1
|
Anand S, Patel TN. Integrating the metabolic and molecular circuits in diabetes, obesity and cancer: a comprehensive review. Discov Oncol 2024; 15:779. [PMID: 39692821 DOI: 10.1007/s12672-024-01662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
The progressive globalization of sedentary lifestyles and diets rich in lipids and processed foods has caused two major public health hazards-diabetes and obesity. The strong interlink between obesity and type 2 diabetes mellitus and their combined burden encompass them into a single term 'Diabesity'. They have also been tagged as the drivers for the onset of cancer. The clinical association between diabetes, obesity, and several types of human cancer demands an assessment of vital junctions correlating the three. This review focuses on revisiting the molecular axis linking diabetes and obesity to cancer through pathways that get imbalanced owing to metabolic upheaval. We also attempt to describe the functional disruptions of DNA repair mechanisms due to overwhelming oxidative DNA damage caused by diabesity. Genomic instability, a known cancer hallmark results when DNA repair does not work optimally, and as will be inferred from this review the obtruded metabolic homeostasis in diabetes and obesity creates a favorable microenvironment supporting metabolic reprogramming and enabling malignancies. Altered molecular and hormonal landscapes in these two morbidities provide a novel connection between metabolomics and oncogenesis. Understanding various aspects of the tumorigenic process in diabesity-induced cancers might help in the discovery of new biomarkers and prompt targeted therapeutic interventions.
Collapse
Affiliation(s)
- Shrikirti Anand
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Trupti N Patel
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Hazuková R, Zadák Z, Pleskot M, Zdráhal P, Pumprla M, Táborský M. Oxidative DNA Damage and Arterial Hypertension in Light of Current ESC Guidelines. Int J Mol Sci 2024; 25:12557. [PMID: 39684269 DOI: 10.3390/ijms252312557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
A new insight into oxidative stress is based on oxidative deoxyribonucleic acid (DNA) damage. DNA is the pivotal biopolymer for life and health. Arterial hypertension (HT) is a globally common disease and a major risk factor for numerous cardiovascular (CV) conditions and non-cardiac complications, making it a significant health and socio-economic problem. The aetiology of HT is multifactorial. Oxidative stress is the main driver. Oxidative DNA damage (oxidised guanosine (8OHdG), strand breaks (SSBs, DSBs)) seems to be the crucial and initiating causal molecular mechanism leading to HT, acting through oxidative stress and the resulting consequences (inflammation, fibrosis, vascular remodelling, stiffness, thickness, and endothelial dysfunction). In light of the current European Society of Cardiology (ESC) guidelines with defined gaps in the evidence, this manuscript, for the first time, (1) summarizes evidence for oxidative DNA damage in HT and other CV risk factors, (2) incorporates them into the context of known mechanisms in HT genesis, (3) proposes the existing concept of HT genesis innovatively supplemented with oxidative DNA damage, and (4) mentions consequences such as promising new targets for the treatment of HT (DNA damage response (DDR) pathways).
Collapse
Affiliation(s)
- Radka Hazuková
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
- Department of Cardiology and Internal Medicine, Profi-Kardio, s.r.o., 50801 Hořice, Czech Republic
| | - Zdeněk Zadák
- IIIrd Department of Internal Medicine-Gerontology and Metabolism, Medical Faculty in Hradec Králové, University Hospital Hradec Králové, Charles University Prague, 50003 Hradec Králové, Czech Republic
| | - Miloslav Pleskot
- Department of Cardiology and Internal Medicine, Profi-Kardio, s.r.o., 50801 Hořice, Czech Republic
| | - Petr Zdráhal
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Martin Pumprla
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Miloš Táborský
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| |
Collapse
|
3
|
Ribeiro DA, da Silva GN, Malacarne IT, Pisani LP, Salvadori DMF. Oxidative Stress Responses in Obese Individuals Undergoing Bariatric Surgery: Impact on Carcinogenesis. PATHOPHYSIOLOGY 2024; 31:352-366. [PMID: 39051223 PMCID: PMC11270384 DOI: 10.3390/pathophysiology31030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Obesity is a big public health problem that claims several thousand lives every year. Bariatric surgery has arisen as a suitable procedure for treating obesity, particularly morbid obesity. Oxidative stress, genotoxicity, apoptosis, and inflammatory responses are recognized as the most important occurrences in carcinogenesis, as they actively contribute to the multistep process. This study aimed to briefly review the connection between oxidative stress, genotoxicity, apoptosis, and inflammation in obese patients undergoing bariatric surgery, focusing on its impact on carcinogenesis. Regarding oxidative stress, bariatric surgery may inhibit the synthesis of reactive oxygen species. Moreover, a significant reduction in the inflammatory status after weight loss surgery was not observed. Bariatric surgery prevents apoptosis in several tissues, but the maintenance of low body weight for long periods is mandatory for mitigating DNA damage. In conclusion, the association between bariatric surgery and cancer risk is still premature. However, further studies are yet needed to elucidate the real association between bariatric surgery and a reduced risk of cancer.
Collapse
Affiliation(s)
- Daniel Araki Ribeiro
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Glenda Nicioli da Silva
- Department of Clinical Analysis, Federal University of Ouro Preto—UFOP, Ouro Preto 35402-163, MG, Brazil;
| | - Ingra Tais Malacarne
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Daisy Maria Favero Salvadori
- Department of Pathology, Botucatu Medical School, Sao Paulo State University—UNESP, Botucatu 18618-687, SP, Brazil
| |
Collapse
|
4
|
Happonen N, Härma MA, Akhi R, Nissinen AE, Savolainen MJ, Ruuth M, Öörni K, Adeshara K, Lehto M, Groop PH, Koivukangas V, Hukkanen J, Hörkkö S. Impact of RYGB surgery on plasma immunoglobulins: association between blood pressure and glucose levels six months after surgery. APMIS 2024; 132:187-197. [PMID: 38149431 DOI: 10.1111/apm.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
We aimed to study levels of natural antibodies in plasma, and their associations to clinical and fecal biomarkers, before and 6 months after Roux-en-Y gastric bypass (RYGB) surgery. Thirty individuals with obesity [16 type 2 diabetic, 14 non-diabetic (ND)] had RYGB surgery. Total plasma IgA, IgG and IgM antibody levels and specific antibodies to oxidized low-density lipoprotein (oxLDL), malondialdehyde-acetaldehyde adducts, Porphyromonas gingivalis gingipain A hemagglutinin domain (Rgp44), and phosphocholine were measured using chemiluminescence immunoassay. Associations between plasma and fecal antibodies as well as clinical markers were analyzed. RYGB surgery reduced blood pressure, and the glycemic state was improved. A higher level of diastolic blood pressure was associated with lower plasma antibodies to oxLDL after surgery. Also, lower level of glucose markers associated with lower level of plasma antibodies to bacterial virulence factors. Antibodies to oxLDL decreased after surgery, and positive association between active serum lipopolysaccharide and specific oxLDL antibodies was detected. Total IgG levels decreased after surgery, but only in ND individuals. Reduced level of total plasma IgG, improved state of hypertension and hyperglycemia and their associations with decreased levels of specific antibodies in plasma, suggest an improved state of systemic inflammation after RYGB surgery.
Collapse
Affiliation(s)
- Natalie Happonen
- Medical Microbiology and Immunology, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Nordlab, Oulu University Hospital, Oulu, Finland
| | - Mari-Anne Härma
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ramin Akhi
- Medical Microbiology and Immunology, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Antti E Nissinen
- Medical Microbiology and Immunology, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Markku J Savolainen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Research Unit of Biomedicine and Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Maija Ruuth
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Krishna Adeshara
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vesa Koivukangas
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Research Unit of Biomedicine and Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Engin A. Bariatric Surgery in Obesity: Metabolic Quality Analysis and Comparison of Surgical Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:697-726. [PMID: 39287870 DOI: 10.1007/978-3-031-63657-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity is a constantly growing health problem which reduces quality of life and life expectancy. Bariatric surgery (BS) for obesity is considered when all other conservative treatment modalities have failed. Comparison of the multidisciplinary programs with BS regarding to the weight loss showed that substantial and durable weight reduction have been achieved only with bariatric surgical treatments. Although laparoscopic sleeve gastrectomy is the most popular BS, it has high long-term failure rates, and it is claimed that one of every three patients will undergo another bariatric procedure within a 10-year period. Although BS provides weight loss and improvement of metabolic comorbidities, in long-term follow-up, weight gain is observed in half of the patients, while decrease in bone mass and nutritional deficiencies occur in up to 90%. Moreover, despite significant weight loss, several psychological aspects of patients are worsened in comparison to preoperative levels. Nearly one-fifth of postoperative patients with "Loss-of-eating control" meet food addiction criteria. Therefore, the benefits of weight loss following bariatric procedures alone are still debated in terms of the proinflammatory and metabolic profile of obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
6
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
7
|
Obesity-related genomic instability and altered xenobiotic metabolism: possible consequences for cancer risk and chemotherapy. Expert Rev Mol Med 2022; 24:e28. [PMID: 35899852 PMCID: PMC9884759 DOI: 10.1017/erm.2022.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The increase in the prevalence of obesity has led to an elevated risk for several associated diseases including cancer. Several studies have investigated the DNA damage in human blood samples and showed a clear trend towards increased DNA damage in obesity. Reduced genomic stability is thus one of the consequences of obesity, which may contribute to the related cancer risk. Whether this is influenced by compromised DNA repair has not been elucidated sufficiently yet. On the other hand, obesity has also been linked to reduced therapy survival and increased adverse effects during chemotherapy, although the available data are controversial. Despite some indications that obesity might alter hepatic metabolism, current literature in humans is insufficient, and results from animal studies are inconclusive. Here we have summarised published data on hepatic drug metabolism to understand the impact of obesity on cancer therapy better. Furthermore, we highlight knowledge gaps in the interrelationship between obesity and drug metabolism from a toxicological perspective.
Collapse
|
8
|
Annie-Mathew AS, Prem-Santhosh S, Jayasuriya R, Ganesh G, Ramkumar KM, Sarada DVL. The pivotal role of Nrf2 activators in adipocyte biology. Pharmacol Res 2021; 173:105853. [PMID: 34455076 DOI: 10.1016/j.phrs.2021.105853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/07/2023]
Abstract
Adipose tissue is instrumental in maintaining metabolic homeostasis by regulating energy storage in the form of triglycerides. In the case of over-nutrition, adipocytes favorably regulate lipogenesis over lipolysis and accumulate excess triglycerides, resulting in increased adipose tissue mass. An abnormal increase in hypertrophic adipocytes is associated with chronic complications such as insulin resistance, obesity, diabetes, atherosclerosis and nonalcoholic fatty liver disease. Experimental studies indicate the occurrence of oxidative stress in the pathogenesis of obesity. A common underlying link between increasing adipose tissue mass and oxidative stress is the Nuclear Factor Erythroid 2-related factor 2 (Nrf2), Keap1-Nrf2-ARE signaling, which plays an indispensable role in metabolic homeostasis by regulating oxidative and inflammatory responses. Additionally, Nrf2 also activates CCAAT/enhancer-binding protein α, (C/EBP-α), C/EBP-β and peroxisome proliferator-activated receptor γ (PPARγ) the crucial pro-adipogenic factors that promote de novo adipogenesis. Hence, at the forefront of research is the quest for prospecting novel compounds to modulate Nrf2 activity in the context of adipogenesis and obesity. This review summarizes the molecular mechanism behind the activation of the Keap1-Nrf2-ARE signaling network and the role of Nrf2 activators in adipocyte pathophysiology.
Collapse
Affiliation(s)
- A S Annie-Mathew
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Subramanian Prem-Santhosh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Goutham Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
9
|
Leptin Receptors Are Not Required for Roux-en-Y Gastric Bypass Surgery to Normalize Energy and Glucose Homeostasis in Rats. Nutrients 2021; 13:nu13051544. [PMID: 34064308 PMCID: PMC8147759 DOI: 10.3390/nu13051544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Sensitization to the adipokine leptin is a promising therapeutic strategy against obesity and its comorbidities and has been proposed to contribute to the lasting metabolic benefits of Roux-en-Y gastric bypass (RYGB) surgery. We formally tested this idea using Zucker fatty fa/fa rats as an established genetic model of obesity, glucose intolerance, and fatty liver due to leptin receptor deficiency. We show that the changes in body weight in these rats following RYGB largely overlaps with that of diet-induced obese Wistar rats with intact leptin receptors. Further, food intake and oral glucose tolerance were normalized in RYGB-treated Zucker fatty fa/fa rats to the levels of lean Zucker fatty fa/+ controls, in association with increased glucagon-like peptide 1 (GLP-1) and insulin release. In contrast, while fatty liver was also normalized in RYGB-treated Zucker fatty fa/fa rats, their circulating levels of the liver enzyme alanine aminotransferase (ALT) remained elevated at the level of obese Zucker fatty fa/fa controls. These findings suggest that the leptin system is not required for the normalization of energy and glucose homeostasis associated with RYGB, but that its potential contribution to the improvements in liver health postoperatively merits further investigation.
Collapse
|
10
|
Carlsson ER, Fenger M, Henriksen T, Kjaer LK, Worm D, Hansen DL, Madsbad S, Poulsen HE. Reduction of oxidative stress on DNA and RNA in obese patients after Roux-en-Y gastric bypass surgery-An observational cohort study of changes in urinary markers. PLoS One 2020; 15:e0243918. [PMID: 33315915 PMCID: PMC7735613 DOI: 10.1371/journal.pone.0243918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/18/2020] [Indexed: 01/14/2023] Open
Abstract
Increased oxidative stress in obesity and diabetes is associated with morbidity and mortality risks. Levels of oxidative damage to DNA and RNA can be estimated through measurement of 8-oxo-7,8-dihydro-2´-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo) in urine. Both markers have been associated with type 2 diabetes, where especially 8-oxoGuo is prognostic for mortality risk. We hypothesized that Roux-en-Y gastric bypass (RYGB) surgery that has considerable effects on bodyweight, hyperglycemia and mortality, might be working through mechanisms that reduce oxidative stress, thereby reducing levels of the urinary markers. We used liquid chromatography coupled with tandem mass spectrometry to analyze the content of 8-oxodG and 8-oxoGuo in urinary samples from 356 obese patients treated with the RYGB-procedure. Mean age (SD) was 44.2 (9.6) years, BMI was 42.1 (5.6) kg/m2. Ninety-six (27%) of the patients had type 2 diabetes. Excretion levels of each marker before and after surgery were compared as estimates of the total 24-hour excretion, using a model based on glomerular filtration rate (calculated from cystatin C, age, height and weight), plasma- and urinary creatinine. The excretion of 8-oxodG increased in the first months after RYGB. For 8-oxoGuo, a gradual decrease was seen. Two years after RYGB and a mean weight loss of 35 kg, decreased hyperglycemia and insulin resistance, excretion levels of both markers were reduced by approximately 12% (P < 0.001). For both markers, mean excretion levels were about 30% lower in the female subgroup (P < 0.0001). Also, in this subgroup, excretion of 8-oxodG was significantly lower in patients with than without diabetes. We conclude, that oxidative damage to nucleic acids, reflected in the excretion of 8-oxodG and 8-oxoGuo, had decreased significantly two years after RYGB-indicating that reduced oxidative stress could be contributing to the many long-term benefits of RYGB-surgery in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Elin Rebecka Carlsson
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Biochemistry, Nordsjaellands Hospital, University of Copenhagen, Hilleroed, Denmark
| | - Mogens Fenger
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Trine Henriksen
- Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laura Kofoed Kjaer
- Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dorte Worm
- Department of Medicine, Amager hospital, Copenhagen, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
11
|
Seo M, Kim H, Noh H, Jeon JS, Byun DW, Kim SH, Kim HJ, Suh K, Park HK, Kwon SH. Effect of bariatric surgery on circulating and urinary mitochondrial DNA copy numbers in obesity with or without diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001372. [PMID: 33020132 PMCID: PMC7536782 DOI: 10.1136/bmjdrc-2020-001372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/22/2020] [Accepted: 08/23/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Recent studies have suggested that extracellular circulating and urinary mitochondrial DNA (mtDNA) are associated with mitochondrial dysfunction in obesity and type 2 diabetes mellitus (T2DM). However, the changes to cell-free serum and urinary mtDNA after bariatric surgery in patients with obesity with T2DM have not been investigated to date. RESEARCH DESIGN AND METHODS We prospectively recruited patients with obesity (n=18), and with obesity and T2DM (n=14) who underwent bariatric surgery, along with healthy volunteers (HV) as a control group (n=22). Serum and urinary mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND-1) and cytochrome-c oxidase 3 (mtCOX-3) copy numbers were measured using quantitative PCR (qPCR). The mtDNA copy numbers of patients with obesity (with and without T2DM) were followed up 6 months after surgery. RESULTS The copy numbers of urinary mtND-1 and mtCOX-3 in patients with obesity, with or without T2DM, were higher than those in the HVs. Moreover, urinary mtCOX-3 copy number increased in patients with obesity with T2DM compared with patients with obesity without T2DM (p=0.018). Meanwhile, serum mtCOX-3 copy numbers in HV were higher in both obesity patient groups (p=0.040). Bariatric surgery reduced urinary mtND-1 and mtCOX-3 copy numbers, as well as serum mtCOX-3 copy numbers only in patients with obesity with T2DM. CONCLUSION These results suggest that T2DM induces greater kidney mitochondrial dysfunction in patients with obesity, which can be effectively restored with bariatric surgery.
Collapse
Affiliation(s)
- Mihae Seo
- Internal Medicine, Soonchunhyang University Hospital, Gumi, Gyeongsangbuk-do, The Republic of Korea
| | - Hyoungnae Kim
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
- Hyaonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Hyunjin Noh
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
- Hyaonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Jin Seok Jeon
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
- Hyaonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Dong Won Byun
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Sang Hyun Kim
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Hye Jeong Kim
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Kyoil Suh
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Hyeong Kyu Park
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Soon Hyo Kwon
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
- Hyaonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| |
Collapse
|
12
|
Ruze R, Xiong YC, Li JW, Zhong MW, Xu Q, Yan ZB, Zhu JK, Cheng YG, Hu SY, Zhang GY. Sleeve gastrectomy ameliorates endothelial function and prevents lung cancer by normalizing endothelin-1 axis in obese and diabetic rats. World J Gastroenterol 2020; 26:2599-2617. [PMID: 32523314 PMCID: PMC7265138 DOI: 10.3748/wjg.v26.i20.2599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous evidence has implied that obesity is an independent risk factor for developing cancer. Being closely related to obesity, type 2 diabetes mellitus provides a suitable environment for the formation and metastasis of tumors through multiple pathways. Although bariatric surgeries are effective in preventing and lowering the risk of various types of cancer, the underlying mechanisms of this effect are not clearly elucidated.
AIM To uncover the role and effect of sleeve gastrectomy (SG) in preventing lung cancer in obese and diabetic rats.
METHODS SG was performed on obese and diabetic Wistar rats, and the postoperative transcriptional and translational alterations of the endothelin-1 (ET-1) axis in the lungs were compared to sham-operated obese and diabetic rats and age-matched healthy controls to assess the improvements in endothelial function and risk of developing lung cancer at the postoperative 4th, 8th, and 12th weeks. The risk was also evaluated using nuclear phosphorylation of H2A histone family member X as a marker of DNA damage (double-strand break).
RESULTS Compared to obese and diabetic sham-operated rats, SG brought a significant reduction to body weight, food intake, and fasting blood glucose while improving oral glucose tolerance and insulin sensitivity. In addition, ameliorated levels of gene and protein expression in the ET-1 axis as well as reduced DNA damage indicated improved endothelial function and a lower risk of developing lung cancer after the surgery.
CONCLUSION Apart from eliminating metabolic disorders, SG improves endothelial function and plays a protective role in preventing lung cancer via normalized ET-1 axis and reduced DNA damage.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, China
| | - Ya-Cheng Xiong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, China
| | - Jian-Wen Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Ming-Wei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Qian Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, China
| | - Zhi-Bo Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jian-Kang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Yu-Gang Cheng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - San-Yuan Hu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Guang-Yong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| |
Collapse
|
13
|
Bankoglu EE, Gerber J, Kodandaraman G, Seyfried F, Stopper H. Influence of bariatric surgery induced weight loss on oxidative DNA damage. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 853:503194. [PMID: 32522349 DOI: 10.1016/j.mrgentox.2020.503194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022]
Abstract
Obesity is associated with elevated cancer risk, which may be represented by elevated genomic damage. Oxidative stress plays a key role in obesity related detrimental health consequences including DNA oxidation damage. The elevated cancer risk in obesity may be a consequence. Weight loss has been shown to reduce genomic damage, but the role of oxidative stress in that has not been clarified. The aim of this study is therefore to investigate the influence of bariatric surgery induced weight loss on DNA oxidation damage in morbidly obese subjects. For this aim, we used cryopreserved peripheral blood mononuclear cells in the FPG comet assay. Advanced protein oxidation products and 3-nitrotyrosine were measured as oxidative and nitrative protein stress markers. Furthermore, expression of oxidative stress related proteins HSP70 and Nrf2 as well as mitochondrial enzyme citrate synthase and NADPH oxidase subunit p22 phox were analysed. Our findings revealed significantly reduced DNA strand breaks, but DNA base oxidation was not reduced. We observed significant reduction in plasma AOPPs and 3-nitrotyrosine, which indicated an improvement in oxidative/nitrative stress. However, expression of HSP70 and Nrf2 were not altered after weight loss. In addition, expression of citrate synthase and p22 phox were also unaltered. Overall, bariatric surgery induced significant reduction in excess body weight and improved the patients' health status, including reduced DNA strand breaks and slightly improved antioxidant status in some of the investigated endpoints, while cellular ROS formation and DNA oxidation damage stayed unaltered. This complex situation may be due to combined beneficial effects of weight loss and burdening of the body with fat breakdown products. In the future, collecting samples two years after surgery, when patients have been in a weight plateau for some time, might be a promising approach.
Collapse
Affiliation(s)
- Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Germany; Department of General, Vascular, Visceral and Paediatric Surgery, University Hospital of Wuerzburg, Germany
| | - Johanna Gerber
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Germany; Department of General, Vascular, Visceral and Paediatric Surgery, University Hospital of Wuerzburg, Germany
| | - Geema Kodandaraman
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Germany; Department of General, Vascular, Visceral and Paediatric Surgery, University Hospital of Wuerzburg, Germany
| | - Florian Seyfried
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Germany; Department of General, Vascular, Visceral and Paediatric Surgery, University Hospital of Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Germany; Department of General, Vascular, Visceral and Paediatric Surgery, University Hospital of Wuerzburg, Germany.
| |
Collapse
|
14
|
Vega-Martín E, González-Blázquez R, Manzano-Lista FJ, Martín-Ramos M, García-Prieto CF, Viana M, Rubio MA, Calle-Pascual AL, Lionetti L, Somoza B, Fernández-Alfonso MS, Alcalá M, Gil-Ortega M. Impact of caloric restriction on AMPK and endoplasmic reticulum stress in peripheral tissues and circulating peripheral blood mononuclear cells from Zucker rats. J Nutr Biochem 2020; 78:108342. [PMID: 32004927 DOI: 10.1016/j.jnutbio.2020.108342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
The activation of endoplasmic reticulum (ER) stress and a reduction of AMP-dependent protein kinase (AMPK) phosphorylation have been described in obesity. We hypothesize that a moderate caloric restriction (CR) might contribute to reducing ER stress and increasing AMPK phosphorylation in peripheral tissues from genetically obese Zucker fa/fa rats and in peripheral blood mononuclear cells (PBMCs). Zucker Lean and Zucker fa/fa rats were fed with chow diet either ad libitum (AL) (C, as controls) or 80% of AL (CR) for 2 weeks, giving rise to four experimental groups: Lean C, Lean CR, fa/fa C and fa/fa CR. CR significantly increased AMPK phosphorylation in the liver, perirenal adipose tissue (PRAT) and PBMCs from fa/fa rats but not in the subcutaneous AT (SCAT), suggesting a reduced response of SCAT to CR. Liver samples of fa/fa rats exhibited an increased mRNA expression of PERK, EIF-2α, XBP-1(s), Chop and caspase 3, which was significantly reduced by CR. PRAT exhibited an overexpression of Edem and PDIA-4 in fa/fa rats, but only PDIA-4 expression was reduced by CR. eIF-2α phosphorylation was significantly increased in all studied tissues from fa/fa rats and reduced by CR. A negative correlation was detected between p-AMPK and p-eIF-2α in the liver, PRAT and PBMCs from fa/fa rats but not in SCAT. This study shows that a moderate CR reduces ER stress and improves AMPK phosphorylation in several peripheral tissues and in circulating PBMCs, suggesting that alterations observed in PBMCs could reflect metabolic alterations associated with obesity.
Collapse
Affiliation(s)
- Elena Vega-Martín
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Francisco J Manzano-Lista
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miriam Martín-Ramos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Concepción F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Miguel A Rubio
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Facultad de Medicina, Complutense University, C/ Prof. Martin Lagos s/n, 28040 Madrid, Spain
| | - Alfonso L Calle-Pascual
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Facultad de Medicina, Complutense University, C/ Prof. Martin Lagos s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain.
| |
Collapse
|
15
|
Park KA, Jin Z, An HS, Lee JY, Jeong EA, Choi EB, Kim KE, Shin HJ, Lee JE, Roh GS. Effects of caloric restriction on the expression of lipocalin-2 and its receptor in the brown adipose tissue of high-fat diet-fed mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:335-344. [PMID: 31496871 PMCID: PMC6717793 DOI: 10.4196/kjpp.2019.23.5.335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 01/15/2023]
Abstract
Obesity causes inflammation and impairs thermogenic functions in brown adipose tissue (BAT). The adipokine lipocalin 2 (LCN2) has been implicated in inflammation and obesity. Herein, we investigated the protective effects of caloric restriction (CR) on LCN2-mediated inflammation and oxidative stress in the BAT of high-fat diet (HFD)-fed mice. Mice were fed a HFD for 20 weeks and then either continued on the HFD or subjected to CR for the next 12 weeks. CR led to the browning of the white fat-like phenotype in HFD-fed mice. Increased expressions of LCN2 and its receptor in the BAT of HFD-fed mice were significantly attenuated by CR. Additionally, HFD+CR-fed mice had fewer neutrophils and macrophages expressing LCN2 and iron-positive cells than HFD-fed mice. Further, oxidative stress and mitochondrial fission induced by a HFD were also significantly attenuated by CR. Our findings indicate that the protective effects of CR on inflammation and oxidative stress in the BAT of obese mice may be associated with regulation of LCN2.
Collapse
Affiliation(s)
- Kyung-Ah Park
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Zhen Jin
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Eun Bee Choi
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
16
|
Bandookwala M, Thakkar D, Sengupta P. Advancements in the Analytical Quantification of Nitroxidative Stress Biomarker 3-Nitrotyrosine in Biological Matrices. Crit Rev Anal Chem 2019; 50:265-289. [DOI: 10.1080/10408347.2019.1623010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Bandookwala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Disha Thakkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
17
|
Becerril S, Rodríguez A, Catalán V, Ramírez B, Unamuno X, Gómez-Ambrosi J, Frühbeck G. iNOS Gene Ablation Prevents Liver Fibrosis in Leptin-Deficient ob/ob Mice. Genes (Basel) 2019; 10:genes10030184. [PMID: 30818874 PMCID: PMC6470935 DOI: 10.3390/genes10030184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
The role of extracellular matrix (ECM) remodeling in fibrosis progression in nonalcoholic fatty liver disease (NAFLD) is complex and dynamic, involving the synthesis and degradation of different ECM components, including tenascin C (TNC). The aim was to analyze the influence of inducible nitric oxide synthase (iNOS) deletion on inflammation and ECM remodeling in the liver of ob/ob mice, since a functional relationship between leptin and iNOS has been described. The expression of molecules involved in inflammation and ECM remodeling was analyzed in the liver of double knockout (DBKO) mice simultaneously lacking the ob and the iNOS genes. Moreover, the effect of leptin was studied in the livers of ob/ob mice and compared to wild-type rodents. Liver inflammation and fibrosis were increased in leptin-deficient mice. As expected, leptin treatment reverted the obesity phenotype. iNOS deletion in ob/ob mice improved insulin sensitivity, inflammation, and fibrogenesis, as evidenced by lower macrophage infiltration and collagen deposition as well as downregulation of the proinflammatory and profibrogenic genes including Tnc. Circulating TNC levels were also decreased. Furthermore, leptin upregulated TNC expression and release via NO-dependent mechanisms in AML12 hepatic cells. iNOS deficiency in ob/ob mice improved liver inflammation and ECM remodeling-related genes, decreasing fibrosis, and metabolic dysfunction. The activation of iNOS by leptin is necessary for the synthesis and secretion of TNC in hepatocytes, suggesting an important role of this alarmin in the development of NAFLD.
Collapse
Affiliation(s)
- Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Medical Engineering Laboratory, University of Navarra, Pamplona, Spain.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
18
|
Dietary modulation of mitochondrial DNA damage: implications in aging and associated diseases. J Nutr Biochem 2019; 63:1-10. [DOI: 10.1016/j.jnutbio.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
|
19
|
Bankoglu EE, Seyfried F, Arnold C, Soliman A, Jurowich C, Germer CT, Otto C, Stopper H. Reduction of DNA damage in peripheral lymphocytes of obese patients after bariatric surgery-mediated weight loss. Mutagenesis 2018; 33:61-67. [PMID: 29294093 DOI: 10.1093/mutage/gex040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Obesity is associated with several detrimental health consequences, among them an increased risk for development of cancer, and an overall elevated mortality. Multiple factors like hyperinsulinemia, chronic microinflammation and oxidative stress may be involved. The comet assay has been proven to be very sensitive for detection of DNA damage and has been used to explore the relationship between overweight/obesity and DNA damage, but results are controversial. Very few investigations have been performed to correlate weight loss of obese individuals and possible reduction of DNA damage and these studies have not provided clear results. As currently, only surgical interventions (metabolic/bariatric surgery) enable substantial and sustained weight loss in the vast majority of morbidly obese patients, we analyzed whole blood samples of 56 subsequent patients prior, 6 and 12 months after bariatric surgery. No reduction of DNA damage was observed in comet assay analysis after 6 months despite efficient weight loss, but a significant reduction was observed 12 months after surgery. Concurrently, the ferric-reducing antioxidant power assay showed a significant reduction after 6 and 12 months. The level of oxidised glutathione and lipid peroxidation products were increased at 6 months but normalised at 12 months after surgery. As conclusion, a significant weight reduction in obese patients may help to diminish existing DNA damage besides improving many other health aspects in these patients.
Collapse
Affiliation(s)
- Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Florian Seyfried
- Department of General, Visceral, Vascular and Paediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Charlotte Arnold
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Alexander Soliman
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Jurowich
- Department of General, Visceral, Vascular and Paediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Christoph Thomas Germer
- Department of General, Visceral, Vascular and Paediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Vascular and Paediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany.,Experimental Surgery, Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
20
|
Gültekin F, Nazıroğlu M, Savaş HB, Çiğ B. Calorie restriction protects against apoptosis, mitochondrial oxidative stress and increased calcium signaling through inhibition of TRPV1 channel in the hippocampus and dorsal root ganglion of rats. Metab Brain Dis 2018; 33:1761-1774. [PMID: 30014177 DOI: 10.1007/s11011-018-0289-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
The TRPV1 channel is activated in neurons by capsaicin, oxidative stress, acidic pH and heat factors, and these factors are attenuated by the antioxidant role of calorie restriction (CR). Hence, we investigated the hypothesis that the antioxidant roles of CR and food frequency (FF) may modulate TRPV1 activity and apoptosis through inhibition of mitochondrial oxidative stress in hippocampal (HIPPON) and dorsal root ganglion neurons (DRGN). We investigated the contribution of FF and CR to neuronal injury and apoptosis through inhibition of TRPV1 in rats. We assigned rats to control, FF and FF + CR groups. A fixed amount of food ad libitum was supplemented to the control and FF groups for 20 weeks, respectively. FF + CR group were fed the same amount of food as the control group but with 20% less calories during the same period. In major results, TRPV1 currents, intracellular Ca2+ levels, apoptosis, reactive oxygen species, mitochondrial depolarization, PARP-1 expression, caspase 3 and 9 activity and expression values were found to be increased in the HIPPON and DRGN following FF treatment, and these effects were decreased following FF + CR treatment. The FF-induced decrease in cell viability of HIPPO and DRGN, and vitamin E concentration of brain, glutathione peroxidase, vitamin A, and β-carotene values of the HIPPO, DRGN, plasma, liver and kidney were increased by FF + DR treatment, although lipid peroxidation levels in the same samples were decreased. In conclusion, CR reduces FF-induced increase of oxidative stress, apoptosis and Ca2+ entry through TRPV1 in the HIPPON and DRGN. Our findings may be relevant to the etiology and treatment of obesity following CR treatment.
Collapse
Affiliation(s)
- Fatih Gültekin
- Department of Clinical Biochemistry, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey.
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Hasan Basri Savaş
- Department of Clinical Biochemistry, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Bilal Çiğ
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
21
|
Decreased Chromosomal Damage in Lymphocytes of Obese Patients After Bariatric Surgery. Sci Rep 2018; 8:11195. [PMID: 30046046 PMCID: PMC6060147 DOI: 10.1038/s41598-018-29581-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/16/2018] [Indexed: 01/10/2023] Open
Abstract
The number of bariatric surgeries being performed worldwide has markedly risen. While the improvement in obesity-associated comorbidities after bariatric surgery is well-established, very little is known about its impact on cancer risk. The peripheral lymphocyte micronucleus test is a widely used method for the monitoring of chromosomal damage levels in vivo, and micronucleus frequency positively correlates with cancer risk. Therefore, the aim of this study was to compare the micronucleus frequency before and after bariatric surgery in obese subjects. Peripheral blood mononuclear cells were collected from 45 obese subjects before and at two time-points after bariatric surgery (6 and 12 months) to assess spontaneous micronucleus frequency. Consistent with the increased cancer risk previously shown, bariatric surgery-induced weight loss led to a significant reduction in lymphocyte micronucleus frequency after 12 months. Interestingly, comorbidities such as type 2 diabetes mellitus and metabolic syndrome further seemed to have an impact on the lymphocyte micronucleus frequency. Our findings may indicate a successful reduction of cancer risk in patients following weight loss caused by bariatric surgery.
Collapse
|
22
|
Setayesh T, Nersesyan A, Mišík M, Noorizadeh R, Haslinger E, Javaheri T, Lang E, Grusch M, Huber W, Haslberger A, Knasmüller S. Gallic acid, a common dietary phenolic protects against high fat diet induced DNA damage. Eur J Nutr 2018; 58:2315-2326. [PMID: 30039436 PMCID: PMC6689278 DOI: 10.1007/s00394-018-1782-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/15/2018] [Indexed: 12/20/2022]
Abstract
Purpose Aim of the study was to find out if gallic acid (GA), a common phenolic in plant foods, prevents obesity induced DNA damage which plays a key role in the induction of overweight associated cancer. Methods Male and female C57BL6/J mice were fed with a low fat or a high fat diet (HFD). The HFD group received different doses GA (0, 2.6–20 mg/kg b.w./day) in the drinking water for 1 week. Subsequently, alterations of the genetic stability in blood and inner organs were monitored in single cell gel electrophoresis assays. To elucidate the underlying molecular mechanisms: oxidized DNA bases, alterations of the redox status, lipid and glucose metabolism, cytokine levels and hepatic NF-κB activity were monitored. Results HFD fed animals had higher body weights; increased DNA damage and oxidation of DNA bases damage were detected in colon, liver and brain but not in blood and white adipose tissue. Furthermore, elevated concentrations of insulin, glucose, triglycerides, MCP-1, TNF-α and NF-κB activity were observed in this group. Small amounts of GA, in the range of human consumption, caused DNA protection and reduced oxidation of DNA bases, as well as biochemical and inflammatory parameters. Conclusions Obese animals have increased DNA damage due to oxidation of DNA bases. This effect is probably caused by increased levels of glucose and insulin. The effects of GA can be explained by its hypoglycaemic properties and indicate that the consumption of GA-rich foods prevents adverse health effects in obese individuals. Electronic supplementary material The online version of this article (10.1007/s00394-018-1782-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Rahil Noorizadeh
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elisabeth Haslinger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elisabeth Lang
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Huber
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Setayesh T, Nersesyan A, Mišík M, Ferk F, Langie S, Andrade VM, Haslberger A, Knasmüller S. Impact of obesity and overweight on DNA stability: Few facts and many hypotheses. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:64-91. [PMID: 30115431 DOI: 10.1016/j.mrrev.2018.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/03/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022]
Abstract
Health authorities are alarmed worldwide about the increase of obesity and overweight in the last decades which lead to adverse health effects including inflammation, cancer, accelerated aging and infertility. We evaluated the state of knowledge concerning the impact of elevated body mass on genomic instability. Results of investigations with humans (39 studies) in which DNA damage was monitored in lymphocytes and sperm cells, are conflicting and probably as a consequence of heterogeneous study designs and confounding factors (e.g. uncontrolled intake of vitamins and minerals and consumption of different food types). Results of animal studies with defined diets (23 studies) are more consistent and show that excess body fat causes DNA damage in multiple organs including brain, liver, colon and testes. Different molecular mechanisms may cause genetic instability in overweight/obese individuals. ROS formation and lipid peroxidation were found in several investigations and may be caused by increased insulin, fatty acid and glucose levels or indirectly via inflammation. Also reduced DNA repair and formation of advanced glycation end products may play a role but more data are required to draw firm conclusions. Reduction of telomere lengths and hormonal imbalances are characteristic for overweight/obesity but the former effects are delayed and moderate and hormonal effects were not investigated in regard to genomic instability in obese individuals. Increased BMI values affect also the activities of drug metabolizing enzymes which activate/detoxify genotoxic carcinogens, but no studies concerning the impact of these alterations of DNA damage in obese individuals are available. Overall, the knowledge concerning the impact of increased body weight and DNA damage is poor and further research is warranted to shed light on this important issue.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sabine Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Vanessa M Andrade
- Laboratório de Biologia Celulare Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Brazil
| | | | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Abstract
In the majority of patients with morbid obesity, metabolic/bariatric surgery leads to relevant and sustained weight loss and improves obesity-related comorbidities, quality of life and functionality. Moreover, the associated reduction of risk factors for cardiovascular events and cancerous diseases has been shown to improve life expectations. Due to its excellent antidiabetic effect, the currently valid national S3 guidelines now recommend metabolic/bariatric surgery in patients who have a body mass index (BMI) ≥30 kg/m2 with poorly controlled diabetes. The Edmonton staging system enables a multidimensional consideration of the severity grade of obesity for each individual patient independent of the BMI. Patients with relevant obesity-related metabolic comorbidities should be prioritized for treatment and if possible before the occurrence of end-organ damage that is at least in some cases irreversible and which also increases the perioperative risk. Therapeutic goals for each individual patient should be carefully defined preoperatively in order to mediate realistic expectations. Unrealistic expectations, such as "surgery solves my problems", "surgery makes me more beautiful", "surgery eliminates stigma", and "surgery guarantees success", are common in bariatric surgery patients. These unrealistic expectations can lead to frustration and to severe psychological decompensation and need to be addressed as early as possible by an interdisciplinary team. Redundancies, conclusive and empathic communication in the team improve therapy adherence, the expectations and therefore the overall outcome.
Collapse
|
25
|
The relation between pro-oxidant antioxidant balance and glycolipid profile, 6 months after gastric bypass surgery. Surg Obes Relat Dis 2018; 14:361-367. [DOI: 10.1016/j.soard.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/16/2017] [Accepted: 12/03/2017] [Indexed: 12/28/2022]
|
26
|
Samczuk P, Ciborowski M, Kretowski A. Application of Metabolomics to Study Effects of Bariatric Surgery. J Diabetes Res 2018; 2018:6270875. [PMID: 29713650 PMCID: PMC5866882 DOI: 10.1155/2018/6270875] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/30/2017] [Accepted: 01/28/2018] [Indexed: 02/06/2023] Open
Abstract
Bariatric surgery was born in the 1950s at the University of Minnesota. From this time, it continues to evolve and, by the same token, gives new or better possibilities to treat not only obesity but also associated comorbidities. Metabolomics is also a relatively young science discipline, and similarly, it shows great potential for the comprehensive study of the dynamic alterations of the metabolome. It has been widely used in medicine, biology studies, biomarker discovery, and prognostic evaluations. Currently, several dozen metabolomics studies were performed to study the effects of bariatric surgery. LC-MS and NMR are the most frequently used techniques to study main effects of RYGB or SG. Research has yield many interesting results involving not only clinical parameters but also molecular modulations. Detected changes pertain to amino acid, lipids, carbohydrates, or gut microbiota alterations. It proves that including bariatric surgery to metabolic surgery is warranted. However, many molecular modulations after those procedures remain unexplained. Therefore, application of metabolomics to study this field seems to be a proper solution. New findings can suggest new directions of surgery technics modifications, contribute to broadening knowledge about obesity and diseases related to it, and perhaps develop nonsurgical methods of treatment in the future.
Collapse
Affiliation(s)
- Paulina Samczuk
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
27
|
Does Bariatric Surgery Improve Obesity Associated Comorbid Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:545-570. [PMID: 28585216 DOI: 10.1007/978-3-319-48382-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Obesity is a constantly growing health problem which reduces quality of life and life expectancy. Bariatric surgery for obesity is taken into account when all other conservative treatment modalities have failed. Comparison of the multidisciplinary programs with bariatric surgery regarding to weight loss showed that substantial and durable weight reduction have been achieved only with bariatric surgical treatments. However, the benefits of weight loss following bariatric procedures are still debated regarding the pro-inflammatory and metabolic profile of obesity.
Collapse
|
28
|
Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Portincasa P, Gómez-Ambrosi J. Normalization of adiponectin concentrations by leptin replacement in ob/ob mice is accompanied by reductions in systemic oxidative stress and inflammation. Sci Rep 2017; 7:2752. [PMID: 28584304 PMCID: PMC5459809 DOI: 10.1038/s41598-017-02848-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
The circulating concentrations of adiponectin, an antidiabetic adipokine, have been shown to be reduced in obesity, in relation to an increase in inflammation. The aim of the present work was to assess the effect of leptin replacement on adiponectin levels and expression as well as on markers of oxidative stress and inflammation in leptin-deficient ob/ob mice. Twelve-week-old male mice (n = 7-10 per group) were treated with either saline (wild type and ob/ob mice) or leptin (ob/ob mice) for 18 days. A third group of ob/ob mice was treated with saline and pair-fed to the amount of food consumed by the leptin-treated group. Leptin replacement restored values of adiponectin (P < 0.001), reduced circulating 8-isoprostane and serum amyloid A (SAA) levels (P < 0.05 for both), and significantly downregulated the increased gene expression of osteopontin (Spp1, P < 0.05), Saa3 (P < 0.05), Cd68 (P < 0.01), Il6 (P < 0.01) and NADPH oxidase (Nox1 and Nox2, P < 0.01) in the perirenal WAT and Spp1 (P < 0.05) in the liver of ob/ob mice. In cultured adipocytes from ob/ob mice, leptin increased (P < 0.05) the mRNA expression and secretion of adiponectin. We concluded that circulating concentrations of adiponectin are positively regulated by leptin and ameliorate obesity-associated oxidative stress and inflammation in mice.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Policlinico Hospital, Bari, Italy
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|