow cytometric analyses of the cell cycle profile and reactive oxygen species (ROS). We later clarified the effect of metformin on p53 protein stability using transient transfection and cycloheximide chase analyses. Results We observed that metformin represses cell cycle progression, thereby inducing subG1 populations, and had induced apoptosis through downregulation of p53 protein and a target gene, differentiated embryo chondrocyte 1 (DEC1). In addition, metformin increased intracellular ROS levels, but N-acetyl cysteine, a ROS scavenger, failed to suppress metformin-induced apoptosis. Further results showed that metformin disrupted the electron transport chain and collapsed the mitochondrial membrane potential, which may be the cause of the elevated ROS levels. Examination of the mechanisms underlying metformin-induced HeLa cell death revealed that reduced stability of p53 in metformin-treated cells leads to decreases in DEC1 and induction of apoptosis. Conclusion The involvement of DEC1 provides new insight into the positive or negative functional roles of p53 in the metformin-induced cytotoxicity in tumor cells.
Collapse
|
17
|
Increased Autophagy Levels Mediate Cisplatin Resistance in Cisplatin-Resistant Cells While Also Rendering Them Vulnerable to Autophagy Induction. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1736738. [PMID: 30539004 PMCID: PMC6260253 DOI: 10.1155/2018/1736738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Autophagy plays an important role in tumor development because of its capacity to maintain energy homeostasis by recycling damaged intracellular proteins and organelles, and increased autophagy levels are reported to mediate drug resistance in many cancers. However, whether high autophagy levels negatively impact tumor cell growth is unknown. Herein, we found that cisplatin (ddp)-resistant cells were more sensitive to glutamine (Gln) deprivation than ddp-sensitive cells, and they showed significant G1 arrest and increased apoptosis rates under Gln-deficient conditions. Furthermore, ddp-resistant cells had a higher level of autophagy, which mediated ddp resistance. Further analysis indicated that Gln deficiency could trigger apoptosis by enhancing activation of the autophagy signaling pathway AMPK/ULK1 in ddp-resistant cells due to their high basal autophagy level. Interestingly, ddp-resistant cells were more sensitive to rapamycin, and rapamycin could efficiently suppress the growth of ddp-resistant cells in vivo. Taken together, our study demonstrated that ddp-resistant cells became vulnerable to Gln deprivation because of their increased level of autophagy, and for the first time, we showed that suppressing the growth of ddp-resistant cells via enhancing autophagy induction was possible with rapamycin treatment.
Collapse
|
18
|
Deficiency of unc-51 like kinase 1 (Ulk1) protects against mice traumatic brain injury (TBI) by suppression of p38 and JNK pathway. Biochem Biophys Res Commun 2018; 503:467-473. [PMID: 29680658 DOI: 10.1016/j.bbrc.2018.04.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
Unc-51 like autophagy activating kinase 1 (Ulk1) is a serine/threonine kinase that plays a key role in regulating autophagy processes. We attempted to investigate the effects of Ulk1 on traumatic brain injury (TBI) progression by using wild type (WT) mice and Ulk1-knockout (KO) mice suffered with or not TBI. The results were verified using LPS-treated primary astrocyte (AST). Here, Ulk1 was over-expressed in hippocampus of WT mice after TBI, as well as in lipopolysaccharide (LPS)-stimulated AST. Ulk1-deletion improved cognitive ability and hippocampus histological changes in TBI mice. Nissl and neuronal nuclei (NeuN) staining indicated that Ulk1-deletion increased the number of surviving neurons in hippocampus of TBI mice. Ulk1-ablation alleviated neuroinflammation, as evidenced by the reduced expression of hippocampus pro-inflammatory cytokines in TBI mice. TBI-induced apoptosis was also ameliorated by Ulk1-ablation, as proved by the reduced number of TUNEL-staining cells, and cleaved Caspase-3 and poly (ADP-ribose) polymerase (PARP) expressions. Moreover, Ulk1-knockout suppressed TBI-stimulated activation of astrocytes and microglia cells. Additionally, hippocampus autophagy induced by TBI was attenuated by Ulk1-knockout. Further, TBI-activated p38/c-Jun N-terminal Kinase (JNK) pathway was repressed by Ulk1-deletion in hippocampus of mice. The findings above were confirmed in LPS-stimulated AST with or without Ulk1 siRNA transfection. Intriguingly, pre-treatment of p38 or JNK activator markedly abolished the anti-inflammation, anti-apoptosis and anti-autophagy effects of Ulk1-knockdown on LPS-incubated AST. In conclusion, our results demonstrated that Ulk1 might be a potential target for developing therapeutic strategy against TBI in future.
Collapse
|
19
|
Wang Q, Wei LW, Zhou WT, Wang ZT, Xie XL. PCB28 and PCB52 induce hepatotoxicity by impairing the autophagic flux and stimulating cell apoptosis in vitro. Toxicol Lett 2018. [PMID: 29518472 DOI: 10.1016/j.toxlet.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatotoxicity is one of the adverse health effects induced by polychlorinated biphenyls (PCBs). Recently, autophagy was revealed to play an important role in PCBs-induced toxicology, however, its precise role in PCBs-induced hepatotoxicity is as yet unknown. In this study, treatment of PCB28/PCB52 for 48 h dose-dependently induced hepatotoxicity at doses of 10, 20, 40 and 80 μM in homo and rattus hepatocytes. Expressions of proteins of BECN1, LC3-II and ULK1 significantly increased in PCB28/PCB52-treated cells at a dose of 40 μM, implying initiation of autophagy. Over-expression of p62 suggested deficient clearance of autophagosome. Consistently, accumulation of autophagosome was observed by transmission-electron microscopy and confocal fluorescence microscopy using adenovirus expressing mRFP-GFP-LC3, which may initiate apoptosis. Furthermore, increased reactive oxygen species levels might also induce autophagy and apoptosis. Consistently, cell apoptosis was evoked by the treatment of PCB28/PCB52 compared to the respective controls, which coincided with obvious hepatotoxicity. Subsequently, an inhibitor (3-methlyadenine) and an initiator (rapamycin) of autophagy were used. Compared to PCB28/PCB52 alone-treated cells, initiation of autophagy, blocked autophagic flux, cell apoptosis and hepatotoxicity were alleviated by 3-methlyadenine and aggravated by rapamycin, respectively. Taken together, PCB28 and PCB52 induced hepatotoxicity by impairing autophagic flux and stimulating cell apoptosis in vitro.
Collapse
Affiliation(s)
- Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Li-Wen Wei
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Wen-Tao Zhou
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Zheng-Tao Wang
- The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
20
|
Bai Z, Gao M, Xu X, Zhang H, Xu J, Guan Q, Wang Q, Du J, Li Z, Zuo D, Zhang W, Wu Y. Overcoming resistance to mitochondrial apoptosis by BZML-induced mitotic catastrophe is enhanced by inhibition of autophagy in A549/Taxol cells. Cell Prolif 2018; 51:e12450. [PMID: 29493085 DOI: 10.1111/cpr.12450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Our previous in vitro study showed that 5-(3, 4, 5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl) imidazol (BZML) is a novel colchicine binding site inhibitor with potent anti-cancer activity against apoptosis resistance in A549/Taxol cells through mitotic catastrophe (MC). However, the mechanisms underlying apoptosis resistance in A549/Taxol cells remain unknown. To clarify these mechanisms, in the present study, we investigated the molecular mechanisms of apoptosis and autophagy, which are closely associated with MC in BZML-treated A549 and A549/Taxol cells. METHODS Xenograft NSCLC models induced by A549 and A549/Taxol cells were used to evaluate the efficacy of BZML in vivo. The activation of the mitochondrial apoptotic pathway was assessed using JC-1 staining, Annexin V-FITC/PI double-staining, a caspase-9 fluorescence metric assay kit and western blot. The different functional forms of autophagy were distinguished by determining the impact of autophagy inhibition on drug sensitivity. RESULTS Our data showed that BZML also exhibited desirable anti-cancer activity against drug-resistant NSCLC in vivo. Moreover, BZML caused ROS generation and MMP loss followed by the release of cytochrome c from mitochondria to cytosol in both A549 and A549/Taxol cells. However, the ROS-mediated apoptotic pathway involving the mitochondria that is induced by BZML was only fully activated in A549 cells but not in A549/Taxol cells. Importantly, we found that autophagy acted as a non-protective type of autophagy during BZML-induced apoptosis in A549 cells, whereas it acted as a type of cytoprotective autophagy against BZML-induced MC in A549/Taxol cells. CONCLUSIONS Our data suggest that the anti-apoptosis property of A549/Taxol cells originates from a defect in activation of the mitochondrial apoptotic pathway, and autophagy inhibitors can potentiate BZML-induced MC to overcome resistance to mitochondrial apoptosis.
Collapse
Affiliation(s)
- Zhaoshi Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Meiqi Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaobo Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Huijuan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingwen Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianan Du
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
21
|
Bhutia SK, Praharaj PP, Bhol CS, Panigrahi DP, Mahapatra KK, Patra S, Saha S, Das DN, Mukhopadhyay S, Sinha N, Panda PK, Naik PP. Monitoring and Measuring Mammalian Autophagy. Methods Mol Biol 2018; 1854:209-222. [PMID: 29855817 DOI: 10.1007/7651_2018_159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Macroautophagy (autophagy) is a conserved lysosomal-based intracellular degradation pathway. Here, we present different methods used for monitoring autophagy at cellular level. The methods involve Atg8/LC3 detection and quantification by Western blot, autophagic flux measurement through Western blot, direct fluorescence microscopy or indirect immunofluorescence, and finally traffic light assay using tf-LC3-II. Monitoring autophagic flux is experimentally challenging but obviously a prerequisite for the proper investigation of the process. These methods are suitable for screening purposes and can be used for measurements in cell lysates as well as in living cells. These assays have proven useful for the identification of genes and small molecules that regulate autophagy in mammalian cells.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India.
| | - Prakash P Praharaj
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Chandra S Bhol
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Debasna P Panigrahi
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Kewal K Mahapatra
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sarbari Saha
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Durgesh N Das
- Department of Medicine, University of Texas Health Science Center, Tyler, TX, USA
| | | | - Niharika Sinha
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Prashanta K Panda
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Prajna P Naik
- PG Department of Zoology, Vikram Deb (Auto) College, Jeypore, Odisha, India
| |
Collapse
|
22
|
Das DN, Naik PP, Mukhopadhyay S, Panda PK, Sinha N, Meher BR, Bhutia SK. Elimination of dysfunctional mitochondria through mitophagy suppresses benzo[a]pyrene-induced apoptosis. Free Radic Biol Med 2017; 112:452-463. [PMID: 28843778 DOI: 10.1016/j.freeradbiomed.2017.08.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 01/10/2023]
Abstract
Mitophagy, a special type of autophagy, plays an important role in the mitochondria quality control and cellular homeostasis. In this study, we examined the molecular mechanism of mitophagy induction with benzo[a]pyrene (B[a]P), a ubiquitous polycyclic aromatic hydrocarbon, which acts as a prosurvival response against apoptotic cell death. Our study showed that B[a]P displayed higher cytotoxicity in autophagy-deficient HaCaT cells as compared to control. Further, we showed that B[a]P triggered the Beclin-1-dependent autophagy through the mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) pathway. Moreover, our study indicated that the B[a]P-induced autophagy was initiated through the activation of cytochrome P450 1B1 (CYP1B1) and the aryl hydrocarbon receptor (AhR) in HaCaT cells. Intriguingly, the B[a]P-induced Beclin-1-mediated mitophagy was suppressed in CYP1B1 and AhR knockdown HaCaT cells, indicating a crucial role of B[a]P activation in the mitophagy induction to regulate cell death. B[a]P was shown to increase the mitochondrial dysfunction and decrease the mitochondrial membrane potential, resulting in depletion of ATP level along with the inhibition of the oxygen consumption rate in HaCaT cells. Importantly, the supplementation of methyl pyruvate compensated for the B[a]P-induced drop in the ATP level and mitigated the reactive oxygen species burden and autophagy. Mechanistically, B[a]P inhibited the manganese superoxide dismutase (MnSOD) activity and we found that the activated mitochondrial CYP1B1 interacted with MnSOD, inflicting mitophagy to protect from B[a]P-induced apoptosis. In summary, our study reveals mitophagy induction as a cellular protection mechanism against B[a]P-triggered toxicity and carcinogenesis.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Biswa Ranjan Meher
- Centre for Life Sciences, Central University of Jharkhand, Brambe, Ranchi 835205, Jharkhand, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
23
|
Sinha N, Panda PK, Naik PP, Das DN, Mukhopadhyay S, Maiti TK, Shanmugam MK, Chinnathambi A, Zayed ME, Alharbi SA, Sethi G, Agarwal R, Bhutia SK. Abrus
agglutinin promotes irreparable DNA damage by triggering ROS generation followed by ATM-p73 mediated apoptosis in oral squamous cell carcinoma. Mol Carcinog 2017; 56:2400-2413. [DOI: 10.1002/mc.22679] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 05/05/2017] [Accepted: 05/19/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Niharika Sinha
- Department of Life Science; National Institute of Technology; Rourkela India
| | - Prashanta K. Panda
- Department of Life Science; National Institute of Technology; Rourkela India
| | - Prajna P. Naik
- Department of Life Science; National Institute of Technology; Rourkela India
| | - Durgesh N. Das
- Department of Life Science; National Institute of Technology; Rourkela India
| | | | - Tapas K. Maiti
- Department of Biotechnology; Indian Institute of Technology; Kharagpur India
| | - Muthu K. Shanmugam
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology; College of Science; King Saud University; Riyadh Kingdom of Saudi Arabia
| | - ME Zayed
- Department of Botany and Microbiology; College of Science; King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Sulaiman A. Alharbi
- Department of Botany and Microbiology; College of Science; King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
- Department of Botany and Microbiology; College of Science; King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Rajesh Agarwal
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of Colorado Denver; Aurora Colorado
| | - Sujit K. Bhutia
- Department of Life Science; National Institute of Technology; Rourkela India
| |
Collapse
|
24
|
Tang F, Hu P, Yang Z, Xue C, Gong J, Sun S, Shi L, Zhang S, Li Z, Yang C, Zhang J, Xie C. SBI0206965, a novel inhibitor of Ulk1, suppresses non-small cell lung cancer cell growth by modulating both autophagy and apoptosis pathways. Oncol Rep 2017; 37:3449-3458. [PMID: 28498429 DOI: 10.3892/or.2017.5635] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 05/02/2017] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is a major public health problem worldwide. Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases. Autophagy has recently sparked great interest, and it is thought to participate in a variety of diseases, including lung cancer. Uncoordinated (Unc) 51-like kinase 1 (Ulk1), a serine/threonine kinase, plays a central role in the autophagy pathway. However, the role of Ulk1 in NSCLC remains unclear. We report that NSCLC cell lines exhibited high expression of Ulk1 and that Ulk1 was negatively correlated with prognosis in lung cancer patients. Knockdown of Ulk1 or the inhibition of Ulk1 by the selective inhibitor SBI0206965, inhibited cell proliferation, induced cell apoptosis and enhanced the sensitivity of cisplatin against NSCLC cells. Moreover, we demonstrated that Ulk1 exerted oncogenic activity in NSCLC by modulating both autophagy and apoptosis pathways. Inhibition of autophagy by SBI0206965 sensitized NSCLC cells to cisplatin by inhibiting cisplatin induced cell-protective autophagy to promote apoptosis. Furthermore, SBI0206965 promoted apoptosis in NSCLC cells independent of autophagy, which was partly mediated by destabilization of Bcl2/Bclxl. In summary, our results show that inhibition of Ulk1 suppresses NSCLC cell growth and sensitizes NSCLC cells to cisplatin by modulating both autophagy and apoptosis pathways, and that Ulk1 might be a promising target for NSCLC treatment.
Collapse
Affiliation(s)
- Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Pengchao Hu
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zetian Yang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chao Xue
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jun Gong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Liu Shi
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shimin Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhenzhen Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chunxu Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
25
|
Mukhopadhyay S, Schlaepfer IR, Bergman BC, Panda PK, Praharaj PP, Naik PP, Agarwal R, Bhutia SK. ATG14 facilitated lipophagy in cancer cells induce ER stress mediated mitoptosis through a ROS dependent pathway. Free Radic Biol Med 2017; 104:199-213. [PMID: 28069524 DOI: 10.1016/j.freeradbiomed.2017.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/01/2017] [Accepted: 01/05/2017] [Indexed: 01/13/2023]
Abstract
Understanding the dynamics of autophagy and apoptosis crosstalk in cancer progression remains a challenging task. Here, we reported how the autophagy protein ATG14 induces lipophagy-mediated mitochondrial apoptosis. The overexpression of ATG14 in HeLa cells inhibited cell viability and increased mitochondrial apoptosis and endoplasmic reticulum (ER) stress. Furthermore, inhibition of this ATG14-induced autophagy promoted apoptosis. ATG14 overexpression resulted in the accumulation of free fatty acids (FFA), with a concomitant decrease in the number of lipid droplets. Our data showed that ER stress induced by ATG14 was due to the lipophagy-mediated FFA accumulation, which resulted in ROS-dependent mitochondrial stress leading to apoptosis. Inhibition of lipophagy in HeLa-ATG14 cells enhanced the cellular viability and rescued them from lipotoxicity. Mechanistically, we found that ATG14 interacted with Ulk1 and LC3, and knock down of Ulk1 prevented the lipidation of LC3 and autophagy in HeLa-ATG14 cells. We also identified a phosphatidylethanolamine (PE) binding region in ATG14, and the addition of Ulk1 to Hela-ATG14 cells decreased the ATG14-PE interaction. Lastly, confocal microscopy studies showed that the decrease in ATG14-PE binding was concomitant with the increase in LC3 lipidation over time, confirming the importance of Ulk1 to sort PE to LC3 during ATG14 mediated lipophagy induction. In conclusion, ATG14 and Ulk1 interact to induce lipophagy resulting in FFA accumulation leading to ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Isabel R Schlaepfer
- Division of Medical Oncology, University of Colorado School of Medicine, United States
| | - Bryan C Bergman
- Division of Endocrinology Metabolism and Diabetes, University of Colorado School of Medicine, United States
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO, United States
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
26
|
Gil J, Ramsey D, Szmida E, Leszczynski P, Pawlowski P, Bebenek M, Sasiadek MM. The BAX gene as a candidate for negative autophagy-related genes regulator on mRNA levels in colorectal cancer. Med Oncol 2016; 34:16. [PMID: 28035578 PMCID: PMC5199770 DOI: 10.1007/s12032-016-0869-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023]
Abstract
Autophagy is a catabolic process, which is involved in the maintenance of intracellular homeostasis by degrading redundant molecules and organelles. Autophagy begins with the formation of a double-membrane phagophore, followed by its enclosure, thus leading to the appearance of an autophagosome which fuses with lysosome. This process is highly conserved, precisely orchestrated and regulated by autophagy-related genes. Recently, autophagy has been widely studied in different types of cancers, including colorectal cancer. As it has been revealed, autophagy plays two opposite roles in tumorigenesis, as a tumor suppressor and a tumor enhancer/activator, and therefore is called a double-edge sword. Recently, interaction between autophagy and apoptosis has been found. Therefore, we aimed to study the mRNA levels of genes engaged in autophagy and apoptosis in colorectal cancer tissues. Colorectal cancer and adjacent healthy tissues were obtained from 73 patients diagnosed with primary colorectal cancer. Real-time PCR analysis employing Universal Probe Library was used to assess the expression of the seven following selected genes: BECN1, UVRAG, ULK1, ATG13, Bif-1, BCL2 and BAX. For all but one of the tested genes, a decrease in expression was observed. An increase in expression was observed for BAX. BAX expression decreases consistently from early to more advanced stages. High expression of BAX was strongly associated with negative UVRAG expression. The high expression of the BAX gene seems to be a negative regulator of autophagy in colorectal cancer cells. The relative downregulation of autophagy-related genes was observed in colorectal cancer samples.
Collapse
Affiliation(s)
- Justyna Gil
- Department of Genetics, Wroclaw Medical University, 50-368, Wroclaw, Poland.
| | - David Ramsey
- Department of Operations Research, Wroclaw University of Technology, 50-372, Wroclaw, Poland
| | - Elzbieta Szmida
- Department of Genetics, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Przemyslaw Leszczynski
- Department of Biology and Medical Parasitology, Wroclaw Medical University, 50-345, Wroclaw, Poland
| | - Pawel Pawlowski
- Department of Genetics, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Marek Bebenek
- First Department of Surgical Oncology, Lower Silesian Oncology Center, 53-413, Wroclaw, Poland
| | - Maria M Sasiadek
- Department of Genetics, Wroclaw Medical University, 50-368, Wroclaw, Poland
| |
Collapse
|
27
|
Serum starvation induces anti-apoptotic cIAP1 to promote mitophagy through ubiquitination. Biochem Biophys Res Commun 2016; 479:940-946. [PMID: 27693792 DOI: 10.1016/j.bbrc.2016.09.143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/18/2016] [Accepted: 09/27/2016] [Indexed: 11/23/2022]
Abstract
Mitophagy is a highly specialised type of autophagy that plays an important role in regulating mitochondrial dynamics and controls cellular quality during stress. In this study, we established that serum starvation led to induction of cellular inhibitor of apoptosis protein-1 (cIAP1), which regulates mitophagy through ubiquitination. Importantly, gain and loss of function of cIAP1 resulted in concomitant alteration in mitophagy confirming the direct implication of cIAP1 in induction of mitophagy. Interestingly, it was observed that cIAP1 translocated to mitochondria to associate with TOM20, Ulk1, and LC3 to initiate mitophagy. Further, cIAP1-induced mitophagy led to dysfunctional mitochondria that resulted in abrogation of mitochondrial oxygen consumption rate along with the decrease in ATP levels. The ubiquitination of cIAP1 was found to be the critical regulator of mitophagy. The disruption of cIAP1-ubiquitin interaction by PYR41 ensured the abrogation of cIAP1-LC3 interaction and mitophagy inhibition. Our study revealed an important function of cIAP1 as a crucial molecular link between autophagy and apoptosis for regulation of mitochondrial dynamics to mitigate cellular stress.
Collapse
|
28
|
Geyikoglu F, Emir M, Colak S, Koc K, Turkez H, Bakir M, Hosseinigouzdagani M, Cerig S, Keles ON, Ozek NS. Effect of oleuropein against chemotherapy drug-induced histological changes, oxidative stress, and DNA damages in rat kidney injury. J Food Drug Anal 2016; 25:447-459. [PMID: 28911689 PMCID: PMC9332526 DOI: 10.1016/j.jfda.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/16/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
Cisplatin-based chemotherapy is responsible for a large number of renal failures, and it is still associated with high rates of mortality today. Oleuropein (OLE) presents a plethora of pharmacological beneficial properties. In this study we investigated whether OLE could provide sufficient protection against cisplatin-induced nephrotoxicity. With this aim, Sprague-Dawley rats were divided into eight groups: control; 7 mg/kg/d cisplatin, 50 mg/kg, 100 mg/kg, and 200 mg/kg OLE; and treatment with OLE for 3 days starting at 24 hours following cisplatin injection. After exposure to the chemotherapy agent and OLE, oxidative DNA damage was quantitated in the renal tissue of experimental animals by measuring the amount of 8-hydroxy-2′-deoxyguanosine (8-OHdG) adducts. Malondialdehyde (MDA) level, total oxidative stress (TOS), and total antioxidant status (TAS) were assessed to determine the oxidative injury in kidney cells. The histology of the kidney was examined using four different staining methods: hematoxylin-eosin (H&E), periodic acid Schiff (PAS), Masson trichrome, and amyloid. In addition, the blood urea nitrogen (BUN), uric acid (UA), and creatinine (CRE) levels were established. Our experimental data showed that tissue 8-OHdG levels were significantly higher in the cisplatin group when compared to the control group. The glomerular cells were sensitive to cisplatin as tubular cells. In addition, treatment with cisplatin elevated the levels of BUN, UA, CRE, and TOS, but lowered the level of TAS compared to the control group. The OLE therapy modulated oxidative stress in order to restore normal kidney function and reduced the formation of 8-OHdG induced by cisplatin. Furthermore, the OLE treatment significantly reduced pathological findings in renal tissue. We demonstrate for the first time that OLE presents significant cytoprotective properties against cisplatin-induced genotoxicity by restoring the antioxidant system of the renal tissue. According to our findings, OLE is a promising novel natural source for the prevention of serious kidney damage in current chemotherapies.
Collapse
Affiliation(s)
- Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Murat Emir
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Suat Colak
- Department of Biology, Erzincan University, Uzumlu Vocational School, Erzincan, Turkey
| | - Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey.
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Murat Bakir
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | | - Salim Cerig
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Osman Nuri Keles
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
29
|
Das DN, Naik PP, Nayak A, Panda PK, Mukhopadhyay S, Sinha N, Bhutia SK. Bacopa monnieri
-Induced Protective Autophagy Inhibits Benzo[a]pyrene-Mediated Apoptosis. Phytother Res 2016; 30:1794-1801. [DOI: 10.1002/ptr.5682] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Durgesh Nandini Das
- Department of Life Science; National Institute of Technology; Rourkela India
| | | | - Aditi Nayak
- Department of Life Science; National Institute of Technology; Rourkela India
| | | | | | - Niharika Sinha
- Department of Life Science; National Institute of Technology; Rourkela India
| | - Sujit K Bhutia
- Department of Life Science; National Institute of Technology; Rourkela India
| |
Collapse
|
30
|
Lee WC, Chiu CH, Chen JB, Chen CH, Chang HW. Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose. DNA Cell Biol 2016; 35:657-665. [PMID: 27420408 DOI: 10.1089/dna.2016.3261] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to examine the effect of mitochondrial morphogenesis changes on apoptosis and autophagy of high-glucose-treated proximal tubular epithelial cells (HK2). Cell viability, apoptosis, and mitochondrial morphogenesis were examined using crystal violet, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and mitotracker staining, respectively. High glucose inhibited cell viability and induced mitochondrial fission in HK2 cells. After depleting mitofusin 1 (MFN1), the MFN1(-) HK2 cells (fission type) became more susceptible to high-glucose-induced apoptosis and mitochondrial fragmentation observed by TUNEL and mitotracker assays. In siMFN2 HK2 cells (fission type), mitochondria were highly fragmented (>80% fission rate) with or without high-glucose treatment; however, siFIS1 (mitochondrial fission protein 1) HK2 cells (fusion type) exhibited little fragmentation (<13%). High-glucose treatment induced autophagy, characterized by the formation of autophagosome and microtubule-associated protein light chain 3 (LC3) B-II, as observed by transmission electron microscopy and western blotting, respectively. LC3B-II levels decreased in both MFN1(-) and siMFN2 HK2 cells, but increased in siFIS1 HK2 cells. Moreover, autophagy displays a protective role against high-glucose-induced cell death based on cotreatment with autophagy inhibitors (3-methyladenine and chloroquine). Mitochondrial fission may increase apoptosis and decrease autophagy of high-glucose-treated HK2 cells.
Collapse
Affiliation(s)
- Wen-Chin Lee
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Chien-Hua Chiu
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Jin-Bor Chen
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Chiu-Hua Chen
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan .,2 Department of Biological Sciences, National Sun Yat-Sen University , Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- 3 Institute of Medical Science and Technology, National Sun Yat-Sen University , Kaohsiung, Taiwan .,4 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University , Kaohsiung, Taiwan
| |
Collapse
|
31
|
Raab-Graham KF, Workman ER, Namjoshi S, Niere F. Pushing the threshold: How NMDAR antagonists induce homeostasis through protein synthesis to remedy depression. Brain Res 2016; 1647:94-104. [PMID: 27125595 DOI: 10.1016/j.brainres.2016.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022]
Abstract
Healthy neurons have an optimal operating range, coded globally by the frequency of action potentials or locally by calcium. The maintenance of this range is governed by homeostatic plasticity. Here, we discuss how new approaches to treat depression alter synaptic activity. These approaches induce the neuron to recruit homeostatic mechanisms to relieve depression. Homeostasis generally implies that the direction of activity necessary to restore the neuron's critical operating range is opposite in direction to its current activity pattern. Unconventional antidepressant therapies-deep brain stimulation and NMDAR antagonists-alter the neuron's "depressed" state by pushing the neuron's current activity in the same direction but to the extreme edge. These therapies rally the intrinsic drive of neurons in the opposite direction, thereby allowing the cell to return to baseline activity, form new synapses, and restore proper communication. In this review, we discuss seminal studies on protein synthesis dependent homeostatic plasticity and their contribution to our understanding of molecular mechanisms underlying the effectiveness of NMDAR antagonists as rapid antidepressants. Rapid antidepressant efficacy is likely to require a cascade of mRNA translational regulation. Emerging evidence suggests that changes in synaptic strength or intrinsic excitability converge on the same protein synthesis pathways, relieving depressive symptoms. Thus, we address the question: Are there multiple homeostatic mechanisms that induce the neuron and neuronal circuits to self-correct to regulate mood in vivo? Targeting alternative ways to induce homeostatic protein synthesis may provide, faster, safer, and longer lasting antidepressants. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Kimberly F Raab-Graham
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States.
| | - Emily R Workman
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| | - Sanjeev Namjoshi
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Farr Niere
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
32
|
Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1. J Invest Dermatol 2016; 136:1219-1228. [PMID: 26880244 DOI: 10.1016/j.jid.2016.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 12/13/2022]
Abstract
Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy.
Collapse
|