1
|
Cheung-Flynn J, Rathmacher JA, Pitchford LM, Xiong Y, Flynn CR. Reactive Dicarbonyl Scavenging with 2-Hydroxybenzylamine Improves MASH. Nutrients 2025; 17:610. [PMID: 40004939 PMCID: PMC11858443 DOI: 10.3390/nu17040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Products of lipid peroxidation include a number of reactive lipid aldehydes including reactive dicarbonyl electrophiles (DEs) and contribute to disease processes. DEs play a significant role in the development and progression of metabolic-associated steatotic liver disease (MASLD) by contributing to oxidative stress, inflammation, protein dysfunction, and mitochondrial impairment. Reducing DE stress may be a potential strategy for managing MASLD. We hypothesized that the DE scavenger 2-hydroxybenzylamine (2-HOBA) would reduce liver injury by reducing liver protein adduct formation by DE in mouse models of MASLD. Methods: Protein adducts were measured in human livers by immunohistochemistry and immunoblot. The effects of 2-HOBA were assessed in two different mouse models of MASLD. Results: Isolevuglandin (IsoLG) protein adducts were increased in MASH-staged human livers relative to histologically normal controls. Diet-Induced Animal Model of Nonalcoholic Fatty Liver Disease (DIAMOND) mice treated with 2-HOBA exhibited significantly lower fibrosis scores (* p = 0.012) and reduced liver transaminases (AST, p = 0.03) and ALT, p = 0.012) by over 40%. In STAM (Stelic Animal Model) mice, 2-HOBA improved NAFLD activity scores (p = 0.03, NAS), hyperglycemia, and inflammatory cytokines and reduced serum F2-isoprostanes (IsoPs) by 30%, p = 0.05. These improvements were absent mRNA changes in hepatic antioxidant enzymes (Cat, Gpx1, or Sod2) or ROS-generating proteins (p22PHOX, p47PHOX, NOX4 or COX1). Conclusions: DE scavenging with 2-HOBA may be a promising therapeutic strategy for managing MASLD. While findings are currently limited to male mice, a nutraceutical that reduces liver fibrosis could significantly improve the management of MASH by offering a non-invasive treatment option to potentially slow or reverse liver scarring, delay progression to cirrhosis, and improve patient outcomes, while also providing a potential treatment option for patients who may not be suitable for other interventions like liver transplantation.
Collapse
Affiliation(s)
- Joyce Cheung-Flynn
- Department of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - John A. Rathmacher
- MTI Biotech Inc., Iowa State University Research Park, Ames, IA 50010, USA; (J.A.R.); (L.M.P.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lisa M. Pitchford
- MTI Biotech Inc., Iowa State University Research Park, Ames, IA 50010, USA; (J.A.R.); (L.M.P.)
| | - Yanhua Xiong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles Robert Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Rathmacher JA, Fuller JC, Abumrad NN, Flynn CR. Inflammation Biomarker Response to Oral 2-Hydroxybenzylamine (2-HOBA) Acetate in Healthy Humans. Inflammation 2023; 46:1343-1352. [PMID: 36935449 PMCID: PMC10025056 DOI: 10.1007/s10753-023-01801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
Inflammation is associated with the formation of reactive oxygen species (ROS) and the formation of lipid-derived compounds, such as isolevuglandins (IsoLGs), malondialdehyde, 4-hydroxy-nonenal, and 4-oxo-nonenal. The most reactive of these are the IsoLGs, which form covalent adducts with lysine residues and other cellular primary amines leading to changes in protein function, immunogenicity, and epigenetic alterations and have been shown to contribute to a number of inflammatory diseases. 2-Hydroxybenzylamine (2-HOBA) is a natural compound found in buckwheat seeds and reacts with all IsoLG adducts preventing adduct formation with proteins and DNA. Therefore, 2-HOBA is well positioned as an agent for the prevention of inflammatory-prone diseases. In this study, we examined the potential beneficial effects of 2-HOBA on oxidative stress and inflammatory biomarkers in two cohorts of healthy younger and older adults. We utilized the Olink® targeted inflammation panel before and after an oral 15-day treatment regimen with 2-HOBA. We found significant relative changes in the plasma concentration of 15 immune proteins that may reflect the in vivo immune targets of 2-HOBA. Treatment of 2-HOBA resulted in significant increased levels of CCL19, IL-12β, IL-20Rα, and TNFβ, whereas levels of TWEAK significantly decreased. Ingenuity Pathway Analysis identified canonical pathways regulated by the differentially secreted cytokines, chemokines, and growth factors upon 2-HOBA treatment and further points to biofunctions related to the recruitment, attraction, and movement of different immune cell types. In conclusion, 2-HOBA significantly altered the protein biomarkers CCL19, IL-12β, IL-20Rα, TNFβ, and TWEAK, and these may be responsible for the protective effects of 2-HOBA against reactive electrophiles, such as IsoLGs, commonly expressed in conditions of excessive oxidative stress. 2-HOBA has a role as a IsoLG scavenger to proactively improve immune health in a variety of conditions.
Collapse
Affiliation(s)
- John A Rathmacher
- MTI BioTech, Inc, Iowa State University Research Park, Ames, IA, USA
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Naji N Abumrad
- MTI BioTech, Inc, Iowa State University Research Park, Ames, IA, USA
- Metabolic Technologies, LLC, Missoula, MT, USA
- Department of Surgery, Vanderbilt University Medical Center, MRBIV Room 8465A, Nashville, TN, 37232, USA
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, MRBIV Room 8465A, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Böttcher K, Longato L, Marrone G, Mazza G, Ghemtio L, Hall A, Luong TV, Caruso S, Viollet B, Zucman-Rossi J, Pinzani M, Rombouts K. AICAR and compound C negatively modulate HCC-induced primary human hepatic stellate cell activation in vitro. Am J Physiol Gastrointest Liver Physiol 2021; 320:G543-G556. [PMID: 33406006 DOI: 10.1152/ajpgi.00262.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor stroma and microenvironment have been shown to affect hepatocellular carcinoma (HCC) growth, with activated hepatic stellate cells (HSC) as a major contributor in this process. Recent evidence suggests that the energy sensor adenosine monophosphate-activated kinase (AMPK) may mediate a series of essential processes during carcinogenesis and HCC progression. Here, we investigated the effect of different HCC cell lines with known TP53 or CTNBB1 mutations on primary human HSC activation, proliferation, and AMPK activation. We show that conditioned media obtained from multiple HCC cell lines differently modulate human hepatic stellate cell (hHSC) proliferation and hHSC AMPK activity in a paracrine manner. Pharmacological treatment of hHSC with AICAR and Compound C inhibited the HCC-induced proliferation/activation of hHSC through AMPK-dependent and AMPK-independent mechanisms, which was further confirmed using mouse embryonic fibroblasts (MEFs) deficient of both catalytic AMPKα isoforms (AMPKα1/α2-/-) and wild type (wt) MEF. Both compounds induced S-phase cell-cycle arrest and, in addition, AICAR inhibited the mTORC1 pathway by inhibiting phosphorylation of 4E-BP1 and S6 in hHSC and wt MEF. Data mining of the Cancer Genome Atlas (TCGA) and the Liver Cancer (LICA-FR) showed that AMPKα1 (PRKAA1) and AMPKα2 (PRKAA2) expression differed depending on the mutation (TP53 or CTNNB1), tumor grading, and G1-G6 classification, reflecting the heterogeneity in human HCC. Overall, we provide evidence that AMPK modulating pharmacological agents negatively modulate HCC-induced hHSC activation and may therefore provide a novel approach to target the mutual, tumor-promoting interactions between hHSC and HCC.NEW & NOTEWORTHY HCC is marked by genetic heterogeneity and activated hepatic stellate cells (HSC) are considered key players during HCC development. The paracrine effect of different HCC cell lines on the activation of primary hHSC was accompanied by differential AMPK activation depending on the HCC line used. Pharmacological treatment inhibited the HCC-induced hHSC activation through AMPK-dependent and AMPK-independent mechanisms. This heterogenic effect on HCC-induced AMPK activation was confirmed by data mining TCGA and LICA-FR databases.
Collapse
Affiliation(s)
- Katrin Böttcher
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Lisa Longato
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Giusi Marrone
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Giuseppe Mazza
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Leo Ghemtio
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Andrew Hall
- Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom.,Department of Cellular Pathology, Royal Free Hospital, London, United Kingdom
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free Hospital, London, United Kingdom
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors Laboratory, Sorbonne Université, Université de Paris, Paris, France
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors Laboratory, Sorbonne Université, Université de Paris, Paris, France.,Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| |
Collapse
|
4
|
Aschner M, Nguyen TT, Sinitskii AI, Santamaría A, Bornhorst J, Ajsuvakova OP, da Rocha JBT, Skalny AV, Tinkov AA. Isolevuglandins (isoLGs) as toxic lipid peroxidation byproducts and their pathogenetic role in human diseases. Free Radic Biol Med 2021; 162:266-273. [PMID: 33099003 DOI: 10.1016/j.freeradbiomed.2020.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Lipid peroxidation results in generation of a variety of lipid hydroperoxides and other highly reactive species that covalently modify proteins, nucleic acids, and other lipids, thus resulting in lipotoxicity. Although biological relevance of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) is well studied, the existing data on the role of isolevuglandins (isoLGs) in pathology are insufficient. Therefore, the objective of the present study was to review the existing data on biological effects of isoLG and isoLG adducts and their role in multiple diseases. Sixty four highly reactive levuglandin-like γ-ketoaldehyde (γ-KA, or isoketals, IsoK, or isolevuglandins, IsoLG) regio- and stereo-isomers are formed as products of arachidonic acid oxidation. IsoLGs react covalently with lysyl residues of proteins to form a stable adduct and intramolecular aminal, bispyrrole, and trispyrrole cross-links. Phosphatidylethanolamine was also shown to be the target for isoLG binding as compared to proteins and DNA. Free IsoLGs are not detectable in vivo, although isolevuglandin adduction to amino acid residues of particular proteins may be evaluated with liquid chromatography-tandem mass spectrometry. Adducts formed were shown to play a significant role in the development and maintenance of oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and inflammation. These, and more specific molecular pathways, link isoLG and isoLG-adduct formation to develop a variety of pathologies, including cardiovascular diseases (atherosclerosis, hypertension, heart failure), obesity and diabetes, cancer, neurodegeneration, eye diseases (retinal degeneration and glaucoma), as well as ageing. Hypothetically, isoLGs and isoLG adduct formation may be considered as the potential target for treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; IM Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Thuy T Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Olga P Ajsuvakova
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | | | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
5
|
May-Zhang LS, Kirabo A, Huang J, Linton MF, Davies SS, Murray KT. Scavenging Reactive Lipids to Prevent Oxidative Injury. Annu Rev Pharmacol Toxicol 2020; 61:291-308. [PMID: 32997599 DOI: 10.1146/annurev-pharmtox-031620-035348] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxidative injury due to elevated levels of reactive oxygen species is implicated in cardiovascular diseases, Alzheimer's disease, lung and liver diseases, and many cancers. Antioxidant therapies have generally been ineffective at treating these diseases, potentially due to ineffective doses but also due to interference with critical host defense and signaling processes. Therefore, alternative strategies to prevent oxidative injury are needed. Elevated levels of reactive oxygen species induce lipid peroxidation, generating reactive lipid dicarbonyls. These lipid oxidation products may be the most salient mediators of oxidative injury, as they cause cellular and organ dysfunction by adducting to proteins, lipids, and DNA. Small-molecule compounds have been developed in the past decade to selectively and effectively scavenge these reactive lipid dicarbonyls. This review outlines evidence supporting the role of lipid dicarbonyls in disease pathogenesis, as well as preclinical data supporting the efficacy of novel dicarbonyl scavengers in treating or preventing disease.
Collapse
Affiliation(s)
- Linda S May-Zhang
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Jiansheng Huang
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - MacRae F Linton
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Sean S Davies
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Katherine T Murray
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| |
Collapse
|
6
|
Exogenous Liposomal Ceramide-C6 Ameliorates Lipidomic Profile, Energy Homeostasis, and Anti-Oxidant Systems in NASH. Cells 2020; 9:cells9051237. [PMID: 32429478 PMCID: PMC7290333 DOI: 10.3390/cells9051237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
In non-alcoholic steatohepatitis (NASH), many lines of investigation have reported a dysregulation in lipid homeostasis, leading to intrahepatic lipid accumulation. Recently, the role of dysfunctional sphingolipid metabolism has also been proposed. Human and animal models of NASH have been associated with elevated levels of long chain ceramides and pro-apoptotic sphingolipid metabolites, implicated in regulating fatty acid oxidation and inflammation. Importantly, inhibition of de novo ceramide biosynthesis or knock-down of ceramide synthases reverse some of the pathology of NASH. In contrast, cell permeable, short chain ceramides have shown anti-inflammatory actions in multiple models of inflammatory disease. Here, we investigated non-apoptotic doses of a liposome containing short chain C6-Ceramide (Lip-C6) administered to human hepatic stellate cells (hHSC), a key effector of hepatic fibrogenesis, and an animal model characterized by inflammation and elevated liver fat content. On the basis of the results from unbiased liver transcriptomic studies from non-alcoholic fatty liver disease patients, we chose to focus on adenosine monophosphate activated kinase (AMPK) and nuclear factor-erythroid 2-related factor (Nrf2) signaling pathways, which showed an abnormal profile. Lip-C6 administration inhibited hHSC proliferation while improving anti-oxidant protection and energy homeostasis, as indicated by upregulation of Nrf2, activation of AMPK and an increase in ATP. To confirm these in vitro data, we investigated the effect of a single tail-vein injection of Lip-C6 in the methionine-choline deficient (MCD) diet mouse model. Lip-C6, but not control liposomes, upregulated phospho-AMPK, without inducing liver toxicity, apoptosis, or exacerbating inflammatory signaling pathways. Alluding to mechanism, mass spectrometry lipidomics showed that Lip-C6-treatment reversed the imbalance in hepatic phosphatidylcholines and diacylglycerides species induced by the MCD-fed diet. These results reveal that short-term Lip-C6 administration reverses energy/metabolic depletion and increases protective anti-oxidant signaling pathways, possibly by restoring homeostatic lipid function in a model of liver inflammation with fat accumulation.
Collapse
|
7
|
Mazza G, Telese A, Al-Akkad W, Frenguelli L, Levi A, Marrali M, Longato L, Thanapirom K, Vilia MG, Lombardi B, Crowley C, Crawford M, Karsdal MA, Leeming DJ, Marrone G, Bottcher K, Robinson B, Del Rio Hernandez A, Tamburrino D, Spoletini G, Malago M, Hall AR, Godovac-Zimmermann J, Luong TV, De Coppi P, Pinzani M, Rombouts K. Cirrhotic Human Liver Extracellular Matrix 3D Scaffolds Promote Smad-Dependent TGF-β1 Epithelial Mesenchymal Transition. Cells 2019; 9:83. [PMID: 31905709 PMCID: PMC7017194 DOI: 10.3390/cells9010083] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
An altered liver microenvironment characterized by a dysregulated extracellular matrix (ECM) supports the development and progression of hepatocellular carcinoma (HCC). The development of experimental platforms able to reproduce these physio-pathological conditions is essential in order to identify and validate new therapeutic targets for HCC. The aim of this work was to validate a new in vitro model based on engineering three-dimensional (3D) healthy and cirrhotic human liver scaffolds with HCC cells recreating the micro-environmental features favoring HCC. Healthy and cirrhotic human livers ECM scaffolds were developed using a high shear stress oscillation-decellularization procedure. The scaffolds bio-physical/bio-chemical properties were analyzed by qualitative and quantitative approaches. Cirrhotic 3D scaffolds were characterized by biomechanical properties and microarchitecture typical of the native cirrhotic tissue. Proteomic analysis was employed on decellularized 3D scaffolds and showed specific enriched proteins in cirrhotic ECM in comparison to healthy ECM proteins. Cell repopulation of cirrhotic scaffolds highlighted a unique up-regulation in genes related to epithelial to mesenchymal transition (EMT) and TGFβ signaling. This was also supported by the presence and release of higher concentration of endogenous TGFβ1 in cirrhotic scaffolds in comparison to healthy scaffolds. Fibronectin secretion was significantly upregulated in cells grown in cirrhotic scaffolds in comparison to cells engrafted in healthy scaffolds. TGFβ1 induced the phosphorylation of canonical proteins Smad2/3, which was ECM scaffold-dependent. Important, TGFβ1-induced phosphorylation of Smad2/3 was significantly reduced and ECM scaffold-independent when pre/simultaneously treated with the TGFβ-R1 kinase inhibitor Galunisertib. In conclusion, the inherent features of cirrhotic human liver ECM micro-environment were dissected and characterized for the first time as key pro-carcinogenic components in HCC development.
Collapse
Affiliation(s)
- Giuseppe Mazza
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Andrea Telese
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Walid Al-Akkad
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Luca Frenguelli
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Ana Levi
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Martina Marrali
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | | | - Kessarin Thanapirom
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Maria Giovanna Vilia
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Benedetta Lombardi
- Proteomics and Molecular Cell Dynamics, Centre for Nephrology, School of Life and Medical Sciences, University College London, London NW3 2PF, UK; (B.L.); (M.C.); (J.G.-Z.)
| | - Claire Crowley
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, UCL Institute for Child Health, Great Ormond Street Hospital, University College London, London WC1N 3JH, UK; (C.C.); (P.D.C.)
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Centre for Nephrology, School of Life and Medical Sciences, University College London, London NW3 2PF, UK; (B.L.); (M.C.); (J.G.-Z.)
| | - Morten A. Karsdal
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 205-207, 2730 Herlev, Denmark; (M.A.K.); (D.J.L.)
| | - Diana J. Leeming
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 205-207, 2730 Herlev, Denmark; (M.A.K.); (D.J.L.)
| | - Giusi Marrone
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Katrin Bottcher
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Benjamin Robinson
- Department of Bioengineering, Cellular and Molecular Biomechanics, Imperial College, London SW7 2AZ, UK; (B.R.); (A.D.R.H.)
| | - Armando Del Rio Hernandez
- Department of Bioengineering, Cellular and Molecular Biomechanics, Imperial College, London SW7 2AZ, UK; (B.R.); (A.D.R.H.)
| | - Domenico Tamburrino
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Gabriele Spoletini
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Massimo Malago
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| | - Andrew R. Hall
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Centre for Nephrology, School of Life and Medical Sciences, University College London, London NW3 2PF, UK; (B.L.); (M.C.); (J.G.-Z.)
| | - Tu Vinh Luong
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, UCL Institute for Child Health, Great Ormond Street Hospital, University College London, London WC1N 3JH, UK; (C.C.); (P.D.C.)
- Specialist Neonatal and Paediatric Surgery at Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Massimo Pinzani
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London (UCL), London NW3 2PF, UK; (A.T.); (W.A.-A.); (L.F.); (A.L.); (M.M.); (K.T.); (M.G.V.); (G.M.); (K.B.); (D.T.); (G.S.); (M.M.); (A.R.H.); (T.V.L.); (M.P.)
| |
Collapse
|
8
|
Davies SS, May-Zhang LS, Boutaud O, Amarnath V, Kirabo A, Harrison DG. Isolevuglandins as mediators of disease and the development of dicarbonyl scavengers as pharmaceutical interventions. Pharmacol Ther 2019; 205:107418. [PMID: 31629006 DOI: 10.1016/j.pharmthera.2019.107418] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Products of lipid peroxidation include a number of reactive lipid aldehydes such as malondialdehyde, 4-hydroxy-nonenal, 4-oxo-nonenal, and isolevuglandins (IsoLGs). Although these all contribute to disease processes, the most reactive are the IsoLGs, which rapidly adduct to lysine and other cellular primary amines, leading to changes in protein function, cross-linking and immunogenicity. Their rapid reactivity means that only IsoLG adducts, and not the unreacted aldehyde, can be readily measured. This high reactivity also makes it challenging for standard cellular defense mechanisms such as aldehyde reductases and oxidases to dispose of them before they react with proteins and other cellular amines. This led us to seek small molecule primary amines that might trap and inactivate IsoLGs before they could modify cellular proteins or other endogenous cellular amines such as phosphatidylethanolamines to cause disease. Our studies identified 2-aminomethylphenols including 2-hydroxybenzylamine as IsoLG scavengers. Subsequent studies showed that they also trap other lipid dicarbonyls that react with primary amines such as 4-oxo-nonenal and malondialdehyde, but not hydroxyalkenals like 4-hydroxy-nonenal that preferentially react with soft nucleophiles. This review describes the use of these 2-aminomethylphenols as dicarbonyl scavengers to assess the contribution of IsoLGs and other amine-reactive lipid dicarbonyls to disease and as therapeutic agents.
Collapse
Affiliation(s)
- Sean S Davies
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States.
| | - Linda S May-Zhang
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - Olivier Boutaud
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - Venkataraman Amarnath
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - David G Harrison
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
9
|
Yermalitsky VN, Matafonova E, Tallman K, Li Z, Zackert W, Roberts LJ, Amarnath V, Davies SS. Simplified LC/MS assay for the measurement of isolevuglandin protein adducts in plasma and tissue samples. Anal Biochem 2019; 566:89-101. [DOI: 10.1016/j.ab.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
|
10
|
Qiu YN, Wang GH, Zhou F, Hao JJ, Tian L, Guan LF, Geng XK, Ding YC, Wu HW, Zhang KZ. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:178-187. [PMID: 30336408 DOI: 10.1016/j.ecoenv.2018.08.050] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND The increasing epidemic of fine particulate matter (PM2.5) is a serious threat to human health. It induces the occurrence of liver fibrosis, but its molecular mechanism is not yet clear. The molecular mechanisms of PM2.5 inducing liver fibrosis were investigated in this study. METHODS The cell viability of LX-2 cells and primary hepatic stellate cells (HSCs) was detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In vitro enzyme-linked immune sorbent assay (ELISA) kits were used to detect the concentrations of antioxidant enzymes and reactive oxygen species (ROS). The mitochondrial transmembrane potential (MTP) was determined by JC-1 dye. Knockdown of Parkin was carried out by Parkin-specific siRNA transfection. Relative mRNA and protein expressions were evaluated by qRT-PCR, Western blotting, and immunofluorescence analysis. RESULTS PM2.5 activated LX-2 cells and primary HSCs, inducing the liver fibrosis along with down-regulation of the gelatinases MMP-2, and up-regulation of myofibroblast markers collagen type I and α-SMA. The levels of ROS and reactive nitrogen species (RNS), as well as the lipid peroxidation marker malondialdehyde (MDA) were significantly up-regulated in LX-2 cells and primary HSCs treated with PM2.5. Also, the enzymatic antioxidants levels were disturbed by PM2.5. Furthermore, PM2.5 decreased the MTP, releasing cytochrome c from the mitochondria to the cytosol. The dynamics of mitochondria were regulated by PM2.5 via facilitating mitochondrial fission. The excess ROS induced by PM2.5 triggered the mitophagy by activating PINK1/Parkin pathway, and inhibition of mitophagy induced by PM2.5 diminished the liver fibrosis. CONCLUSION PM2.5 may induce mitophagy via activating PINK1/Parking signal pathway by increasing ROS, thereby activating HSCs and causing liver fibrosis.
Collapse
Affiliation(s)
- Yi-Ning Qiu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Guo-Hui Wang
- Department of Medicine, The Affiliated Tumor Hospital, Zhengzhou University, Zhengzhou 45003, PR China.
| | - Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Jin-Jin Hao
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Li Tian
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Long-Fei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, PR China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201 MI, USA
| | - Xiao-Kun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, PR China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201 MI, USA; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, PR China
| | - Yu-Chuan Ding
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, PR China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201 MI, USA
| | - He-Wen Wu
- Department of Infectious Diseases, The People's Hospital of Zhengzhou University, Zhengzhou 45003, PR China
| | - Ke-Zhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, 48201 MI, USA; Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, 48201 MI, USA
| |
Collapse
|
11
|
Marrone G, De Chiara F, Böttcher K, Levi A, Dhar D, Longato L, Mazza G, Zhang Z, Marrali M, Fernández-Iglesias A, Hall A, Luong TV, Viollet B, Pinzani M, Rombouts K. The adenosine monophosphate-activated protein kinase-vacuolar adenosine triphosphatase-pH axis: A key regulator of the profibrogenic phenotype of human hepatic stellate cells. Hepatology 2018; 68:1140-1153. [PMID: 29663481 DOI: 10.1002/hep.30029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
Abstract
UNLABELLED Liver fibrosis and cirrhosis are characterized by activation of hepatic stellate cells (HSCs), which is associated with higher intracellular pH (pHi). The vacuolar H+ adenosine-triphosphatase (v-ATPase) multisubunit complex is a key regulator of pHi homeostasis. The present work investigated the functional role of v-ATPase in primary human HSC (hHSC) activation and its modulation by specific adenosine monophosphate-activated protein kinase (AMPK) subunits. We demonstrate that the expression of different v-ATPase subunits was increased in in vivo and in vitro activated hHSCs compared to nonactivated hHSCs. Specific inhibition of v-ATPase with bafilomycin and KM91104 induced a down-regulation of the HSC fibrogenic gene profile, which coincided with increased lysosomal pH, decreased pHi, activation of AMPK, reduced proliferation, and lower metabolic activity. Similarly, pharmacological activation of AMPK by treatment with diflunisal, A769662, and ZLN024 reduced the expression of v-ATPase subunits and profibrogenic markers. v-ATPase expression was differently regulated by the AMPK α1 subunit (AMPKα1) and AMPKα2, as demonstrated in mouse embryo fibroblasts specifically deficient for AMPK α subunits. In addition, activation of v-ATPase in hHSCs was shown to be AMPKα1-dependent. Accordingly, pharmacological activation of AMPK in AMPKα1-depleted hHSCs prevented v-ATPase down-regulation. Finally, we showed that v-ATPase expression was increased in fibrotic livers from bile duct-ligated mice and in human cirrhotic livers. CONCLUSION The down-regulation of v-ATPase might represent a promising target for the development of antifibrotic strategies. (Hepatology 2018).
Collapse
Affiliation(s)
- Giusi Marrone
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Francesco De Chiara
- Liver Failure Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK
| | - Katrin Böttcher
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Ana Levi
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Dipok Dhar
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Lisa Longato
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Giuseppe Mazza
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Zhenzhen Zhang
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Martina Marrali
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute-CIBEREHD, Barcelona, Spain
| | - Andrew Hall
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Benoit Viollet
- INSERM, Institut Cochin.,CNRS UMR 8104, Sorbonne Paris cité, Paris, France.,Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - Massimo Pinzani
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| |
Collapse
|
12
|
Böttcher K, Rombouts K, Saffioti F, Roccarina D, Rosselli M, Hall A, Luong T, Tsochatzis EA, Thorburn D, Pinzani M. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology 2018; 68:172-186. [PMID: 29328499 DOI: 10.1002/hep.29782] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/13/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
UNLABELLED Autoimmune liver diseases (AILDs) are chronic liver pathologies characterized by fibrosis and cirrhosis due to immune-mediated liver damage. In this study, we addressed the question whether mucosal-associated invariant T (MAIT) cells, innate-like T cells, are functionally altered in patients with AILD and whether MAIT cells can promote liver fibrosis through activation of hepatic stellate cells (HSCs). We analyzed the phenotype and function of MAIT cells from AILD patients and healthy controls by multicolor flow cytometry and investigated the interaction between human MAIT cells and primary human hepatic stellate cells (hHSCs). We show that MAIT cells are significantly decreased in peripheral blood and liver tissue of patients with AILD. Notably, MAIT cell frequency tended to decrease with increasing fibrosis stage. MAIT cells from AILD patients showed signs of exhaustion, such as impaired interferon-γ (IFN-γ) production and high ex vivo expression of the activation and exhaustion markers CD38, HLA-DR, and CTLA-4. Mechanistically, this exhausted state could be induced by repetitive stimulation of MAIT cells with the cytokines interleukin (IL)-12 and IL-18, leading to decreased IFN-γ and increased exhaustion marker expression. Of note, repetitive stimulation with IL-12 further resulted in expression of the profibrogenic cytokine IL-17A by otherwise exhausted MAIT cells. Accordingly, MAIT cells from both healthy controls and AILD patients were able to induce an activated, proinflammatory and profibrogenic phenotype in hHSCs in vitro that was partly mediated by IL-17. CONCLUSION Our data provide evidence that MAIT cells in AILD patients have evolved towards an exhausted, profibrogenic phenotype and can contribute to the development of HSC-mediated liver fibrosis. These findings reveal a cellular and molecular pathway for fibrosis development in AILD that could be exploited for antifibrotic therapy. (Hepatology 2018;68:172-186).
Collapse
Affiliation(s)
- Katrin Böttcher
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom
| | - Francesca Saffioti
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom.,Department of Clinical and Experimental Medicine, Division of Clinical and Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Davide Roccarina
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Matteo Rosselli
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Andrew Hall
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom
| | - TuVinh Luong
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Emmanuel A Tsochatzis
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Douglas Thorburn
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| |
Collapse
|