1
|
Bispo Matos JH, Bernardo de Lima Silva AH, Ferreira MV, Verri WA, da Cunha JM, Zanoveli JM. Sex-based differences in the prevention of stress-induced anxiety by Resolvin D5 and its precursor docosahexaenoic acid: A comparative study. Brain Res 2025; 1857:149612. [PMID: 40174854 DOI: 10.1016/j.brainres.2025.149612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Acute stress can cause emotional dysregulation and trigger various molecular changes, including increased neuroinflammation in limbic regions. These changes have the potential to induce anxiety by disrupting brain physiology and functional connectivity. In this study, we investigated whether an 8-day treatment with inflammation-resolving compounds, specifically Resolvin D5 (RvD5) and its precursor, the omega-3 fatty acid docosahexaenoic acid (DHA), could alleviate anxiety induced by acute restraint stress (ARS) in male and female rats. Additionally, we assessed whether these effects persisted one week after treatment cessation. Serum corticosterone levels and proinflammatory cytokine levels in the hippocampus (HIP) were also assessed. Our results confirmed that ARS induced significant anxiety-like behavior in both the short and long term, with females displaying greater exploratory activity than males. Both RvD5 and DHA prevented the development of pronounced anxiety-like behavior in stressed rats, without affecting anxiety levels in non-stressed rats. Notably, the effect persisted for at least one-week post-treatment in females. The treatments also prevented the elevation of TNF alpha and interleukin-1 beta levels in the HIP and serum corticosterone levels in stressed animals. In conclusion, our findings confirm the neuroprotective profile of these compounds and indicate that the continuous use of DHA or RvD5 may have promising effects in preventing anxiety responses triggered by acute stressful event, regardless of sex. Furthermore, this study is the first to demonstrate that RvD5 can downregulate corticosterone levels in stressed animals.
Collapse
Affiliation(s)
| | | | - Matheus Vinicius Ferreira
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Joice Maria da Cunha
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Lei AA, Phang VWX, Lee YZ, Kow ASF, Tham CL, Ho YC, Lee MT. Chronic Stress-Associated Depressive Disorders: The Impact of HPA Axis Dysregulation and Neuroinflammation on the Hippocampus-A Mini Review. Int J Mol Sci 2025; 26:2940. [PMID: 40243556 PMCID: PMC11988747 DOI: 10.3390/ijms26072940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Chronic stress significantly contributes to the development of depressive disorders, with the hypothalamic-pituitary-adrenal (HPA) axis playing a central role in mediating stress responses. This review examines the neurobiological alterations in the hippocampus linked to HPA axis dysregulation in chronic stress-associated depressive disorders. The prolonged activation of the HPA axis disrupts cortisol regulation, leading to the decline of both physical and mental health. The chronic stress-induced HPA axis dysfunction interacts with inflammatory pathways and generates oxidative stress, contributing to cellular damage and neuroinflammation that further aggravates depressive symptoms. These processes result in structural and functional alterations in the hippocampus, which is essential for emotional regulation and cognitive function. Comprehending the impact of chronic stress on the HPA axis and associated neurobiological pathways is essential for formulating effective interventions for depressive disorders. This review summarises the existing findings and underscores the necessity for future investigations into intervention strategies to improve physical and psychological wellbeing targeting at HPA axis dysregulation for the betterment of psychological wellbeing and human health.
Collapse
Affiliation(s)
- Ai Ai Lei
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Yu Zhao Lee
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Farinha-Ferreira M, Miranda-Lourenço C, Galipeau C, Lenkei Z, Sebastião AM. Concurrent stress modulates the acute and post-acute effects of psilocybin in a sex-dependent manner. Neuropharmacology 2025; 266:110280. [PMID: 39725123 DOI: 10.1016/j.neuropharm.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
There is renewed interest in psychedelics, such as psilocybin, as therapies for multiple difficult-to-treat psychiatric disorders. Even though psychedelics can induce highly pleasant or aversive experiences, depending on multiple personal and environmental factors, there is little research into how such experiences impact post-acute mood-altering actions. Here we aimed at offsetting this gap. First, we tested whether acute psilocybin effects differed between sexes. Adult male and female C57BL/6J mice received saline or psilocybin (5 mg/kg; i.p.), and head-twitch response (HTR) frequency was quantified. Notably, while psilocybin increased HTR frequency in both sexes, the effect was greater in females. We then tested if stress exposure during acute drug effects impacted post-acute psilocybin actions. Following drug treatment, mice were returned to their homecage or restrained for 1 h. Anxiety- and depression-like behaviors were assessed starting 24 h following drug administration, using the marble burying, novelty-suppressed feeding, and splash tests. Psilocybin induced anxiolytic-, but not antidepressant-like, which were fully blocked by stress in males, but only partially so in females. Lastly, we assessed the acute stress-psilocybin interaction on plasma corticosterone levels in a separate cohort of mice, treated as above. Both stress and psilocybin independently increased corticosterone levels, without additive or interactive effects being observed for either sex. Our data reveals the role of sex and peri-acute negative experiences in the acute and post-acute actions of psilocybin. These findings underline the importance of non-pharmacological factors, such as the quality of the psychedelic experience, in the mood-altering effects of psychedelics, holding significant for both their therapeutic and recreational use.
Collapse
Affiliation(s)
- Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, 102 rue de la Santé, 75014, Paris, France
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal
| | - Chloé Galipeau
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal
| | - Zsolt Lenkei
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, 102 rue de la Santé, 75014, Paris, France
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
4
|
Zorkina YA, Golubeva EA, Gurina OI, Reznik AM, Morozova AY. [Genetic variants associated with the development of stress disorders: A systematic review of GWAS]. Zh Nevrol Psikhiatr Im S S Korsakova 2025; 125:12-26. [PMID: 40195096 DOI: 10.17116/jnevro202512503112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Studying the genetic basis of post-traumatic stress disorder (PTSD) can be useful in predicting its risk in a person with a history of severe traumatic stress and in facilitating earlier diagnosis and referral to a specialist. The aim of the study is to review all GWAS studies related to PTSD. In total, 20 studies were included, of which 5 meta-analyses and 9 included war veterans. The functions of genes and their associations were considered, which included single-cell polymorphisms in different groups of genes involved in embryogenesis, neuron formation, and cell functioning, as well as many DNA sequences with non-coding RNA transcribed. The repeatability of the results between studies and replicative samples was studied. Between the studies, the associations were repeated in the CAMKV, CDHR4, DCC, FAM120A, FOXP2 (3 studies), MAD1L1 (3 studies), MAPT, NCAM1, NOS1, SP4, ZMYM4, TCF4 genes. A new large-scale study with many found associations was considered individually. Studies regarding polygenic risk were also studied, and several studies showed genetic comorbidity with anxiety and bipolar disorder. However, the models developed by the authors explain a small percentage of variance and are weakly repeated in other samples. It may be possible to solve this problem by using larger samples and clearer homogeneous inclusion criteria. Thus, at the moment, there are few GWAS studies of PTSD; they are ambiguous and uninformative compared to the same studies for other mental disorders, but they have further potential for assessing the risks of developing the disease.
Collapse
Affiliation(s)
- Y A Zorkina
- V. Serbsky National Medical Resesarch Center for Psychiatry and Narcology, Moscow, Russia
- Alekseev Psychiatric Clinical Hospital No. 1, Moscow, Russia
| | - E A Golubeva
- V. Serbsky National Medical Resesarch Center for Psychiatry and Narcology, Moscow, Russia
| | - O I Gurina
- V. Serbsky National Medical Resesarch Center for Psychiatry and Narcology, Moscow, Russia
| | - A M Reznik
- V. Serbsky National Medical Resesarch Center for Psychiatry and Narcology, Moscow, Russia
- Russian University of Biotechnology, Moscow, Russia
| | - A Y Morozova
- V. Serbsky National Medical Resesarch Center for Psychiatry and Narcology, Moscow, Russia
- Alekseev Psychiatric Clinical Hospital No. 1, Moscow, Russia
| |
Collapse
|
5
|
Kim RE, Mabunga DF, Boo KJ, Kim DH, Han SH, Shin CY, Kwon KJ. GSP1-111 Modulates the Microglial M1/M2 Phenotype by Inhibition of Toll-like Receptor 2: A Potential Therapeutic Strategy for Depression. Int J Mol Sci 2024; 25:10594. [PMID: 39408923 PMCID: PMC11476561 DOI: 10.3390/ijms251910594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Neuroinflammation plays a vital role in neurodegenerative diseases and neuropsychiatric disorders, and microglia and astrocytes chiefly modulate inflammatory responses in the central nervous system (CNS). Toll-like receptors (TLRs), which are expressed in neurons, astrocytes, and microglia in the CNS, are critical for innate immune responses; microglial TLRs can regulate the activity of these cells, inducing protective or harmful effects on the surrounding cells, including neurons. Therefore, regulating TLRs in microglia may be a potential therapeutic strategy for neurological disorders. We examined the protective effects of GSP1-111, a novel synthetic peptide for inhibiting TLR signaling, on neuroinflammation and depression-like behavior. GSP1-111 decreased TLR2 expression and remarkably reduced the mRNA expression of inflammatory M1-phenotype markers, including tumor necrosis factor (TNF)α, interleukin (IL)-1β, and IL-6, while elevating that of the M2 phenotype markers, Arg-1 and IL-10. In vivo, GSP1-111 administration significantly decreased the depression-like behavior induced by lipopolysaccharide (LPS) in a forced swim test and significantly reduced the brain levels of M1-specific inflammatory cytokines (TNFα, IL-1β, and IL-6). GSP1-111 prevented the LPS-induced microglial activation and TLR2 expression in the brain. Accordingly, GSP1-111 prevented inflammatory responses and induced microglial switching of the inflammatory M1 phenotype to the protective M2 phenotype. Thus, GSP1-111 could prevent depression-like behavior by inhibiting TLR2. Taken together, our results suggest that the TLR2 pathway is a promising therapeutic target for depression, and GSP1-111 could be a novel therapeutic candidate for various neurological disorders.
Collapse
Affiliation(s)
- Ryeong-Eun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.-E.K.); (D.F.M.); (K.-J.B.); (D.H.K.); (C.Y.S.)
| | - Darine Froy Mabunga
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.-E.K.); (D.F.M.); (K.-J.B.); (D.H.K.); (C.Y.S.)
| | - Kyung-Jun Boo
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.-E.K.); (D.F.M.); (K.-J.B.); (D.H.K.); (C.Y.S.)
| | - Dong Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.-E.K.); (D.F.M.); (K.-J.B.); (D.H.K.); (C.Y.S.)
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Seol-Heui Han
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.-E.K.); (D.F.M.); (K.-J.B.); (D.H.K.); (C.Y.S.)
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Kyoung Ja Kwon
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.-E.K.); (D.F.M.); (K.-J.B.); (D.H.K.); (C.Y.S.)
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| |
Collapse
|
6
|
Fronza MG, Ferreira BF, Pavan-Silva I, Guimarães FS, Lisboa SF. "NO" Time in Fear Response: Possible Implication of Nitric-Oxide-Related Mechanisms in PTSD. Molecules 2023; 29:89. [PMID: 38202672 PMCID: PMC10779493 DOI: 10.3390/molecules29010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Bruna F. Ferreira
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Isabela Pavan-Silva
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Francisco S. Guimarães
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Sabrina F. Lisboa
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil
| |
Collapse
|
7
|
Boo KJ, Gonzales EL, Remonde CG, Seong JY, Jeon SJ, Park YM, Ham BJ, Shin CY. Hycanthone Inhibits Inflammasome Activation and Neuroinflammation-Induced Depression-Like Behaviors in Mice. Biomol Ther (Seoul) 2023; 31:161-167. [PMID: 36203404 PMCID: PMC9970841 DOI: 10.4062/biomolther.2022.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Despite the various medications used in clinics, the efforts to develop more effective treatments for depression continue to increase in the past decades mainly because of the treatment-resistant population, and the testing of several hypotheses- and target-based treatments. Undesirable side effects and unresponsiveness to current medications fuel the drive to solve this top global health problem. In this study, we focused on neuroinflammatory response-mediated depression which represents a cluster of depression etiology both in animal models and humans. Several meta-analyses reported that proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were increased in major depressive disorder patients. Inflammatory mediators implicated in depression include type-I interferon and inflammasome pathways. To elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression, we introduced hycanthone, an antischistosomal drug, to check whether it can counteract depressive-like behaviors in vivo and normalize the inflammation-induced changes in vitro. Lipopolysaccharide (LPS) treatment increased proinflammatory cytokine expression in the murine microglial cells as well as the stimulation of type I interferon-related pathways that are directly or indirectly regulated by Janus kinase-signal transducer and activator of transcription (JAK-STAT) activation. Hycanthone treatment attenuated those changes possibly by inhibiting the JAK-STAT pathway and inflammasome activation. Hycanthone also ameliorated depressive-like behaviors by LPS. Taken together, we suggest that the inhibitory action of hycanthone against the interferon pathway leading to attenuation of depressive-like behaviors can be a novel therapeutic mechanism for treating depression.
Collapse
Affiliation(s)
- Kyung-Jun Boo
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea,Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea
| | - Yeong-Min Park
- Graduate School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea,Graduate School of Medicine, Konkuk University, Seoul 05029, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-454-5630, Fax: +82-2-2030-7899
| |
Collapse
|
8
|
Dehkordi HT, Bijad E, Saghaei E, Korrani MS, Amini-Khoei H. Chronic stress but not acute stress decreases the seizure threshold in PTZ-induced seizure in mice: role of inflammatory response and oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:973-982. [PMID: 36542120 DOI: 10.1007/s00210-022-02364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Seizure is paroxysmal abnormal electrical discharges in the cerebral cortex. Inflammatory pathways and oxidative stress are involved in the pathophysiology of seizures. Stress can induce an oxidative stress state and increase the production of inflammatory mediators in the brain. We investigated the effects of acute and chronic stresses on the seizure threshold in pentylenetetrazol (PTZ)-induced seizures in mice, considering oxidative stress and inflammatory mediators in the prefrontal cortex. In this study, 30 male Naval Medical Research Institute (NMRI) mice were divided into 3 groups, including acute stress, chronic stress, and control groups. PTZ was used for the induction of seizures. The gene expression of inflammatory markers (IL-1β, TNF-α, NLRP3, and iNOS), malondialdehyde (MDA) level, nitrite level, and total antioxidant capacity (TAC) were assessed in the prefrontal cortex and serum. Our results showed that stress could increase the expression of inflammatory cytokines genes and oxidative stress in the prefrontal cortex of the brain and serum following PTZ-induced seizures, which is associated with increased seizure sensitivity and decreased the seizure threshold. The effects of chronic stress were much more significant than acute stress. We concluded that the effects of chronic stress on seizure sensitivity and enhancement of neuroinflammation and oxidative stress are much greater than acute stress.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Saghaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Shahrani Korrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Combined effects of nitric oxide synthase 3 genetic variant and childhood emotional abuse on earlier onset of suicidal behaviours. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110617. [PMID: 35988847 DOI: 10.1016/j.pnpbp.2022.110617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2022] [Accepted: 08/14/2022] [Indexed: 11/22/2022]
Abstract
Marked heterogeneity in suicide attempters has been observed, with earlier onset being linked to stronger heritability, more childhood maltreatment. Nitric oxide signalling system might be implicated in this relationship through its role in the stress response/adaptation. This study examined how NOS genetic variants and childhood maltreatment were associated with age at first suicide attempt (SA). Adult patients with SA history (N = 414) filled in the Childhood Trauma Questionnaire, and six functionally relevant NOS2 and NOS3 polymorphisms were genotyped. Analyses included χ2, Mann-Whitney U tests, Kendall's regression, multivariate linear and Cox survival regressions, and a moderation analysis. The NOS3 promotor 27-bp variable number tandem repeat (VNTR) bb homozygous state and childhood emotional abuse were independently associated with earlier age at first SA, which was robust after controlling for confounders [regression coefficient - 3.975, 95% CI -6.980 - (-0.970), p = 0.010, and - 1.088, 95% CI -2.172 - (-0.004), p = 0.049]. No interaction was observed. In the Cox proportional hazards model for age at first SA, the hazard ratio for patients with childhood emotional abuse and NOS3 27-bp VNTR bb was 0.533 (95% CI 0.394-0.720, p < 0.001) compared to patients without. Intermediate scores were observed with either only the risk genotype or only childhood emotional abuse. A graded relationship was also observed for repeated SA, family history of SA, and severe SA history. These results are preliminary due to a low statistical power and call for replication and further characterization of the role of nitric oxide system in the susceptibility to early-onset SB.
Collapse
|
10
|
Hydroalcoholic Leaf Extract of Isatis tinctoria L. via Antioxidative and Anti-Inflammatory Effects Reduces Stress-Induced Behavioral and Cellular Disorders in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3567879. [PMID: 35795852 PMCID: PMC9252841 DOI: 10.1155/2022/3567879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/26/2022] [Indexed: 12/29/2022]
Abstract
Stress that can occur at different levels of a person’s life can cause and exacerbate various diseases. Oxidative stress and inflammation underlie this process at the cellular level. There is an urgent need to identify new and more effective therapeutic targets for the treatment of stress-induced behavioral disorders and specific drugs that affect these targets. Isatis tinctoria L. is a herbaceous species in the Brassicaceae family. Due to its potential antioxidant, nitric oxide- (NO-) inhibiting, anti-inflammatory, and neuroprotective properties, I. tinctoria could be used to treat depression, anxiety, and stress resistance. Hence, the present study is aimed at delineating whether administration of I. tinctoria leaf extract may improve stress-induced disorders in mice. A set of four behavioral tests was selected that together are suitable for phenotyping acute restraint stress-associated behaviors in mice, namely locomotor activity, social integration, dark/light box, and splash tests. The plasma and brains were collected. A brain-derived neurotrophic factor, tumor necrosis factor-alpha, C-reactive protein, corticosterone, NO, reactive oxygen species levels, superoxide dismutase and catalase activity, and ferric-reducing antioxidant power were measured. In mice stressed by immobilization, decreased locomotor activity, anxiety-like behavior, and contact with other individuals were observed, as well as increased oxidative stress and increased levels of nitric oxide in the brain and plasma C-reactive protein. A single administration of I. tinctoria leaf extract was able to reverse the behavioral response to restraint by a mechanism partially dependent on the modulation of oxidative stress, neuroinflammation, and NO reduction. In conclusion, Isatis tinctoria hydroalcoholic leaf extract can reduce stress-induced behavioral disturbances by regulating neurooxidative, neuronitrosative, and neuroimmune pathways. Therefore, it could be recommended for further research on clinical efficacy in depression and anxiety disorder treatment.
Collapse
|
11
|
Niu L, Hou Y, Jiang M, Bai G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114524. [PMID: 34400262 DOI: 10.1016/j.jep.2021.114524] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Cortex (M. officinalis) is a traditional herbal drug widely used in Asian countries. Depending on its multiple biological activities, M. officinalis is used to regulate gastrointestinal (GI) motility, relieve cough and asthma, prevent cardiovascular and cerebrovascular diseases, and treat depression and anxiety. AIM OF THE REVIEW We aimed to review the abundant form of pharmacodynamics activity and potential mechanisms of action of M. officinalis and the characteristics of the internal processes of the main components. The potential mechanisms of local and distance actions of M. officinalis based on GI tract was provided, and it was used to reveal the interconnections between traditional use, phytochemistry, and pharmacology. MATERIALS AND METHODS Published literatures about M. officinalis and its main components were collected from several scientific databases, including PubMed, Elsevier, ScienceDirect, Google Scholar and Web of Science etc. RESULTS: M. officinalis was shown multiple effects including effects on digestive system, respiratory system, central system, which is consistent with traditional applications, as well as some other activities such as cardiovascular system, anticancer, anti-inflammatory and antioxidant effects and so on. The mechanisms of these activities are abundant. Its chief ingredients such as magnolol and honokiol can be metabolized into active metabolites in vivo, which can increase water solubility and bioavailability and exert pharmacological activity in the whole body. In the GI tract, M. officinalis and its main ingredient can regulate GI hormones and substance metabolism, protect the intestinal barrier and affect the gut microbiota (GM). These actions are effective to improve local discomfort and some distal symptoms such as depression, asthma, or metabolic disorders. CONCLUSIONS Although M. officinalis has rich pharmacological effects, the GI tract makes great contributions to it. The GI tract is not only an important place for absorption and metabolism but also a key site to help M. officinalis exert local and distal efficacy. Pharmacodynamical studies on the efficacies of distal tissues based on the contributions of the GI tract hold great potential for understanding the benefits of M. officinalis and providing new ideas for the treatment of important diseases.
Collapse
Affiliation(s)
- Lin Niu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
12
|
So-Ochim-Tang-Gamibang, a Traditional Herbal Formula, Ameliorates Depression by Regulating Hyperactive Glucocorticoid Signaling In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8834556. [PMID: 33224257 PMCID: PMC7671797 DOI: 10.1155/2020/8834556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022]
Abstract
So-ochim-tang-gamibang (SOCG) is a Korean traditional medicine; it has previously been shown to be safe and effective against depression. Persistently increased levels of circulating glucocorticoids have been considered as a pathological mechanism for depression and associated with decreased neurotrophic factors in the hippocampus. This study investigated whether SOCG controls the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and the molecular mechanisms underlying its effects in vivo and in vitro. Wistar Kyoto (WKY) rats were subjected to restraint stress, where SOCG was orally administered to the animals for 2 weeks. An open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT) were performed to explore the antidepressant activity of SOCG in WKY rats. Plasma levels of HPA axis hormones were measured by ELISA or western blotting analysis. The expression levels or activation of HPA axis-related signaling molecules such as brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), extracellular regulated kinase (ERK), and glucocorticoid receptors (GRs) in the brain were determined by real-time PCR and western blotting analysis. Furthermore, a corticosterone- (CORT-) induced cell injury model was established using SH-SY5Y cells to explore the antidepressive effects of SOCG in vitro. The results of the OFT, FST, and SPT revealed that SOCG ameliorated depressive-like behaviors in the WKY rats. The blood plasma levels of HPA axis hormones such as CORT, CORT-releasing hormone (CRH), and adrenocorticotrophic hormone were downregulated by SOCG. On the other hand, SOCG upregulated the phosphorylation of CREB and ERK in both the rat hippocampus and CORT-treated SH-SY5Y cells. Moreover, it also increased the GR expression. These results suggested that SOCG may improve depression by controlling hyperactive glucocorticoid signaling via the downregulation of HPA axis hormones and upregulation of GR.
Collapse
|
13
|
Chen HJC, Yip T, Lee JK, Juliani J, Sernia C, Hill AF, Lavidis NA, Spiers JG. Restraint Stress Alters Expression of Glucocorticoid Bioavailability Mediators, Suppresses Nrf2, and Promotes Oxidative Stress in Liver Tissue. Antioxidants (Basel) 2020; 9:antiox9090853. [PMID: 32932938 PMCID: PMC7554900 DOI: 10.3390/antiox9090853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Hepatic glutathione synthesis and antioxidant protection are critically important for efficient detoxification processes in response to metabolic challenges. However, this biosynthetic pathway, regulated by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), previously demonstrated paradoxical repression following exposure to glucocorticoid stress hormones in cultured hepatic cells. Therefore, the present study used an in vivo model of sub-acute psychological stress to investigate the relationship between hepatic corticosteroid regulation and antioxidant systems. Male Wistar rats were kept under control conditions or subjected to six hours of restraint stress applied for 1 or 3 days (n = 8 per group) after which the liver was isolated for assays of oxidative/nitrosative status and expression of corticosteroid regulatory and Nrf2-antioxidant response element pathway members. A single stress exposure produced a significant increase in the expression of corticosterone reactivator, 11-beta-hydroxysteroid dehydrogenase 1 (11β-Hsd1), while the 11β-Hsd2 isozyme and corticosteroid-binding globulin were down-regulated following stress, indicative of an elevated availability of active corticosterone. Exposure to restraint significantly decreased hepatic concentrations of total cysteine thiols and the antioxidant reduced glutathione on Day 1 and increased 3-nitrotyrosinated and carbonylated proteins on Day 3, suggestive of oxidative/nitrosative stress in the liver following stress exposure. Conversely, there was a sustained down-regulation of Nrf2 mRNA and protein in addition to significant reductions in downstream glutamate-cysteine ligase catalytic subunit (Gclc), the rate-limiting enzyme in glutathione synthesis, on Day 1 and 3 of stress treatment. Interestingly, other antioxidant genes including superoxide dismutase 1 and 2, and glutathione peroxidase 4 were significantly up-regulated following an episode of restraint stress. In conclusion, the results of the present study indicate that increased expression of 11β-Hsd1, indicative of elevated tissue glucocorticoid concentrations, may impair the Nrf2-dependent antioxidant response.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
- WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: (H.-J.C.C.); (J.G.S.)
| | - Tsz Yip
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Johnny K. Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Juliani Juliani
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083, Australia; (J.J.); (A.F.H.)
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Andrew F. Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083, Australia; (J.J.); (A.F.H.)
| | - Nickolas A. Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Australia; (T.Y.); (J.K.L.); (C.S.); (N.A.L.)
| | - Jereme G. Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083, Australia; (J.J.); (A.F.H.)
- Correspondence: (H.-J.C.C.); (J.G.S.)
| |
Collapse
|
14
|
Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions. Mol Neurobiol 2020; 57:4825-4844. [PMID: 32803490 DOI: 10.1007/s12035-020-02066-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is the primary response by immune cells in the nervous system to protect against infection. Chronic and uncontrolled neuroinflammation triggers neuronal injury and neuronal death resulting in a variety of neurodegenerative disorders. Therefore, fine tuning of the immune response in the nervous system is now extensively considered as a potential therapeutic intervention for those diseases. The immune cells of the nervous system express Toll-like receptor 4 (TLR4) together with myeloid differentiation factor 2 (MD-2) to protect against the pathogens. Over the last 10 years, antagonists targeting the functional domains of MD-2 have become attractive pharmacological intervention strategies in pre-clinical studies into neuroinflammation and its associated brain pathologies. This review aims to summarize and discuss the roles of TLR4-MD-2 signaling pathway activation in various models of neuroinflammation. This review article also highlights the studies reporting the effect of MD-2 antagonists on neuroinflammation in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
15
|
Cellular mechanisms and molecular signaling pathways in stress-induced anxiety, depression, and blood-brain barrier inflammation and leakage. Inflammopharmacology 2020; 28:643-665. [PMID: 32333258 DOI: 10.1007/s10787-020-00712-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Depression and anxiety are comorbid conditions in many neurological or psychopathological disorders. Stress is an underlying event that triggers development of anxiety and depressive-like behaviors. Recent experimental data indicate that anxiety and depressive-like behaviors occurring as a result of stressful situations can cause blood-brain barrier (BBB) dysfunction, which is characterized by inflammation and leakage. However, the underlying mechanisms are not completely understood. This paper sought to review recent experimental preclinical and clinical data that suggest possible molecular mechanisms involved in development of stress-induced anxiety and depression with associated BBB inflammation and leakage. Critical therapeutic targets and potential pharmacological candidates for treatment of stress-induced anxiety and depression with associated BBB dysfunctions are also discussed.
Collapse
|
16
|
Nitric oxide-dependent expansion of erythroid progenitors in a murine model of chronic psychological stress. Histochem Cell Biol 2020; 153:457-468. [PMID: 32144481 DOI: 10.1007/s00418-020-01856-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
Anaemia occurs frequently in patients with heart failure and its current treatment lacks clear targets. Emerging evidence suggests that erythroid progenitor cell expansion is an integral part of physiological response to anaemia associated with chronic stress. Understanding the underlying mechanism may provide a novel approach to anaemia management. In this study, we aimed to examine a role for nitric oxide (NO) in the regulation of bone marrow erythroid progenitor response to chronic stress. For this purpose, adult male mice were subjected to 2 h daily restraint stress for 7 or 14 consecutive days. The role of NO was assessed by subcutaneous injection with NG-nitro-L-arginine methyl ester, 30 min prior to each restraint. Chronic exposure to stress resulted in significantly increased number of bone marrow erythroid progenitors, and blockade of NO biosynthesis prior to daily stress completely prevented stress-induced erythroid progenitor cell expansion. Furthermore, chronic stress exposure led to altered expression of neural, endothelial and inducible nitric oxide synthases (NOS) in the bone marrow, both on mRNA and protein level. Decreased expression of neural and endothelial NOS, as well as reduced expression of NF-kappaB/p65 in bone marrow nuclear cell fraction, was accompanied by elevated bone marrow expression of inducible NOS in chronically stressed animals. This is the first study to demonstrate a role for NO in adaptive response of erythroid progenitors to chronic stress. Targeting NO production may be beneficial to improve bone marrow dysfunction and reduced erythroid progenitor cell expansion in chronic heart failure patients.
Collapse
|
17
|
Zhang K, Liu R, Gao Y, Ma W, Shen W. Electroacupuncture Relieves LPS-Induced Depression-Like Behaviour in Rats Through IDO-Mediated Tryptophan-Degrading Pathway. Neuropsychiatr Dis Treat 2020; 16:2257-2266. [PMID: 33116524 PMCID: PMC7547135 DOI: 10.2147/ndt.s274778] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuroinflammation is an important pathological mechanism of depression that leads to an increase in indoleamine-2,3-dioxygenase (IDO) activity and NMDAR activation. This study aimed to observe the effects of electroacupuncture on depression-like behaviour in lipopolysaccharide (LPS)-treated rats and the underlying mechanism. METHODS Wistar rats were intraperitoneally administered LPS (0.5 mg/kg) for 7 consecutive days to establish a depression model. Electroacupuncture treatment was administered 1 hour after daily LPS injection. The open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT) were used to evaluate the depressive-like behaviours. IL-1β, IL-6, and TNF-α levels were determined by enzyme-linked immunosorbent assay (ELISA); Trp, 5-hydroxytryptamine (5-HT), kynurenine (Kyn) and quinolinic acid (Quin) were detected by ultra-high-performance liquid chromatography-tandem mass spectrometry; and N-methyl-D-aspartate receptor (NMDAR) protein and mRNA were assessed by Western blot and real-time qPCR. RESULTS The results showed that electroacupuncture treatment successfully corrected LPS-induced depressive-like behaviour, reduced the inflammatory factor (IL-1β, IL-6 and TNF-α) levels in the blood and hippocampus, prevented IDO over-activation and recovered NR2B expression after challenge by LPS. CONCLUSION Electroacupuncture treatment provided protection against LPS-induced depressive-like behaviour, and the associated mechanisms may be related to inhibiting the inflammatory response, regulating the IDO-mediated tryptophan-degrading pathway, and inhibiting NR2B activation.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Acupuncture and Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ran Liu
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Acupuncture and Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuan Gao
- Institute of Acupuncture and Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wen Ma
- Institute of Acupuncture and Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Weidong Shen
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Acupuncture and Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Frinchi M, Nuzzo D, Scaduto P, Di Carlo M, Massenti MF, Belluardo N, Mudò G. Anti-inflammatory and antioxidant effects of muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus. Sci Rep 2019; 9:14233. [PMID: 31578381 PMCID: PMC6775129 DOI: 10.1038/s41598-019-50708-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Recently we found that acute treatment with Oxotremorine (Oxo), a non-selective mAChRs agonist, up-regulates heat shock proteins and activates their transcription factor heat shock factor 1 in the rat hippocampus. Here we aimed to investigate: a) if acute treatment with Oxo may regulate pro-inflammatory or anti-inflammatory cytokines and oxidative stress in the rat hippocampus; b) if chronic restraint stress (CRS) induces inflammatory or oxidative alterations in the hippocampus and whether such alterations may be affected by chronic treatment with Oxo. In the acute experiment, rats were injected with single dose of Oxo (0.4 mg/kg) and sacrificed at 24 h, 48 h and 72 h. In the CRS experiment, the rats were exposed for 21 days to the CRS and then were treated with Oxo (0.2 mg/kg) for further 10 days. The acute Oxo treatment showed an ability to significantly reduce reactive oxygen species (ROS), singlet oxygen (1O2), pro-inflammatory cytokines levels (IL-1β and IL-6) and phosphorylated NF-κB-p65. Acute Oxo treatment also increased superoxide dismutase (SOD)-2 protein levels and stimulated SOD activity. No differences were detected in the anti-inflammatory cytokine levels, including IL-10 and TGF-β1. In the group of rats exposed to the CRS were found increased hippocampal IL-1β and IL-6 levels, together with a reduction of SOD activity level. These changes produced by CRS were counteracted by chronic Oxo treatment. In contrast, the upregulation of ROS and 1O2 levels in the CRS group was not counteracted by chronic Oxo treatment. The results revealed a hippocampal anti-inflammatory and antioxidant effect of Oxo treatment in both basal conditions and anti-inflammatory in the CRS rat model.
Collapse
Affiliation(s)
- Monica Frinchi
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, div. of Human Physiology, University of Palermo, 90134, Palermo, Italy
| | - Domenico Nuzzo
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146, Palermo, Italy
| | - Pietro Scaduto
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, div. of Human Physiology, University of Palermo, 90134, Palermo, Italy
| | - Marta Di Carlo
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146, Palermo, Italy
| | - Maria F Massenti
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, 90134, Palermo, Italy
| | - Natale Belluardo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, div. of Human Physiology, University of Palermo, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, div. of Human Physiology, University of Palermo, 90134, Palermo, Italy.
| |
Collapse
|
19
|
The selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole reverses depressive-like behavior induced by acute restraint stress in mice: modulation of oxido-nitrosative stress and inflammatory pathway. Psychopharmacology (Berl) 2019; 236:2867-2880. [PMID: 30610349 DOI: 10.1007/s00213-018-5151-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023]
Abstract
RATIONALE AND OBJECTIVES Stress-induced alterations in oxidative and inflammatory parameters have been implicated in the pathophysiology of mood disorders. Based on the antioxidant and anti-inflammatory properties of the selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole (CMI), we assessed its ability to reverse depression-like behavioral alterations, neuroinflammation, and oxidative imbalance induced by acute restraint stress. METHODS Mice submitted to restraint for 240 min received CMI (1 or 10 mg/kg, orally) 10 min after the end of the stress induction. Behavioral and biochemical tests were carried out after further 30 min. RESULTS Restraint-induced depression-like behavior in the tail suspension test (TST), splash test, and new object exploration test was reversed by CMI. None of the treatments evoked locomotor alteration. In addition, CMI abrogated restraint-induced increases in plasma levels of corticosterone and in markers of oxidative stress and impaired superoxide dismutase and catalase activity in the prefrontal cortex (PFC) and hippocampus (HC). CMI also blocked stress-induced downregulation of mRNA levels of glucocorticoid receptor and brain-derived neurotrophic factor and upregulation of nuclear factor kappa B, inducible nitric oxide synthase, tumor necrosis alpha, indoelamine-2,3-dioxygenase, and glycogen synthase kinase 3 beta in PFC and HC. CONCLUSIONS These preclinical results indicate that administration of selenium-containing compounds might help to treat depression associated with inflammation and oxidative stress. Graphical abstract ᅟ.
Collapse
|
20
|
Zhang B, Wang PP, Hu KL, Li LN, Yu X, Lu Y, Chang HS. Antidepressant-Like Effect and Mechanism of Action of Honokiol on the Mouse Lipopolysaccharide (LPS) Depression Model. Molecules 2019; 24:molecules24112035. [PMID: 31141940 PMCID: PMC6600641 DOI: 10.3390/molecules24112035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that neuroinflammation is closely linked to depression. Honokiol, a biologically active substance extracted from Magnolia officinalis, which is widely used in traditional Chinese medicine, has been shown to exert significant anti-inflammatory effects and improve depression-like behavior caused by inflammation. However, the specific mechanism of action of this activity is still unclear. In this study, the lipopolysaccharide (LPS) mouse model was used to study the effect of honokiol on depression-like behavior induced by LPS in mice and its potential mechanism. A single administration of LPS (1 mg/kg, intraperitoneal injection) increased the immobility time in the forced swimming test (FST) and tail suspension test (TST), without affecting autonomous activity. Pretreatment with honokiol (10 mg/kg, oral administration) for 11 consecutive days significantly improved the immobility time of depressed mice in the FST and TST experiments. Moreover, honokiol ameliorated LPS-induced NF-κB activation in the hippocampus and significantly reduced the levels of the pro-inflammatory cytokines; tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interferon γ (IFN-γ). In addition, honokiol inhibited LPS-induced indoleamine 2,3-dioxygenase (IDO) activation and quinolinic acid (a toxic product) increase and reduced the level of free calcium in brain tissue, thereby inhibiting calcium overload. In summary, our results indicate that the anti-depressant-like effects of honokiol are mediated by its anti-inflammatory effects. Honokiol may inhibit the LPS-induced neuroinflammatory response through the NF-κB signaling pathway, reducing the levels of related pro-inflammatory cytokines, and furthermore, this may affect tryptophan metabolism and increase neuroprotective metabolites.
Collapse
Affiliation(s)
- Bo Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Ping-Ping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Kai-Li Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Li-Na Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xue Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yi Lu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Hong-Sheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
21
|
Candemir E, Post A, Dischinger US, Palme R, Slattery DA, O'Leary A, Reif A. Limited effects of early life manipulations on sex-specific gene expression and behavior in adulthood. Behav Brain Res 2019; 369:111927. [PMID: 31034851 DOI: 10.1016/j.bbr.2019.111927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
Exposure to childhood adversity is associated with increased vulnerability to stress-related disorders in adulthood which has been replicated in rodent stress models, whereas environmental enrichment has been suggested to have beneficial effects. However, the exact neurobiological mechanisms underlying these environment influences on adult brain and behavior are not well understood. Therefore, we investigated the long-term effects of maternal separation (MS) or environmental enrichment (EE) in male and female CD1 mice. We found clear sex-specific effects, but limited influence of environmental manipulations, on adult behavior, fecal corticosterone metabolite (FCM) levels and stress- and plasticity related gene expression in discrete brain regions. In detail, adult females displayed higher locomotor activity and FCM levels compared to males and EE resulted in attenuation in both measures, but only in females. There were no sex- or postnatal manipulation-dependent differences in anxiety-related behaviors in either sex. Gene expression analyses revealed that adult males showed higher Fkbp5 mRNA levels in hippocampus, hypothalamus and raphe nuclei, and higher hippocampal Nos1 levels. Interestingly, MS elevated Nos1 levels in hippocampus but reduced Fkbp5 expression in hypothalamus of males. Finally, we also found higher Maoa expression in the hypothalamus of adult females, however no differences were observed in the expression levels of Bdnf, Crhr1, Nr3c1 and Htr1a. Our findings further contribute to sex-dependent differences in behavior, corticosterone and gene expression and reveal that the effects of postnatal manipulations on these parameters in outbred CD1 mice are limited.
Collapse
Affiliation(s)
- Esin Candemir
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Antonia Post
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany
| | - Ulrich Severin Dischinger
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Neuropsychopharmacology, Institute of Psychology, University of Tartu, Tartu, Estonia
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Spiers JG, Chen HJC, Bourgognon JM, Steinert JR. Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer's disease. Free Radic Biol Med 2019; 134:468-483. [PMID: 30716433 DOI: 10.1016/j.freeradbiomed.2019.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Stress is a multimodal response involving the coordination of numerous body systems in order to maximize the chance of survival. However, long term activation of the stress response results in neuronal oxidative stress via reactive oxygen and nitrogen species generation, contributing to the development of depression. Stress-induced depression shares a high comorbidity with other neurological conditions including Alzheimer's disease (AD) and dementia, often appearing as one of the earliest observable symptoms in these diseases. Furthermore, stress and/or depression appear to exacerbate cognitive impairment in the context of AD associated with dysfunctional catecholaminergic signaling. Given there are a number of homologous pathways involved in the pathophysiology of depression and AD, this article will highlight the mechanisms by which stress-induced perturbations in oxidative stress, and particularly NO signaling, contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | - Joern R Steinert
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 9HN, United Kingdom.
| |
Collapse
|
23
|
Foley TD, Koval KS, Gallagher AG, Olsen SH. Potential widespread denitrosylation of brain proteins following prolonged restraint: proposed links between stress and central nervous system disease. Metab Brain Dis 2019; 34:183-189. [PMID: 30414012 DOI: 10.1007/s11011-018-0340-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/04/2018] [Indexed: 01/17/2023]
Abstract
The biochemical pathways by which aberrant psychophysiological stress promotes neuronal damage and increases the risks for central nervous system diseases are not well understood. In light of previous findings that psychophysiological stress, modeled by animal restraint, can increase the activities and expression levels of nitric oxide synthase isoforms in multiple brain regions, we examined the effects of restraint, for up to 6 h, on levels of S-nitrosylated proteins and NOx (nitrite + nitrate), a marker for high-level nitric oxide generation, in the brains of rats. Results identify functionally-diverse protein targets of S-nitrosylation in the brain, in vivo, and demonstrate the potential for widespread loss of protein nitrosothiols following prolonged restraint despite a concomitant increase in NOx levels. Since physiological levels of protein S-nitrosylation can protect neurons by maintaining redox homeostasis, by limiting excitatory neurotransmission, and by inhibiting apoptotic and inflammatory pathways, we propose that over-activation of protein denitrosylation pathways following sustained or repeated stress may facilitate neural damage and early stages of stress-related central nervous system disease.
Collapse
Affiliation(s)
- Timothy D Foley
- Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA.
| | - Kari S Koval
- Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA
| | | | - Stefan H Olsen
- Department of Chemistry, University of Scranton, Scranton, PA, 18510, USA
| |
Collapse
|
24
|
Chen HJC, Lee JK, Yip T, Sernia C, Lavidis NA, Spiers JG. Sub-acute restraint stress progressively increases oxidative/nitrosative stress and inflammatory markers while transiently upregulating antioxidant gene expression in the rat hippocampus. Free Radic Biol Med 2019; 130:446-457. [PMID: 30445125 DOI: 10.1016/j.freeradbiomed.2018.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
We have previously demonstrated that acute stress decreases neuronal nitric oxide synthase (NOS) expression in the hippocampus despite increased concentrations of nitric oxide which may indicate feedback inhibition of neuronal NOS expression via inducible NOS-derived nitric oxide. Moreover, the hippocampus undergoes an initial oxidative/nitrosative insult that is rapidly followed by upregulation of protective antioxidants, including the zinc-binding metallothioneins, in order to counter this and restore redox balance following acute stress exposure. In the present study, we have utilized indicators of oxidative/nitrosative stress, members of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, antioxidant metallothioneins, and neuroinflammatory markers to observe the changes occurring in the hippocampus following short term repeated stress exposure. Male Wistar rats were subjected to control conditions or 6 h of restraint stress applied for 1, 2, or 3 days (n = 8 per group) after which the hippocampus was isolated for redox assays and relative gene expression. The hippocampus showed increased oxidative stress, transient dys-homeostasis of total zinc, and increased expression of the Nrf2 pathway members. Moreover, repeated stress increased nitrosative status, nitric oxide metabolites, and 3-nitrotyrosine, indicative of nitrosative stress in the hippocampus. However, levels of neuronal NOS decreased over all stress treatment groups, while increases were observed in inducible NOS and xanthine dehydrogenase. In addition to inducible NOS, mRNA expression of other inflammatory markers including interleukin-6 and interleukin-1β also increased even in the presence of increased anti-inflammatory glucocorticoids. Together, these results demonstrate that despite increases in antioxidant expression, sub-acute stress causes an inflammatory phenotype in the hippocampus by inducing oxidative/nitrosative stress, zinc dys-homeostasis, and the accumulation of nitrotyrosinated proteins which is likely driven by increased inducible NOS signaling.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Johnny K Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Tsz Yip
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
25
|
Static Magnetic Fields Modulate the Response of Different Oxidative Stress Markers in a Restraint Stress Model Animal. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3960408. [PMID: 29888261 PMCID: PMC5977024 DOI: 10.1155/2018/3960408] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/29/2018] [Indexed: 12/13/2022]
Abstract
Stress is a state of vulnerable homeostasis that alters the physiological and behavioral responses. Stress induces oxidative damage in several organs including the brain, liver, kidney, stomach, and heart. Preliminary findings suggested that the magnetic stimulation could accelerate the healing processes and has been an effective complementary therapy in different pathologies. However, the mechanism of action of static magnetic fields (SMFs) is not well understood. In this study, we demonstrated the effects of static magnetic fields (0.8 mT) in a restraint stressed animal model, focusing on changes in different markers of oxidative damage. A significant increase in the plasma levels of nitric oxide (NO), malondialdehyde (MDA), and advanced oxidation protein products (AOPP), and a decrease in superoxide dismutase (SOD), glutathione (GSH), and glycation end products (AGEs) were observed in restraint stress model. Exposure to SMFs over 5 days (30, 60, and 240 min/day) caused a decrease in the NO, MDA, AGEs, and AOPP levels; in contrast, the SOD and GSH levels increased. The response to SMFs was time-dependent. Thus, we proposed that exposure to weak-intensity SMFs could offer a complementary therapy by attenuating oxidative stress. Our results provided a new perspective in health studies, particularly in the context of oxidative stress.
Collapse
|
26
|
Goff DC, Zeng B, Ardekani BA, Diminich ED, Tang Y, Fan X, Galatzer-Levy I, Li C, Troxel AB, Wang J. Association of Hippocampal Atrophy With Duration of Untreated Psychosis and Molecular Biomarkers During Initial Antipsychotic Treatment of First-Episode Psychosis. JAMA Psychiatry 2018; 75:370-378. [PMID: 29466532 PMCID: PMC5875378 DOI: 10.1001/jamapsychiatry.2017.4595] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Duration of untreated psychosis (DUP) has been associated with poor outcomes in schizophrenia, but the mechanism responsible for this association is not known. OBJECTIVES To determine whether hippocampal volume loss occurs during the initial 8 weeks of antipsychotic treatment and whether it is associated with DUP, and to examine molecular biomarkers in association with hippocampal volume loss and DUP. DESIGN, SETTING, AND PARTICIPANTS A naturalistic longitudinal study with matched healthy controls was conducted at Shanghai Mental Health Center. Between March 5, 2013, and October 8, 2014, 71 medication-naive individuals with nonaffective first-episode psychosis (FEP) and 73 age- and sex-matched healthy controls were recruited. After approximately 8 weeks, 31 participants with FEP and 32 controls were reassessed. EXPOSURES The participants with FEP were treated according to standard clinical practice with second-generation antipsychotics. MAIN OUTCOMES AND MEASURES Hippocampal volumetric integrity (HVI) (an automated estimate of the parenchymal fraction in a standardized hippocampal volume of interest), DUP, 13 peripheral molecular biomarkers, and 14 single-nucleotide polymorphisms from 12 candidate genes were determined. RESULTS The full sample consisted of 71 individuals with FEP (39 women and 32 men; mean [SD] age, 25.2 [7.7] years) and 73 healthy controls (40 women and 33 men; mean [SD] age, 23.9 [6.4] years). Baseline median left HVI was lower in the FEP group (n = 57) compared with the controls (n = 54) (0.9275 vs 0.9512; difference in point estimate, -0.020 [95% CI, -0.029 to -0.010]; P = .001). During approximately 8 weeks of antipsychotic treatment, left HVI decreased in 24 participants with FEP at a median annualized rate of -.03791 (-4.1% annualized change from baseline) compared with an increase of 0.00115 (0.13% annualized change from baseline) in 31 controls (difference in point estimate, -0.0424 [95% CI, -0.0707 to -0.0164]; P = .001). The change in left HVI was inversely associated with DUP (r = -0.61; P = .002). Similar results were found for right HVI, although the association between change in right HVI and DUP did not achieve statistical significance (r = -0.35; P = .10). Exploratory analyses restricted to the left HVI revealed an association between left HVI and markers of inflammation, oxidative stress, brain-derived neurotrophic factor, glial injury, and markers reflecting dopaminergic and glutamatergic transmission. CONCLUSIONS AND RELEVANCE An association between longer DUP and accelerated hippocampal atrophy during initial treatment suggests that psychosis may have persistent, possibly deleterious, effects on brain structure. Additional studies are needed to replicate these exploratory findings of molecular mechanisms by which untreated psychosis may affect hippocampal volume and to determine whether these effects account for the known association between longer DUP and poor outcome.
Collapse
Affiliation(s)
- Donald C. Goff
- Department of Psychiatry, New York University Langone Medical Center, New York,Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Botao Zeng
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Babak A. Ardekani
- Department of Psychiatry, New York University Langone Medical Center, New York,Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Erica D. Diminich
- Department of Psychiatry, Stony Brook School of Medicine, Stony Brook, New York
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoduo Fan
- Department of Psychiatry, University of Massachusetts Medical Center, Worcester
| | | | - Chenxiang Li
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, New York
| | - Andrea B. Troxel
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, New York
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Chen HJC, Spiers JG, Sernia C, Lavidis NA. Inhibition of Fatty Acid Amide Hydrolase by PF-3845 Alleviates the Nitrergic and Proinflammatory Response in Rat Hippocampus Following Acute Stress. Int J Neuropsychopharmacol 2018; 21:786-795. [PMID: 29579222 PMCID: PMC6070085 DOI: 10.1093/ijnp/pyy033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Long-term exposure to stress has been demonstrated to cause neuroinflammation through a sustained overproduction of free radicals, including nitric oxide, via an increased inducible nitric oxide synthase activity. We previously demonstrated that inducible nitric oxide synthase activity and mRNA are significantly upregulated in the rat hippocampus following just 4 hours of restraint stress. Similar to nitric oxide, endocannabinoids are synthesized on demand, with preclinical observations suggesting that cannabinoid receptor agonists and endocannabinoid enhancers inhibit nitrergic activity. Specifically, previous work has shown that enhancement of endocannabinoids via inhibition of fatty acid amide hydrolase with PF-3845 reduced inducible nitric oxide synthase-expressing microglia following traumatic brain injury. However, this describes cannabinoid modulation following physical injury, and therefore the present study aimed to examine the effects of PF-3845 in the modulation of nitrergic and inflammatory-related genes within the hippocampus after acute stress exposure. METHODS Following vehicle or PF-3845 injections (5 mg/kg; i.p.), male Wistar rats were exposed to 0 (control), 60, 240, or 360 minutes of restraint stress after which plasma and dorsal hippocampus were isolated for further biochemical and gene expression analysis. RESULTS The results demonstrate that pretreatment with PF-3845 rapidly ameliorates plasma corticosterone release at 60 minutes of stress. An increase in endocannabinoid signalling also induces an overall attenuation in inducible nitric oxide synthase, tumor necrosis factor-alpha convertase, interleukin-6, cyclooxygenase-2, peroxisome proliferator-activated receptor gamma mRNA, and the transactivation potential of nuclear factor kappa-light-chain-enhancer of activated B cells in the hippocampus. CONCLUSIONS These results suggest that enhanced endocannabinoid levels in the dorsal hippocampus have an overall antinitrosative and antiinflammatory effect following acute stress exposure.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia,Correspondence: Hsiao-Jou Cortina Chen, PhD, School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, Australia ()
| | - Jereme G Spiers
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
28
|
Dunphy-Doherty F, O'Mahony SM, Peterson VL, O'Sullivan O, Crispie F, Cotter PD, Wigmore P, King MV, Cryan JF, Fone KCF. Post-weaning social isolation of rats leads to long-term disruption of the gut microbiota-immune-brain axis. Brain Behav Immun 2018; 68:261-273. [PMID: 29104061 DOI: 10.1016/j.bbi.2017.10.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/16/2017] [Accepted: 10/28/2017] [Indexed: 12/11/2022] Open
Abstract
Early-life stress is an established risk for the development of psychiatric disorders. Post-weaning isolation rearing of rats produces lasting developmental changes in behavior and brain function that may have translational pathophysiological relevance to alterations seen in schizophrenia, but the underlying mechanisms are unclear. Accumulating evidence supports the premise that gut microbiota influence brain development and function by affecting inflammatory mediators, the hypothalamic-pituitaryadrenal axis and neurotransmission, but there is little knowledge of whether the microbiota-gut-brain axis might contribute to the development of schizophrenia-related behaviors. To this end the effects of social isolation (SI; a well-validated animal model for schizophrenia)-induced changes in rat behavior were correlated with alterations in gut microbiota, hippocampal neurogenesis and brain cytokine levels. Twenty-four male Lister hooded rats were housed in social groups (group-housed, GH, 3 littermates per cage) or alone (SI) from weaning (post-natal day 24) for four weeks before recording open field exploration, locomotor activity/novel object discrimination (NOD), elevated plus maze, conditioned freezing response (CFR) and restraint stress at one week intervals. Post-mortem caecal microbiota composition, cortical and hippocampal cytokines and neurogenesis were correlated to indices of behavioral changes. SI rats were hyperactive in the open field and locomotor activity chambers traveling further than GH controls in the less aversive peripheral zone. While SI rats showed few alterations in plus maze or NOD they froze for significantly less time than GH following conditioning in the CFR paradigm, consistent with impaired associative learning and memory. SI rats had significantly fewer BrdU/NeuN positive cells in the dentate gyrus than GH controls. SI rats had altered microbiota composition with increases in Actinobacteria and decreases in the class Clostridia compared to GH controls. Differences were also noted at genus level. Positive correlations were seen between microbiota, hippocampal IL-6 and IL-10, conditioned freezing and open field exploration. Adverse early-life stress resulting from continuous SI increased several indices of 'anxiety-like' behavior and impaired associative learning and memory accompanied by changes to gut microbiota, reduced hippocampal IL-6, IL-10 and neurogenesis. This study suggests that early-life stress may produce long-lasting changes in gut microbiota contributing to development of abnormal neuronal and endocrine function and behavior which could play a pivotal role in the aetiology of psychiatric illness.
Collapse
Affiliation(s)
- Fionn Dunphy-Doherty
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | | | - Orla O'Sullivan
- APC Microbiome Institute, University College Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Paul D Cotter
- APC Microbiome Institute, University College Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Madeleine V King
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Kevin C F Fone
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
29
|
Li Y, Zhu X, Ju S, Yan J, Wang D, Zhu Y, Zang F. Detection of volume alterations in hippocampal subfields of rats under chronic unpredictable mild stress using 7T MRI: A follow-up study. J Magn Reson Imaging 2017; 46:1456-1463. [PMID: 28225578 DOI: 10.1002/jmri.25667] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/27/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To determine hippocampal subfields volume loss in depression, which was simulated by a rat chronic unpredictable mild stress (CUMS) model. As different cellular and molecular characteristics in hippocampal subfields, these subfields are regarded as differentially vulnerable to processes associated with stress. MATERIALS AND METHODS Twenty male Wistar rats were exposed to various stressors until the model was successfully established. The effects of physical exercise on recovery of hippocampal volume in depressed rats were simulated using the wheel running test (WRT). These rats hippocampal volumes were dynamically measured using T2 -weighted images (T2 WIs) at 7T structural magnetic resonance imaging (MRI). RESULTS After 4 weeks of CUMS (CUMS-4W), the behavioral tests showed that the rat model of depression was successfully established (P < 0.001). In this process, the bilateral CA1 volume was significantly atrophic after 2 weeks of CUMS (CUMS-2W) compared with controls (left: 21.09 ± 2.31 vs. 26.16 ± 3.83 mm3 , P < 0.001; right: 21.05 ± 2.36 vs. 26.12 ± 3.78 mm3 , P < 0.001), whereas the other subfields did not show a similar change (all P > 0.05). The volume of CA3, dentate gyrus (DG), and subiculum displayed atrophy after CUMS-4W (CA3: left:12.23 ± 1.10 mm3 , right: 12.20 ± 1.14 mm3 ; DG: left:8.16 ± 0.58 mm3 , right: 8.18 ± 0.92 mm3 ; subiculum: left: 4.30 ± 0.52 mm3 , right: 4.29 ± 0.44 mm3 ; all P < 0.05). The rats' (CUMS-4W) hippocampal DG volume was restored (left: 10.67 ± 1.60 mm3 , right: 10.71 ± 1.58 mm3 ), and the depression-like behaviors of these rats improved after WRT-4W (P < 0.05). CONCLUSION In general, volume loss was demonstrated in various rat hippocampal subfields during the development and recovery from depression, which were detected by ultrahigh-field MRI. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1456-1463.
Collapse
Affiliation(s)
- Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, P.R. China
| | - Xiaolan Zhu
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Shenghong Ju
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, P.R. China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Fengchao Zang
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, P.R. China
| |
Collapse
|
30
|
Proanthocyanidin prevents lipopolysaccharide-induced depressive-like behavior in mice via neuroinflammatory pathway. Brain Res Bull 2017; 135:40-46. [DOI: 10.1016/j.brainresbull.2017.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022]
|
31
|
Yi WJ, Kim TS. Melatonin protects mice against stress-induced inflammation through enhancement of M2 macrophage polarization. Int Immunopharmacol 2017; 48:146-158. [DOI: 10.1016/j.intimp.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 01/08/2023]
|
32
|
Vignisse J, Sambon M, Gorlova A, Pavlov D, Caron N, Malgrange B, Shevtsova E, Svistunov A, Anthony DC, Markova N, Bazhenova N, Coumans B, Lakaye B, Wins P, Strekalova T, Bettendorff L. Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels. Mol Cell Neurosci 2017; 82:126-136. [PMID: 28506637 DOI: 10.1016/j.mcn.2017.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Thiamine is essential for normal brain function and its deficiency causes metabolic impairment, specific lesions, oxidative damage and reduced adult hippocampal neurogenesis (AHN). Thiamine precursors with increased bioavailability, especially benfotiamine, exert neuroprotective effects not only for thiamine deficiency (TD), but also in mouse models of neurodegeneration. As it is known that AHN is impaired by stress in rodents, we exposed C57BL6/J mice to predator stress for 5 consecutive nights and studied the proliferation (number of Ki67-positive cells) and survival (number of BrdU-positive cells) of newborn immature neurons in the subgranular zone of the dentate gyrus. In stressed mice, the number of Ki67- and BrdU-positive cells was reduced compared to non-stressed animals. This reduction was prevented when the mice were treated (200mg/kg/day in drinking water for 20days) with thiamine or benfotiamine, that were recently found to prevent stress-induced behavioral changes and glycogen synthase kinase-3β (GSK-3β) upregulation in the CNS. Moreover, we show that thiamine and benfotiamine counteract stress-induced bodyweight loss and suppress stress-induced anxiety-like behavior. Both treatments induced a modest increase in the brain content of free thiamine while the level of thiamine diphosphate (ThDP) remained unchanged, suggesting that the beneficial effects observed are not linked to the role of this coenzyme in energy metabolism. Predator stress increased hippocampal protein carbonylation, an indicator of oxidative stress. This effect was antagonized by both thiamine and benfotiamine. Moreover, using cultured mouse neuroblastoma cells, we show that in particular benfotiamine protects against paraquat-induced oxidative stress. We therefore hypothesize that thiamine compounds may act by boosting anti-oxidant cellular defenses, by a mechanism that still remains to be unveiled. Our study demonstrates, for the first time, that thiamine and benfotiamine prevent stress-induced inhibition of hippocampal neurogenesis and accompanying physiological changes. The present data suggest that thiamine precursors with high bioavailability might be useful as a complementary therapy in several neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitrii Pavlov
- Laboratory of Psychiatric Neurobiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nicolas Caron
- GIGA-Neurosciences, University of Liege, Liege, Belgium
| | | | - Elena Shevtsova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Svistunov
- Laboratory of Psychiatric Neurobiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Natalyia Markova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia; Department of Pharmacology, Oxford University, Oxford, UK; Institute of General Pathology and Pathophysiology, Moscow 125 315, Russia; Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Natalyia Bazhenova
- Laboratory of Psychiatric Neurobiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Institute of General Pathology and Pathophysiology, Moscow 125 315, Russia; Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | | | - Pierre Wins
- GIGA-Neurosciences, University of Liege, Liege, Belgium
| | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | | |
Collapse
|
33
|
Protective effect of low dose caffeine on psychological stress and cognitive function. Physiol Behav 2017; 168:1-10. [DOI: 10.1016/j.physbeh.2016.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/27/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022]
|
34
|
Toma VA, Farcas AD, Parvu M, Silaghi-Dumitrescu R, Roman I. CA3 hippocampal field: Cellular changes and its relation with blood nitro-oxidative stress reveal a balancing function of CA3 area in rats exposed to repetead restraint stress. Brain Res Bull 2016; 130:10-17. [PMID: 28013041 DOI: 10.1016/j.brainresbull.2016.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/29/2016] [Accepted: 12/20/2016] [Indexed: 12/23/2022]
Abstract
Rats exposed to repeated restraint stress exhibit structural and functional deficits in hippocampus that are similar to those observed in patients with depressive illnesses. Blood corticosterone concentrations are proportionally increased with catalase and glutathione-peroxidase activity and are inversely proportional with 3-nitrotyrosine concentrations.Cytochrome c oxidase, adenosin tryphosphatase and monoamine oxidase activities of CA3 hippocampal field mark a stress-time dependent decrease. Acridine-orange labeling of the CA3 field reveals an enhancing green fluorescence of glyocites in stress conditions. After three days of restraint stress, the secretory activity of CA3 neurons did not show significant decrease, and neurons appeared with normal shapes and distribution. CA3 neurons after seven days of restraint stress have marked a slight decrease of secretory activity. In contrast to a well-preserved histological appearance of the CA3 neurons, local and blood stress-related reactions are observed. CA3-glial activation and disturbance of blood oxidative homeostasis are tandem processes during three and seven days of RS. This study depicts the balancing role of CA3 area in time-varying stress conditions.
Collapse
Affiliation(s)
- Vlad Al Toma
- Babes-Bolyai University, Cluj-Napoca, Romania; Institute of Biological Research, Cluj-Napoca, Romania; NIRD of Isotopic and Molecular Technologies, Cluj-Napoca, Romania.
| | - Anca D Farcas
- Babes-Bolyai University, Cluj-Napoca, Romania; Institute of Biological Research, Cluj-Napoca, Romania; NIRD of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | | | | | - Ioana Roman
- Institute of Biological Research, Cluj-Napoca, Romania
| |
Collapse
|
35
|
Trans-astaxanthin attenuates lipopolysaccharide-induced neuroinflammation and depressive-like behavior in mice. Brain Res 2016; 1649:30-37. [DOI: 10.1016/j.brainres.2016.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/25/2016] [Accepted: 08/20/2016] [Indexed: 01/10/2023]
|
36
|
Spiers JG, Chen HJC, Cuffe JSM, Sernia C, Lavidis NA. Acute restraint stress induces rapid changes in central redox status and protective antioxidant genes in rats. Psychoneuroendocrinology 2016; 67:104-12. [PMID: 26881836 DOI: 10.1016/j.psyneuen.2016.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/17/2016] [Accepted: 02/06/2016] [Indexed: 11/26/2022]
Abstract
The stress-induced imbalance in reduction/oxidation (redox) state has been proposed to play a major role in the etiology of neurological disorders. However, the relationship between psychological stress, central redox state, and potential protective mechanisms within specific neural regions has not been well characterized. In this study, we have used an acute psychological stress to demonstrate the dynamic changes that occur in the redox system of hippocampal and striatal tissue. Outbred male Wistar rats were subject to 0 (control), 60, 120, or 240min of acute restraint stress and the hippocampus and striatum were cryodissected for redox assays and relative gene expression. Restraint stress significantly elevated oxidative status and lipid peroxidation, while decreasing glutathione ratios overall indicative of oxidative stress in both neural regions. These biochemical changes were prevented by prior administration of the glucocorticoid receptor antagonist, RU-486. The hippocampus also demonstrated increased glutathione peroxidase 1 and 4 antioxidant expression which was not observed in the striatum, while both regions displayed robust upregulation of the antioxidant, metallothionein 1a. This was observed with concurrent upregulation of 11β-hydroxysteroid dehydrogenase 1, a local reactivator of corticosterone, in addition to decreased expression of the cytosolic regulatory subunit of superoxide-producing enzyme, NADPH-oxidase. Together, this study demonstrates distinctive regional redox profiles following acute stress exposure, in addition to identifying differential capabilities in managing oxidative challenges via altered antioxidant gene expression in the hippocampus and striatum.
Collapse
Affiliation(s)
- Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia.
| | | | - James S M Cuffe
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| |
Collapse
|
37
|
Spiers JG, Chen HJC, Lee JK, Sernia C, Lavidis NA. Neuronal and inducible nitric oxide synthase upregulation in the rat medial prefrontal cortex following acute restraint stress: A dataset. Data Brief 2016; 6:582-6. [PMID: 26909371 PMCID: PMC4731460 DOI: 10.1016/j.dib.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 11/30/2022] Open
Abstract
This data article provides additional evidence on gene expression changes in the neuronal and inducible isoforms of nitric oxide synthase in the medial prefrontal cortex following acute stress. Male Wistar rats aged 6-8 weeks were exposed to control or restraint stress conditions for up to four hours in the dark cycle after which the brain was removed and the medial prefrontal cortex isolated by cryodissection. Following RNA extraction and cDNA synthesis, gene expression data were measured using quantitative real-time PCR. The mRNA levels of the neuronal and inducible nitric oxide synthase isoforms, and the inhibitory subunit of NF-κB, I kappa B alpha were determined using the ΔΔCT method relative to control animals. This data article presents complementary results related to the research article entitled 'Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum' [1].
Collapse
Affiliation(s)
- Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| | | | - Johnny K Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| |
Collapse
|