1
|
Lanzillotta S, Esteve D, Lanzillotta C, Tramutola A, Lloret A, Forte E, Pesce V, Picca A, Di Domenico F, Perluigi M, Barone E. Altered mitochondrial unfolded protein response and protein quality control promote oxidative distress in down syndrome brain. Free Radic Biol Med 2025; 227:80-93. [PMID: 39586382 DOI: 10.1016/j.freeradbiomed.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Down Syndrome (DS) is a genetic disorder caused by the presence of an extra copy of chromosome 21, and leading to various developmental and cognitive defects. A critical feature of DS is the occurrence of oxidative distress particularly in the brain, which exacerbates neurodevelopmental processes. Mitochondria play a crucial role in cell energy metabolism and their impairment is one of the major causes of oxidative distress in several pathologies. Hence, this study investigates mitochondrial proteostasis by the mean of the mitochondrial Unfolded Protein Response (UPRmt) and the mitochondrial protein quality control (MQC) mechanisms in the context of DS, focusing on their implications in redox homeostasis in brain development. We analyzed key UPRmt markers and mitochondrial function in the frontal cortex isolated fromTs2Cje mice, a model for DS, across different developmental stages. Our results demonstrate significant alterations in UPRmt markers, particularly at postnatal day 0 (P0) and 1 month (1M). These changes indicate early UPRmt activation, primarily driven by the ATF5/GRP75 axis, although compromised by reduced levels of other components. Impaired UPRmt correlates with decreased mitochondrial activity, evidenced by reduced oxygen consumption rates and altered expression of OXPHOS complexes. Additionally, elevated oxidative stress markers such as 3-nitrotyrosine (3-NT), 4-hydroxynonenal (HNE), and protein carbonyls (PC) were observed, linking mitochondrial dysfunction to increased oxidative damage. Defects of MQC, including disrupted biogenesis, increased fission, and the activation of mitophagy were evident mostly at P0 and 1M consistent with UPRmt activation. Principal Component Analysis revealed distinct phenotypic differences between Ts2Cje and control mice, driven by these molecular alterations. Our findings underscore the critical role of UPRmt and MQC in DS brain development, highlighting potential therapeutic targets to mitigate mitochondrial dysfunction and oxidative distress, thereby alleviating some of the neurodevelopmental and cognitive impairments associated with DS.
Collapse
Affiliation(s)
- Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Daniel Esteve
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain; Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Elena Forte
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Ma X, Li W, Ma J, Han Z, Deng S, Wang S. Autophagy is a promising process for linking inflammation and redox homeostasis in Down syndrome. Front Pharmacol 2024; 15:1491563. [PMID: 39415838 PMCID: PMC11479988 DOI: 10.3389/fphar.2024.1491563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Trisomy 21, characterized by the presence of an additional chromosome 21, leads to a set of clinical features commonly referred to as Down syndrome (DS). The pathological phenotypes observed in DS are caused by a combination of factors, such as mitochondrial dysfunction, neuroinflammation, oxidative stress, disrupted metabolic patterns, and changes in protein homeostasis and signal transduction, and these factors collectively induce neurological alterations. In DS, the triplication of chromosome 21 and the micronuclei arising from the missegregation of chromosomes are closely associated with inflammation and the development of redox imbalance. Autophagy, an essential biological process that affects cellular homeostasis, is a powerful tool to facilitate the degradation of redundant or dysfunctional cytoplasmic components, thereby enabling the recycling of their constituents. Targeting the autophagy process has been suggested as a promising method to balance intracellular inflammation and oxidative stress and improve mitochondrial dysfunction. In this review, we summarize the role of autophagy in regulating inflammation and redox homeostasis in DS and discuss their crosslinks. A comprehensive elucidation of the roles of autophagy in DS offers novel insights for the development of therapeutic strategies aimed at aneuploidy-associated diseases.
Collapse
Affiliation(s)
- Xuehai Ma
- Xinjiang Key Laboratory of Mental Development and Learning Science, College of Psychology, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Weimin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Institute of Physical Education, Xinjiang Normal University, Urumqi, China
| | - Jun Ma
- Xinjiang Urumqi Youai Hospital, Urumqi, Xinjiang, China
| | - Zhongcheng Han
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
3
|
Chidambaram SB, Anand N, Varma SR, Ramamurthy S, Vichitra C, Sharma A, Mahalakshmi AM, Essa MM. Superoxide dismutase and neurological disorders. IBRO Neurosci Rep 2024; 16:373-394. [PMID: 39007083 PMCID: PMC11240301 DOI: 10.1016/j.ibneur.2023.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/21/2023] [Indexed: 07/16/2024] Open
Abstract
Superoxide dismutase (SOD) is a common antioxidant enzyme found majorly in living cells. The main physiological role of SOD is detoxification and maintain the redox balance, acts as a first line of defence against Reactive nitrogen species (RNS), Reactive oxygen species (ROS), and other such potentially hazardous molecules. SOD catalyses the conversion of superoxide anion free radicals (O 2 -.) into molecular oxygen (O 2) and hydrogen peroxide (H 2O 2) in the cells. Superoxide dismutases (SODs) are expressed in neurons and glial cells throughout the CNS both intracellularly and extracellularly. Endogenous oxidative stress (OS) linked with enlarged production of reactive oxygen metabolites (ROMs), inflammation, deregulation of redox balance, mitochondrial dysfunction and bioenergetic crisis are found to be prerequisite for neuronal loss in neurological diseases. Clinical and genetic studies indicate a direct correlation between mutations in SOD gene and neurodegenerative diseases, like Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD), Parkinson's Disease (PD) and Alzheimer's Disease (AD). Therefore, inhibitors of OS are considered as an optimistic approach to prevent neuronal loss. SOD mimetics like Metalloporphyrin Mn (II)-cyclic polyamines, Nitroxides and Mn (III)- Salen complexes are designed and used as therapeutic extensively in the treatment of neurological disorders. SODs and SOD mimetics are promising future therapeutics in the field of various diseases with OS-mediated pathology.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Antigua, Antigua and Barbuda
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, 346 Ajman, the United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, 346 Ajman, the United Arab Emirates
| | - Srinivasan Ramamurthy
- College of Pharmacy & Health Sciences, University of Science and Technology of Fujairah, 2202 Fujairah, the United Arab Emirates
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ambika Sharma
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
4
|
Ramacieri G, Locatelli C, Semprini M, Pelleri MC, Caracausi M, Piovesan A, Cicilloni M, Vigna M, Vitale L, Sperti G, Corvaglia LT, Pirazzoli GL, Strippoli P, Catapano F, Vione B, Antonaros F. Zinc metabolism and its role in immunity status in subjects with trisomy 21: chromosomal dosage effect. Front Immunol 2024; 15:1362501. [PMID: 38694501 PMCID: PMC11061464 DOI: 10.3389/fimmu.2024.1362501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Trisomy 21 (T21), which causes Down syndrome (DS), is the most common chromosomal aneuploidy in humankind and includes different clinical comorbidities, among which the alteration of the immune system has a heavy impact on patient's lives. A molecule with an important role in immune response is zinc and it is known that its concentration is significantly lower in children with T21. Different hypotheses were made about this metabolic alteration and one of the reasons might be the overexpression of superoxide dismutase 1 (SOD1) gene, as zinc is part of the SOD1 active enzymatic center. Methods The aim of our work is to explore if there is a linear correlation between zinc level and immune cell levels measured in a total of 217 blood samples from subjects with T21. Furthermore, transcriptome map analyses were performed using Transcriptome Mapper (TRAM) software to investigate whether a difference in gene expression is detectable between subjects with T21 and euploid control group in tissues and cells involved in the immune response such as lymphoblastoid cells, thymus and white blood cells. Results Our results have confirmed the literature data stating that the blood zinc level in subjects with T21 is lower compared to the general population; in addition, we report that the T21/control zinc concentration ratio is 2:3, consistent with a chromosomal dosage effect due to the presence of three copies of chromosome 21. The transcriptome map analyses showed an alteration of some gene's expression which might explain low levels of zinc in the blood. Discussion Our data suggest that zinc level is not associated with the levels of immunity cells or proteins analyzed themselves and rather the main role of this ion might be played in altering immune cell function.
Collapse
Affiliation(s)
- Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Specialist School of Child Neuropsychiatry - University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Michela Semprini
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Maria Chiara Pelleri
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Michela Cicilloni
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Vigna
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giacomo Sperti
- Speciality School of Paediatrics - Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Luigi Tommaso Corvaglia
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Bologna, Italy
| | | | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Catapano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Beatrice Vione
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Aldecoa I, Barroeta I, Carroll SL, Fortea J, Gilmore A, Ginsberg SD, Guzman SJ, Hamlett ED, Head E, Perez SE, Potter H, Molina‐Porcel L, Raha‐Chowdhury R, Wisniewski T, Yong WH, Zaman S, Ghosh S, Mufson EJ, Granholm A. Down Syndrome Biobank Consortium: A perspective. Alzheimers Dement 2024; 20:2262-2272. [PMID: 38270275 PMCID: PMC10984425 DOI: 10.1002/alz.13692] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/26/2024]
Abstract
Individuals with Down syndrome (DS) have a partial or complete trisomy of chromosome 21, resulting in an increased risk for early-onset Alzheimer's disease (AD)-type dementia by early midlife. Despite ongoing clinical trials to treat late-onset AD, individuals with DS are often excluded. Furthermore, timely diagnosis or management is often not available. Of the genetic causes of AD, people with DS represent the largest cohort. Currently, there is a knowledge gap regarding the underlying neurobiological mechanisms of DS-related AD (DS-AD), partly due to limited access to well-characterized brain tissue and biomaterials for research. To address this challenge, we created an international consortium of brain banks focused on collecting and disseminating brain tissue from persons with DS throughout their lifespan, named the Down Syndrome Biobank Consortium (DSBC) consisting of 11 biobanking sites located in Europe, India, and the USA. This perspective describes the DSBC harmonized protocols and tissue dissemination goals.
Collapse
Affiliation(s)
- Iban Aldecoa
- Pathology DepartmentHospital Clinic de Barcelona‐University of BarcelonaBarcelonaSpain
- Neurological Tissue Bank of the BiobankHospital Clinic de Barcelona‐FCRB/IDIBAPSBarcelonaSpain
| | - Isabel Barroeta
- Neurology DepartmentHospital de la Santa Creu i Sant Pau, NeurologyBarcelonaSpain
| | - Steven L. Carroll
- Department of Pathology & Laboratory MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Juan Fortea
- Neurology DepartmentHospital de la Santa Creu i Sant Pau, NeurologyBarcelonaSpain
| | - Anah Gilmore
- University of Colorado Denver Anschutz Medical Campus, NeurosurgeryAuroraColoradoUSA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline InstituteOrangeburgNew YorkUSA
- Departments of PsychiatryNeuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Samuel J. Guzman
- Department of PathologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Eric D. Hamlett
- Department of Pathology & Laboratory MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of California Irvine, UCI School of Medicine D440 Medical Sciences IIrvineCaliforniaUSA
| | - Sylvia E. Perez
- Barrow Neurological InstituteTranslational Neurosciences and NeurologyPhoenixArizonaUSA
| | - Huntington Potter
- University of Colorado Denver Anschutz Medical Campus, NeurologyAuroraColoradoUSA
| | - Laura Molina‐Porcel
- Pathology DepartmentHospital Clinic de Barcelona‐University of BarcelonaBarcelonaSpain
- Alzheimer's Disease and Other Cognitive Disorders UnitNeurology Service, Hospital Clínic, IDIBAPS, University of BarcelonaBarcelonaSpain
| | - Ruma Raha‐Chowdhury
- Department of PsychiatryCambridge Intellectual & Developmental Disabilities Research GroupUniversity of CambridgeCambridgeUK
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - William H. Yong
- Department of Pathology and Laboratory MedicineUniversity of California Irvine, UCI School of Medicine D440 Medical Sciences IIrvineCaliforniaUSA
| | - Shahid Zaman
- Department of PsychiatryCambridge Intellectual & Developmental Disabilities Research GroupUniversity of CambridgeCambridgeUK
| | - Sujay Ghosh
- Department of ZoologyCytogenetics and Genomics Research UnitKolkataIndia
| | - Elliott J. Mufson
- Barrow Neurological InstituteTranslational Neurosciences and NeurologyPhoenixArizonaUSA
| | | |
Collapse
|
6
|
Granholm AC, Hamlett ED. The Role of Tau Pathology in Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:1338. [PMID: 38592182 PMCID: PMC10932364 DOI: 10.3390/jcm13051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
7
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M. The Role of Oxidative Stress in Trisomy 21 Phenotype. Cell Mol Neurobiol 2023; 43:3943-3963. [PMID: 37819608 PMCID: PMC10661812 DOI: 10.1007/s10571-023-01417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Extensive research has been conducted to gain a deeper understanding of the deregulated metabolic pathways in the development of trisomy 21 (T21) or Down syndrome. This research has shed light on the hypothesis that oxidative stress plays a significant role in the manifestation of the T21 phenotype. Although in vivo studies have shown promising results in mitigating the detrimental effects of oxidative stress, there is currently a lack of introduced antioxidant treatment options targeting cognitive impairments associated with T21. To address this gap, a comprehensive literature review was conducted to provide an updated overview of the involvement of oxidative stress in T21. The review aimed to summarize the insights into the pathogenesis of the Down syndrome phenotype and present the findings of recent innovative research that focuses on improving cognitive function in T21 through various antioxidant interventions. By examining the existing literature, this research seeks to provide a holistic understanding of the role oxidative stress plays in the development of T21 and to explore novel approaches that target multiple aspects of antioxidant intervention to improve cognitive function in individuals with Down syndrome. The guides -base systematic review process (Hutton et al. 2015).
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, ul. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| |
Collapse
|
8
|
Miyasaki AMM, Radigonda JM, Klein RM, Moreira EG. Blood tests and use of nutritional supplements in a cohort of Brazilian children with trisomy 21. J Pediatr (Rio J) 2023; 99:610-616. [PMID: 37353208 PMCID: PMC10594004 DOI: 10.1016/j.jped.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVE To describe the use of nutritional supplements and blood status (hemogram, lipidogram, hepatic function, inflammatory markers, minerals, and homocysteine) in a sample of Brazilian T21 children with private health support before their first consultation with a T21 expert. METHOD This descriptive cross-sectional study enrolled 102 participants. Brazilian families with a T21 member under 18 years old were contacted and those that consented answered a survey regarding socio-demographics and the use of nutritional supplements and shared the blood tests that their T21 members have collected for the first consultation with a T21 expert. RESULTS Frequencies and percentages were used to describe the variables. The most used supplements included vitamins (A, C and D), minerals (zinc and iron), omega-3, and antioxidants (curcumin). Hypothyroidism was observed in 56.9% of the participants. Hemogram alterations (increased hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin and red cell distribution width, leukopenia, and lymphocytopenia), dyslipidemia, altered hepatic and inflammatory blood markers were frequently found. CONCLUSIONS Nutritional supplements (mainly vitamins, minerals, omega-3 and antioxidants) are frequently used by Brazilian T21 children independently of professional counseling and/or supervision and should be a question to be raised during the clinical anamnesis since some of them may impact medical conduct. Moreover, many blood tests are altered in this population and clinicians should be aware of them in order to warrant an appropriate screening and the implementation of risk management measures as soon as possible and improve the general health of these persons.
Collapse
Affiliation(s)
- Andrea M M Miyasaki
- Universidade Estadual de Londrina (UEL), Departamento de Pediatria, Londrina, PR, Brazil; Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências da Saúde, Londrina, PR, Brazil
| | - Julia M Radigonda
- Universidade Estadual de Londrina (UEL), Curso de Medicina, Londrina, PR, Brazil
| | - Rodrigo M Klein
- Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências da Saúde, Londrina, PR, Brazil
| | - Estefânia G Moreira
- Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências da Saúde, Londrina, PR, Brazil.
| |
Collapse
|
9
|
Liu Q, Wang D, Li W, Li X, Yang Z, Zhang A, He J, Chen X, Chang Y, Chen X, Tang NJ. Association of chromosomal abnormalities with prenatal exposure to heavy metals: A nested case-control study in high-risk pregnant women in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115518. [PMID: 37776819 DOI: 10.1016/j.ecoenv.2023.115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Prenatal exposure to heavy metals causes multiple hazards to fetal growth and development. Epidemiological studies on the association between heavy metals and fetal chromosomal abnormalities (CAs) are lacking. We conducted a nested case-control study in a cohort of high-risk pregnant women in China from September 2018 to June 2021. A total of 387 participants were diagnosed with fetal CAs in the case group and 699 were diagnosed with a normal karyotype in the control group. Amniotic fluid concentrations of 10 metals (barium, cobalt, antimony, manganese, ferrum, copper, selenium, strontium, vanadium, and chromium) were measured using inductively coupled plasma-mass spectrometry. We applied quantile g-computation and weighted quantile sum regression to assess the overall effect of metal mixtures and identify metals with significant weight. Logistic and Poisson regression analyses were used to estimate the effects of metals on CAs and CAs subtypes. Our results showed that the metal mixture concentrations were positively associated with the risk of fetal CAs. In adjusted logistic models, Sb was associated with fetal CAs (OR=1.15, 95% CI: 1.02-1.30), and revealed a linear dose-response relationship between Sb level and the risk of fetal CAs. Additionally, the exploratory analysis revealed that Sb levels were associated with Klinefelter syndrome (OR=1.452, 95% CI: 1.063-1.984) and Turner syndrome (OR=1.698; 95% CI,1.048-2.751). Our study revealed that metal mixtures are associated with a higher risk of fetal CAs and that this association may be driven primarily by Sb. Moreover, we provide a genetic perspective on the effects of heavy metals on sexual development in humans.
Collapse
Affiliation(s)
- Qianfeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Wen Li
- Tianjin Central Hospital of Obstetrics and Gynecology, No. 156, Sanma Road, Nankai District, Tianjin 300100, China; Nankai University, Tianjin 30071, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Xiaoyu Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Ze Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Ai Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jiayu He
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xu Chen
- Tianjin Central Hospital of Obstetrics and Gynecology, No. 156, Sanma Road, Nankai District, Tianjin 300100, China; Nankai University, Tianjin 30071, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Ying Chang
- Tianjin Central Hospital of Obstetrics and Gynecology, No. 156, Sanma Road, Nankai District, Tianjin 300100, China; Nankai University, Tianjin 30071, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
10
|
Réthelyi JM, Vincze K, Schall D, Glennon J, Berkel S. The role of insulin/IGF1 signalling in neurodevelopmental and neuropsychiatric disorders - Evidence from human neuronal cell models. Neurosci Biobehav Rev 2023; 153:105330. [PMID: 37516219 DOI: 10.1016/j.neubiorev.2023.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Insulin and insulin-like growth factor 1 (IGF1) signalling play a central role in the development and maintenance of neurons in the brain, and human neurodevelopmental as well as neuropsychiatric disorders have been linked to impaired insulin and IGF1 signalling. This review focuses on the impairments of the insulin and IGF1 signalling cascade in the context of neurodevelopmental and neuropsychiatric disorders, based on evidence from human neuronal cell models. Clear evidence was obtained for impaired insulin and IGF1 receptor downstream signalling in neurodevelopmental disorders, while the evidence for its role in neuropsychiatric disorders was less substantial. Human neuronal model systems can greatly add to our knowledge about insulin/IGF1 signalling in the brain, its role in restoring dendritic maturity, and complement results from clinical studies and animal models. Moreover, they represent a useful model for the development of new therapeutic strategies. Further research is needed to systematically investigate the exact role of the insulin/IGF1 signalling cascades in neurodevelopmental and neuropsychiatric disorders, and to elucidate the respective therapeutic implications.
Collapse
Affiliation(s)
- János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Katalin Vincze
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
| | - Dorothea Schall
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany; Interdisciplinary Centre of Neurosciences (IZN), Heidelberg University, Germany.
| |
Collapse
|
11
|
Biochemical Discrimination of the Down Syndrome-Related Metabolic and Oxidative/Nitrosative Stress Alterations from the Physiologic Age-Related Changes through the Targeted Metabolomic Analysis of Serum. Antioxidants (Basel) 2022; 11:antiox11061208. [PMID: 35740106 PMCID: PMC9219806 DOI: 10.3390/antiox11061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Down Syndrome (DS) is a neurodevelopmental disorder that is characterized by an accelerated aging process, frequently associated with the development of Alzheimer’s disease (AD). Previous studies evidenced that DS patients have various metabolic anomalies, easily measurable in their serum samples, although values that were found in DS patients were compared with those of age-matched non-DS patients, thus hampering to discriminate the physiologic age-related changes of serum metabolites from those that are truly caused by the pathologic processes associated with DS. In the present study we performed a targeted metabolomic evaluation of serum samples from DS patients without dementia of two age classes (Younger DS Patients, YDSP, aging 20–40 years; Aged DS Patients, ADSP, aging 41–60 years), comparing the results with those that were obtained in two age classes of non-DS patients (Younger non-DS Patients, YnonDSP, aging 30–60 years; Aged-nonDS Patients, AnonDSP, aging 75–90 years). Of the 36 compounds assayed, 30 had significantly different concentrations in Pooled non-DS Patients (PnonDSP), compared to Pooled DS Patients (PDSP). Age categorization revealed that 11/30 compounds were significantly different in AnonDSP, compared to YnonDSP, indicating physiologic, age-related changes of their circulating concentrations. A comparison between YDSP and ADSP showed that 19/30 metabolites had significantly different values from those found in the corresponding classes of non-DS patients, strongly suggesting pathologic, DS-associated alterations of their serum levels. Twelve compounds selectively and specifically discriminated PnonDSP from PDSP, whilst only three discriminated YDSP from ADSP. The results allowed to determine, for the first time and to the best of our knowledge, the true, age-independent alterations of metabolism that are measurable in serum and attributable only to DS. These findings may be of high relevance for better strategies (pharmacological, nutritional) aiming to specifically target the dysmetabolism and decreased antioxidant defenses that are associated with DS.
Collapse
|
12
|
Triplication of HSA21 on alterations in structure and function of mitochondria. Mitochondrion 2022; 65:88-101. [PMID: 35623559 DOI: 10.1016/j.mito.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 01/22/2023]
Abstract
Triplication of genes encoded in human chromosome 21 (HSA21) is responsible for the phenotypes of Down syndrome (DS). The dosage-imbalance of the nuclear genes and the extra-nuclear mitochondrial DNA (mtDNA) jointly contributes to patho-mechanisms in DS. The mitochondrial organelles are the power house of cells for generation of ATP and maintaining cellular calcium and redox homeostasis, and cellular energy-metabolism processes. Each cell contains hundreds to thousands of mitochondria depending on their energy consumption. The dynamic structure of mitochondria is maintained with continuous fission and fusion events, and thus, content of mtDNA and its genetic composition are widely variable among cells. Cells of brain and heart tissues of DS patients and DS-mouse models have demonstrated elevated number but reduced amount of mtDNA due to higher fission process. This mechanism perturbs the oxidative phosphorylation (OXPHOS) and generates more free radicals such as reactive oxygen species (ROS), suggesting contribution of mtDNA in proliferation and protection of cells from endogenous toxic environment and external stressors. Gene-dosage in DS population collectively contributes to mitochondrial dysfunction by lowering energy production and respiratory capacity via the impaired OXPHOS, and damaged redox homeostasis and mitochondrial dynamics in all types of cells in DS. The context is highly complex and affects the functioning of all organs. The effect in brain and heart tissues promotes myriads of neurodegenerative diseases and cardiac complexities in individuals with DS. Crosstalk between trisomic nuclear and mitochondrial genome has been crucial for identification of potential therapeutic targets.
Collapse
|
13
|
Noll C, Kandiah J, Moroy G, Gu Y, Dairou J, Janel N. Catechins as a Potential Dietary Supplementation in Prevention of Comorbidities Linked with Down Syndrome. Nutrients 2022; 14:2039. [PMID: 35631180 PMCID: PMC9147372 DOI: 10.3390/nu14102039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-derived polyphenols flavonoids are increasingly being recognized for their medicinal potential. These bioactive compounds derived from plants are gaining more interest in ameliorating adverse health risks because of their low toxicity and few side effects. Among them, therapeutic approaches demonstrated the efficacy of catechins, a major group of flavonoids, in reverting several aspects of Down syndrome, the most common genomic disorder that causes intellectual disability. Down syndrome is characterized by increased incidence of developing Alzheimer's disease, obesity, and subsequent metabolic disorders. In this focused review, we examine the main effects of catechins on comorbidities linked with Down syndrome. We also provide evidence of catechin effects on DYRK1A, a dosage-sensitive gene encoding a protein kinase involved in brain defects and metabolic disease associated with Down syndrome.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Janany Kandiah
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Gautier Moroy
- Unité de Biologie Fonctionnelle et Adaptative, INSERM CNRS, Université Paris Cité, F-75013 Paris, France;
| | - Yuchen Gu
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Cité, F-75006 Paris, France;
| | - Nathalie Janel
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| |
Collapse
|
14
|
Association between the Concentrations of Essential and Toxic Elements in Mid-Trimester Amniotic Fluid and Fetal Chromosomal Abnormalities in Pregnant Polish Women. Diagnostics (Basel) 2022; 12:diagnostics12040979. [PMID: 35454027 PMCID: PMC9026427 DOI: 10.3390/diagnostics12040979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to investigate the relationship between the concentrations of essential and toxic elements present in the amniotic fluid (AF) and fetal chromosomal abnormalities in pregnant women. A total of 156 pregnant white Polish women aged between 20 and 43 years and screened to detect high risk for chromosomal defects in the first trimester were included in the study. AF samples were collected from these women during routine diagnostic and treatment procedures at mid-gestation (15–22 weeks of their pregnancies). The concentrations of various minerals in the AF were determined by inductively coupled plasma mass spectrometry. Genomic hybridization and cytogenetic karyotyping were performed to detect chromosomal aberrations in the fetuses. The genetic analysis revealed chromosomal aberrations in 19 fetuses (over 12% of all the evaluated women). The major abnormalities identified were trisomy 21 (N = 11), trisomy 18 (N = 2), and triploidy (N = 2). Fetuses with chromosomal abnormalities more frequently showed lower manganese concentration in the AF in the second trimester as compared to those with normal karyotype. A coincidence was observed between high iron levels in the AF and a higher risk of chromosomal abnormalities in the fetuses.
Collapse
|
15
|
Buczyńska A, Sidorkiewicz I, Hameed A, Krętowski AJ, Zbucka-Krętowska M. Future Perspectives in Oxidative Stress in Trisomy 13 and 18 Evaluation. J Clin Med 2022; 11:jcm11071787. [PMID: 35407395 PMCID: PMC8999694 DOI: 10.3390/jcm11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Autosomal aneuploidies are the most frequently occurring congenital abnormalities and are related to many metabolic disorders, hormonal dysfunctions, neurotransmitter abnormalities, and intellectual disabilities. Trisomies are generated by an error of chromosomal segregation during cell division. Accumulating evidence has shown that deregulated gene expression resulting from the triplication of chromosomes 13 and 18 is associated with many disturbed cellular processes. Moreover, a disturbed oxidative stress status may be implicated in the occurrence of fetal malformations. Therefore, a literature review was undertaken to provide novel insights into the evaluation of trisomy 13 (T13) and 18 (T18) pathogeneses, with a particular concern on the oxidative stress. Corresponding to the limited literature data focused on factors leading to T13 and T18 phenotype occurrence, the importance of oxidative stress evaluation in T13 and T18 could enable the determination of subsequent disturbed metabolic pathways, highlighting the related role of mitochondrial dysfunction or epigenetics. This review illustrates up-to-date T13 and T18 research and discusses the strengths, limitations, and possible directions for future studies. The progressive unification of trisomy-related research protocols might provide potential medical targets in the future along with the implementation of the foundation of modern prenatal medicine.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
- Correspondence: (A.B.); (M.Z.-K.); Tel.: +48-85-746-85-13 (A.B.); +48-85-746-83-36 (M.Z.-K.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
| | - Ahsan Hameed
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (M.Z.-K.); Tel.: +48-85-746-85-13 (A.B.); +48-85-746-83-36 (M.Z.-K.)
| |
Collapse
|
16
|
Venegas-Zamora L, Bravo-Acuña F, Sigcho F, Gomez W, Bustamante-Salazar J, Pedrozo Z, Parra V. New Molecular and Organelle Alterations Linked to Down Syndrome Heart Disease. Front Genet 2022; 12:792231. [PMID: 35126461 PMCID: PMC8808411 DOI: 10.3389/fgene.2021.792231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by a trisomy of the human chromosome 21 (Hsa21). Overexpression of Hsa21 genes that encode proteins and non-coding RNAs (ncRNAs) can disrupt several cellular functions and biological processes, especially in the heart. Congenital heart defects (CHDs) are present in 45–50% of individuals with DS. Here, we describe the genetic background of this condition (Hsa21 and non-Hsa21 genes), including the role of ncRNAs, and the relevance of these new players in the study of the pathophysiology of DS heart diseases. Additionally, we discuss several distinct pathways in cardiomyocytes which help maintain a functional heart, but that might trigger hypertrophy and oxidative stress when altered. Moreover, we highlight the importance of investigating how mitochondrial and lysosomal dysfunction could eventually contribute to understanding impaired heart function and development in subjects with the Hsa21 trisomy. Altogether, this review focuses on the newest insights about the gene expression, molecular pathways, and organelle alterations involved in the cardiac phenotype of DS.
Collapse
Affiliation(s)
- Leslye Venegas-Zamora
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Bravo-Acuña
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Sigcho
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - José Bustamante-Salazar
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| |
Collapse
|
17
|
Cucinotta F, Ricciardello A, Turriziani L, Mancini A, Keller R, Sacco R, Persico AM. Efficacy and Safety of Q10 Ubiquinol With Vitamins B and E in Neurodevelopmental Disorders: A Retrospective Chart Review. Front Psychiatry 2022; 13:829516. [PMID: 35308885 PMCID: PMC8927903 DOI: 10.3389/fpsyt.2022.829516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Increased oxidative stress and defective mitochondrial functioning are shared features among many brain disorders. The aim of this study was to verify retrospectively the clinical efficacy and safety of a metabolic support therapy with Q10 ubiquinol, vitamin E and complex-B vitamins in various neurodevelopmental disorders. This retrospective chart review study included 59 patients (mean age 10.1 ± 1.2 y.o., range 2.5-39 years; M:F = 2.47:1), diagnosed with Autism Spectrum Disorder (n = 17), Autism Spectrum Disorder with co-morbid Intellectual Disability (n = 19), Intellectual Disability or Global Developmental Delay (n = 15), Attention-Deficit/Hyperactivity Disorder (n = 3) and Intellectual Disability in Phelan-McDermid syndrome due to chr. 22q13.33 deletion (n = 5). After a minimum of 3 months of therapy, a positive outcome was recorded in 45/59 (76.27%) patients, with Clinical Global Impression-Improvement scores ranging between 1 ("very much improved") and 3 ("minimally improved"). The most widespread improvements were recorded in cognition (n = 26, 44.1%), adaptative functioning (n = 26, 44.1%) and social motivation (n = 19, 32.2%). Improvement rates differed by diagnosis, being observed most consistently in Phelan-McDermid Syndrome (5/5, 100%), followed by Intellectual Disability/Global Developmental Delay (13/15, 86.7%), Autism Spectrum Disorder with co-morbid Intellectual Disability (15/19, 78.9%), Autism Spectrum Disorder (11/17, 64.7%) and ADHD (1/3, 33.3%). No significant adverse event or side effect leading to treatment discontinuation were recorded. Mild side effects were reported in 18 (30.5%) patients, with the most frequent being increased hyperactivity (9/59, 15.3%). This retrospective chart review suggests that metabolic support therapy with Q10 ubiquinol, vitamin E and complex-B vitamins is well tolerated and produces some improvement in the majority of patients with neurodevelopmental disorders, especially in the presence of intellectual disability. Randomized controlled trials for each single neurodevelopmental disorder are now warranted to conclusively demonstrate the efficacy of these mitochondrial bioenergetic and antioxidant agents and to estimate their therapeutic effect size.
Collapse
Affiliation(s)
- Francesca Cucinotta
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy.,IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy.,Villa Miralago, Cuasso al Monte, Italy
| | - Laura Turriziani
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Arianna Mancini
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Roberto Keller
- Mental Health Department, Adult Autism Centre, Rete Ospedaliera Territorio Nord-Ovest, Azienda Sanitaria Locale Città di Torino, Turin, Italy
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders, University "Campus Bio-Medico", Rome, Italy
| | - Antonio M Persico
- Child and Adolescent Neuropsychiatry Program, Modena University Hospital and Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
Novel Approaches to an Integrated Route for Trisomy 21 Evaluation. Biomolecules 2021; 11:biom11091328. [PMID: 34572541 PMCID: PMC8465311 DOI: 10.3390/biom11091328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Trisomy 21 (T21) is one of the most commonly occurring genetic disorders, caused by the partial or complete triplication of chromosome 21. Despite the significant progress in the diagnostic tools applied for prenatal screening, commonly used methods are still imprecise and involve invasive diagnostic procedures that are related to a maternal risk of miscarriage. In this case, novel prenatal biomarkers are still being evaluated using highly specialized techniques, which could increase the diagnostic usefulness of biochemical prenatal screening for T21. From the other hand, the T21′s pathogenesis, caused by the improper division of genetic material, disrupting many metabolic pathways, could be further evaluated with the use of omics methods, which could result in bringing relevant insights for the evaluation of potential medical targets. Accordingly, a literature search was undertaken to collect novel information about prenatal screening for Down syndrome with the use of advanced technology, with a particular emphasis on the evaluation of novel screening biomarkers and the discovery of potential medical targets. These meta-analyses are focused on novel approaches designed with the use of omics techniques, representing the most rapidly developing and promising field in research today. Considering the limitations and progress of these methods, the use of omics techniques in evaluating T21 pathogenesis could bring beneficial results in prenatal screening, simultaneously uncovering novel potential medical targets.
Collapse
|
19
|
Toshikawa H, Ikenaka A, Li L, Nishinaka-Arai Y, Niwa A, Ashida A, Kazuki Y, Nakahata T, Tamai H, Russell DW, Saito MK. N-Acetylcysteine prevents amyloid-β secretion in neurons derived from human pluripotent stem cells with trisomy 21. Sci Rep 2021; 11:17377. [PMID: 34462463 PMCID: PMC8405674 DOI: 10.1038/s41598-021-96697-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Down syndrome (DS) is caused by the trisomy of chromosome 21. Among the many disabilities found in individuals with DS is an increased risk of early-onset Alzheimer's disease (AD). Although higher oxidative stress and an upregulation of amyloid β (Aβ) peptides from an extra copy of the APP gene are attributed to the AD susceptibility, the relationship between the two factors is unclear. To address this issue, we established an in vitro cellular model using neurons differentiated from DS patient-derived induced pluripotent stem cells (iPSCs) and isogenic euploid iPSCs. Neurons differentiated from DS patient-derived iPSCs secreted more Aβ compared to those differentiated from the euploid iPSCs. Treatment of the neurons with an antioxidant, N-acetylcysteine, significantly suppressed the Aβ secretion. These findings suggest that oxidative stress has an important role in controlling the Aβ level in neurons differentiated from DS patient-derived iPSCs and that N-acetylcysteine can be a potential therapeutic option to ameliorate the Aβ secretion.
Collapse
Affiliation(s)
- Hiromitsu Toshikawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Osaka Medical and Pharmaceutical University, Takatsuki, 5690801, Japan.,Social Welfare Organization "SAISEIKAI" Imperial Gift Foundation Inc., Saiseikai Suita Hospital, Suita, 5640013, Japan
| | - Akihiro Ikenaka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Li Li
- Division of Hematology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Yoko Nishinaka-Arai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Ashida
- Osaka Medical and Pharmaceutical University, Takatsuki, 5690801, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan.,Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Tamai
- Osaka Medical and Pharmaceutical University, Takatsuki, 5690801, Japan.,Institute for Developmental Brain Research, Osaka Medical and Pharmaceutical University, Takatsuki, 5690801, Japan
| | - David W Russell
- Division of Hematology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
20
|
Peripheral Oxidation Markers in Down Syndrome Patients: The Better and the Worse. DISEASE MARKERS 2021; 2021:5581139. [PMID: 34257747 PMCID: PMC8260317 DOI: 10.1155/2021/5581139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/26/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022]
Abstract
Oxidative stress plays an important role in Down syndrome (DS) pathology since the gene dose effect leads to abnormal levels of certain enzymes and metabolites. In this review, we focused on relatively easy-to-obtain, peripheral markers of oxidative stress and inflammation, in order to compare the levels of these markers in DS patients and chromosomally healthy persons. Studies taking into account age- and sex-matched control groups were of particular interest in this context. We analyzed the factors that influence the levels of said markers in both groups (i.e., the usefulness of the markers), including the age of DS patients, occurrence of regular trisomy 21 or mosaicism, physical activity of patients, and the onset of Alzheimer's disease in DS. This paper was conceived as a handbook-to help for selecting suitable, easy-to-obtain markers for monitoring of the health status of DS patients (e.g., in nutritional studies and during dietary supplementation).
Collapse
|
21
|
Buczyńska A, Sidorkiewicz I, Ławicki S, Krętowski AJ, Zbucka-Krętowska M. Prenatal Screening of Trisomy 21: Could Oxidative Stress Markers Play a Role? J Clin Med 2021; 10:jcm10112382. [PMID: 34071365 PMCID: PMC8198847 DOI: 10.3390/jcm10112382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Despite significant progress in trisomy 21 (T21) diagnostic tools, amniocentesis is still used for the confirmation of an abnormal fetal karyotype. Invasive tests carry the potential risk of miscarriage; thus, screening biomarkers are commonly used before undergoing invasive procedures. In our study, we investigated the possible application of oxidative stress markers in the prenatal screening of trisomy 21. The DNA/RNA oxidative stress damage products (OSDPs), advanced glycation end (AGE) products, ischemia-modified albumin (IMA), alfa-1-antitrypsin (A1AT), asprosin, and vitamin D concentrations were measured in both maternal plasma and amniotic fluid in trisomy 21 (T21) and euploid pregnancies. The obtained results indicated increased levels of DNA/RNA OSDPs and asprosin with simultaneous decreased levels of vitamin D and A1AT in the study group. The diagnostic utility of the plasma measurement based on the area under the received operative characteristic (ROC) curve (AUC) calculation of asprosin (AUC = 0.965), IMA (AUC = 0.880), AGE (AUC = 0.846) and DNA/RNA OSDPs (AUC = 0.506) in T21 screening was demonstrated. The obtained results indicate a potential role for the application of oxidative stress markers in the prenatal screening of T21 with the highest screening utility of plasma asprosin.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.B.); (I.S.); (A.J.K.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.B.); (I.S.); (A.J.K.)
| | - Sławomir Ławicki
- Department of Population Medicine and Civilization Diseases Prevention, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.B.); (I.S.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: ; Tel.: +48 85-746-83-36
| |
Collapse
|
22
|
Ferrari M, Stagi S. Oxidative Stress in Down and Williams-Beuren Syndromes: An Overview. Molecules 2021; 26:molecules26113139. [PMID: 34073948 PMCID: PMC8197362 DOI: 10.3390/molecules26113139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is the result of an imbalance in the redox state in a cell or a tissue. When the production of free radicals, which are physiologically essential for signaling, exceeds the antioxidant capability, pathological outcomes including oxidative damage to macromolecules, aberrant signaling, and inflammation can occur. Down syndrome (DS) and Williams-Beuren syndrome (WBS) are well-known and common genetic conditions with multi-systemic involvement. Their etiology is linked to oxidative stress with important causative genes, such as SOD-1 and NCF-1, respectively, of the diseases being primarily involved in the regulation of the redox state. Early aging, dementia, autoimmunity, and chronic inflammation are some of the main characteristics of these conditions that can be associated with oxidative stress. In recent decades, there has been a growing interest in the possible role of oxidative stress and inflammation in the pathology of these conditions. However, at present, few studies have investigated these correlations. We provide an overview of the current literature concerning the role of oxidative stress and oxidative damage in genetic syndromes with a focus on Down syndrome and WBS. We hope to provide new insights to improve the management of complications related to these diseases.
Collapse
|
23
|
Abstract
Vitamin E, discovered in 1922, is essential for pregnant rats to carry their babies to term. However, 100 years later, the molecular mechanisms for the vitamin E requirement during embryogenesis remain unknown. Vitamin E's role during pregnancy has been difficult to study and thus, a vitamin E-deficient (E-) zebrafish embryo model was developed. Vitamin E deficiency in zebrafish embryos initiates lipid peroxidation, depletes a specific phospholipid (DHA-phosphatidyl choline), causes secondary deficiencies of choline, betaine and critical thiols (such as glutathione), and dysregulates energy metabolism. Vitamin E deficiency not only distorts the carefully programmed development of the nervous system, but it leads to defects in several developing organs. Both the α-tocopherol transfer protein and vitamin E are necessary for embryonic development, neurogenesis and cognition in this model and likely in human embryos. Elucidation of the control mechanisms for the cellular and metabolic pathways involved in the molecular dysregulation caused by vitamin E deficiency will lead to important insights into abnormal neurogenesis and embryonic malformations.
Collapse
|
24
|
Epigallocatechin-3-Gallate Plus Omega-3 Restores the Mitochondrial Complex I and F 0F 1-ATP Synthase Activities in PBMCs of Young Children with Down Syndrome: A Pilot Study of Safety and Efficacy. Antioxidants (Basel) 2021; 10:antiox10030469. [PMID: 33809669 PMCID: PMC8002266 DOI: 10.3390/antiox10030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
Down syndrome (DS) is a major genetic cause of intellectual disability. DS pathogenesis has not been fully elucidated, and no specific pharmacological therapy is available. DYRK1A overexpression, oxidative stress and mitochondrial dysfunction were described in trisomy 21. Epigallocatechin-3-gallate (EGCG) is a multimodal nutraceutical with antioxidant properties. EGCG inhibits DYRK1A overexpression and corrects DS mitochondrial dysfunction in vitro. The present study explores safety profiles in DS children aged 1–8 years treated with EGCG (10 mg/kg/die, suspended in omega-3, per os, in fasting conditions, for 6 months) and EGCG efficacy in restoring mitochondrial complex I and F0F1-ATP synthase (complex V) deficiency, assessed on PBMCs. The Griffiths Mental Developmental Scales—Extended Revised (GMDS-ER) was used for developmental profiling. Results show that decaffeinated EGCG (>90%) plus omega-3 is safe in DS children and effective in reverting the deficit of mitochondrial complex I and V activities. Decline of plasma folates was observed in 21% of EGCG-treated patients and should be carefully monitored. GMDS-ER scores did not show differences between the treated group compared to the DS control group. In conclusion, EGCG plus omega-3 can be safely administered under medical supervision in DS children aged 1–8 years to normalize mitochondria respiratory chain complex activities, while results on the improvement of developmental performance are still inconclusive.
Collapse
|
25
|
Guedj F, Siegel AE, Pennings JLA, Alsebaa F, Massingham LJ, Tantravahi U, Bianchi DW. Apigenin as a Candidate Prenatal Treatment for Trisomy 21: Effects in Human Amniocytes and the Ts1Cje Mouse Model. Am J Hum Genet 2020; 107:911-931. [PMID: 33098770 PMCID: PMC7675036 DOI: 10.1016/j.ajhg.2020.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Human fetuses with trisomy 21 (T21) have atypical brain development that is apparent sonographically in the second trimester. We hypothesize that by analyzing and integrating dysregulated gene expression and pathways common to humans with Down syndrome (DS) and mouse models we can discover novel targets for prenatal therapy. Here, we tested the safety and efficacy of apigenin, identified with this approach, in both human amniocytes from fetuses with T21 and in the Ts1Cje mouse model. In vitro, T21 cells cultured with apigenin had significantly reduced oxidative stress and improved antioxidant defense response. In vivo, apigenin treatment mixed with chow was administered prenatally to the dams and fed to the pups over their lifetimes. There was no significant increase in birth defects or pup deaths resulting from prenatal apigenin treatment. Apigenin significantly improved several developmental milestones and spatial olfactory memory in Ts1Cje neonates. In addition, we noted sex-specific effects on exploratory behavior and long-term hippocampal memory in adult mice, and males showed significantly more improvement than females. We demonstrated that the therapeutic effects of apigenin are pleiotropic, resulting in decreased oxidative stress, activation of pro-proliferative and pro-neurogenic genes (KI67, Nestin, Sox2, and PAX6), reduction of the pro-inflammatory cytokines INFG, IL1A, and IL12P70 through the inhibition of NFκB signaling, increase of the anti-inflammatory cytokines IL10 and IL12P40, and increased expression of the angiogenic and neurotrophic factors VEGFA and IL7. These studies provide proof of principle that apigenin has multiple therapeutic targets in preclinical models of DS.
Collapse
Affiliation(s)
- Faycal Guedj
- Prenatal Genomics and Therapy Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA.
| | - Ashley E Siegel
- Prenatal Genomics and Therapy Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, BA 3720, the Netherlands
| | - Fatimah Alsebaa
- Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA
| | - Lauren J Massingham
- Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA
| | - Umadevi Tantravahi
- Department of Pathology, Women and Infants' Hospital, Providence, RI 02912, USA
| | - Diana W Bianchi
- Prenatal Genomics and Therapy Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA.
| |
Collapse
|
26
|
The BACH1/Nrf2 Axis in Brain in Down Syndrome and Transition to Alzheimer Disease-Like Neuropathology and Dementia. Antioxidants (Basel) 2020; 9:antiox9090779. [PMID: 32839417 PMCID: PMC7554729 DOI: 10.3390/antiox9090779] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability that is associated with an increased risk to develop early-onset Alzheimer-like dementia (AD). The brain neuropathological features include alteration of redox homeostasis, mitochondrial deficits, inflammation, accumulation of both amyloid beta-peptide oligomers and senile plaques, as well as aggregated hyperphosphorylated tau protein-containing neurofibrillary tangles, among others. It is worth mentioning that some of the triplicated genes encoded are likely to cause increased oxidative stress (OS) conditions that are also associated with reduced cellular responses. Published studies from our laboratories propose that increased oxidative damage occurs early in life in DS population and contributes to age-dependent neurodegeneration. This is the result of damaged, oxidized proteins that belong to degradative systems, antioxidant defense system, neuronal trafficking. and energy metabolism. This review focuses on a key element that regulates redox homeostasis, the transcription factor Nrf2, which is negatively regulated by BACH1, encoded on chromosome 21. The role of the Nrf2/BACH1 axis in DS is under investigation, and the effects of triplicated BACH1 on the transcriptional regulation of Nrf2 are still unknown. In this review, we discuss the physiological relevance of BACH1/Nrf2 signaling in the brain and how the dysfunction of this system affects the redox homeostasis in DS neurons and how this axis may contribute to the transition of DS into DS with AD neuropathology and dementia. Further, some of the evidence collected in AD regarding the potential contribution of BACH1 to neurodegeneration in DS are also discussed.
Collapse
|
27
|
Dierssen M, Fructuoso M, Martínez de Lagrán M, Perluigi M, Barone E. Down Syndrome Is a Metabolic Disease: Altered Insulin Signaling Mediates Peripheral and Brain Dysfunctions. Front Neurosci 2020; 14:670. [PMID: 32733190 PMCID: PMC7360727 DOI: 10.3389/fnins.2020.00670] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Down syndrome (DS) is the most frequent chromosomal abnormality that causes intellectual disability, resulting from the presence of an extra complete or segment of chromosome 21 (HSA21). In addition, trisomy of HSA21 contributes to altered energy metabolism that appears to be a strong determinant in the development of pathological phenotypes associated with DS. Alterations include, among others, mitochondrial defects, increased oxidative stress levels, impaired glucose, and lipid metabolism, finally resulting in reduced energy production and cellular dysfunctions. These molecular defects seem to account for a high incidence of metabolic disorders, i.e., diabetes and/or obesity, as well as a higher risk of developing Alzheimer’s disease (AD) in DS. A dysregulation of the insulin signaling with reduced downstream pathways represents a common pathophysiological aspect in the development of both peripheral and central alterations leading to diabetes/obesity and AD. This is further strengthened by evidence showing that the molecular mechanisms responsible for such alterations appear to be similar between peripheral organs and brain. Considering that DS subjects are at high risk to develop either peripheral or brain metabolic defects, this review will discuss current knowledge about the link between trisomy of HSA21 and defects of insulin and insulin-related pathways in DS. Drawing the molecular signature underlying these processes in DS is a key challenge to identify novel drug targets and set up new prevention strategies aimed to reduce the impact of metabolic disorders and cognitive decline.
Collapse
Affiliation(s)
- Mara Dierssen
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marta Fructuoso
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Hart SJ, Zimmerman K, Linardic CM, Cannon S, Pastore A, Patsiogiannis V, Rossi P, Santoro SL, Skotko BG, Torres A, Valentini D, Vellody K, Worley G, Kishnani PS. Detection of iron deficiency in children with Down syndrome. Genet Med 2020; 22:317-325. [PMID: 31417190 PMCID: PMC8039980 DOI: 10.1038/s41436-019-0637-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Current American Academy of Pediatrics guidelines for children with Down syndrome (DS) recommend a complete blood count (CBC) at birth and hemoglobin annually to screen for iron deficiency (ID) and ID anemia (IDA) in low-risk children. We aimed to determine if macrocytosis masks the diagnosis of ID/IDA and to evaluate the utility of biochemical and red blood cell indices for detecting ID/IDA in DS. METHODS We reviewed data from 856 individuals from five DS specialty clinics. Data included hemoglobin, mean corpuscular volume, red cell distribution width (RDW), percent transferrin saturation (TS), ferritin, and c-reactive protein. Receiver operating characteristic curves were calculated. RESULTS Macrocytosis was found in 32% of the sample. If hemoglobin alone was used for screening, all individuals with IDA would have been identified, but ID would have been missed in all subjects. RDW had the highest discriminability of any single test for ID/IDA. The combination of RDW with ferritin or TS led to 100% sensitivity, and RDW combined with ferritin showed the highest discriminability for ID/IDA. CONCLUSION We provide evidence to support that a CBC and ferritin be obtained routinely for children over 1 year old with DS rather than hemoglobin alone for detection of ID.
Collapse
Affiliation(s)
- Sarah J Hart
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Kanecia Zimmerman
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Corinne M Linardic
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Sheila Cannon
- Down Syndrome Center of Western Pennsylvania, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Pastore
- Laboratory of Molecular Genetics and Functional Genomics, Division of Genetic and Rare Disease, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Vasiliki Patsiogiannis
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Rossi
- Laboratory of Molecular Genetics and Functional Genomics, Division of Genetic and Rare Disease, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
- Department of Pediatrics, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Stephanie L Santoro
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Brian G Skotko
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Amy Torres
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Diletta Valentini
- Department of Pediatrics, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Kishore Vellody
- Down Syndrome Center of Western Pennsylvania, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Gordon Worley
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
29
|
Gomez W, Morales R, Maracaja-Coutinho V, Parra V, Nassif M. Down syndrome and Alzheimer's disease: common molecular traits beyond the amyloid precursor protein. Aging (Albany NY) 2020; 12:1011-1033. [PMID: 31918411 PMCID: PMC6977673 DOI: 10.18632/aging.102677] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) is the most prevalent type of dementia. Down syndrome (DS) is the leading genetic risk factor for Early-Onset AD, prematurely presenting the classic pathological features of the brain with AD. Augmented gene dosage, including the APP gene, could partially cause this predisposition. Recent works have revealed that alterations in chromosome location due to the extra Chromosome 21, as well as epigenetic modifications, could promote changes in gene expression other than those from Chromosome 21. As a result, similar pathological features and cellular dysfunctions in DS and AD, including impaired autophagy, lysosomal activity, and mitochondrial dysfunction, could be controlled beyond APP overexpression. In this review, we highlight some recent data regarding the origin of the shared features between DS and AD and explore the mechanisms concerning cognitive deficiencies in DS associated with dementia, which could shed some light into the search for new therapeutic targets for AD treatment.
Collapse
Affiliation(s)
- Wileidy Gomez
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile.,Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,CIBQA, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Center for Exercise, Metabolism, and Cancer Studies (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Autophagy Research Center, Universidad de Chile, Santiago, Chile
| | - Melissa Nassif
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
30
|
Abstract
During the past decades, life expectancy of subjects with Down syndrome (DS) has greatly improved, but age-specific mortality rates are still important and DS subjects are characterized by an acceleration of the ageing process, which affects particularly the immune and central nervous systems. In this chapter, we will first review the characteristics of the ageing phenomenon in brain and in immune system in DS and we will then discuss the biological hallmarks of ageing in this specific population. Finally, we will also consider in detail the knowledge on epigenetics in DS, particularly DNA methylation.
Collapse
|
31
|
Abstract
Virtually all adults with Down syndrome (DS) show the neuropathological changes of Alzheimer disease (AD) by the age of 40 years. This association is partially due to overexpression of amyloid precursor protein, encoded by APP, as a result of the location of this gene on chromosome 21. Amyloid-β accumulates in the brain across the lifespan of people with DS, which provides a unique opportunity to understand the temporal progression of AD and the epigenetic factors that contribute to the age of dementia onset. This age dependency in the development of AD in DS can inform research into the presentation of AD in the general population, in whom a longitudinal perspective of the disease is not often available. Comparison of the risk profiles, biomarker profiles and genetic profiles of adults with DS with those of individuals with AD in the general population can help to determine common and distinct pathways as well as mechanisms underlying increased risk of dementia. This Review evaluates the similarities and differences between the pathological cascades and genetics underpinning DS and AD with the aim of providing a platform for common exploration of these disorders.
Collapse
Affiliation(s)
- Ira T Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California, Irvine, CA, USA.
| | - Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
32
|
Huang J, Chen S, Hu L, Niu H, Sun Q, Li W, Tan G, Li J, Jin L, Lyu J, Zhou H. Mitoferrin-1 is Involved in the Progression of Alzheimer's Disease Through Targeting Mitochondrial Iron Metabolism in a Caenorhabditis elegans Model of Alzheimer's Disease. Neuroscience 2018; 385:90-101. [PMID: 29908215 DOI: 10.1016/j.neuroscience.2018.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
In mammals, mitoferrin-1 and mitoferrin-2, two homologous proteins of the mitochondrial solute carrier family are required for iron delivery into mitochondria. However, there is only one kind, called W02B12 (mitoferrin-1 or mfn-1), in Caenorhabditis elegans and its regulatory mechanism is unknown. In this study, we used C. elegans strains CL2006 and GMC101 as models to investigate what role mitoferrin-1 played in Alzheimer's disease (AD). We found that knockdown of mitoferrin-1 by feeding-RNAi treatment extended lifespans of both strains of C. elegans. In addition, it reduced the paralysis rate in the GMC101 strain. These results suggest that mitoferrin-1 may be involved in the progression of Alzheimer's disease. Knockdown of mitoferrin-1 was seen to disturb mitochondrial morphology in the CB5600 strain. We tested whether knockdown of mitoferrin-1 could influence mitochondrial metabolism. Analysis of mitochondrial iron metabolism and mitochondrial ROS showed that knockdown of mitoferrin-1 could reduce mitochondrial iron content and reduce the level of mitochondrial ROS in the CL2006 and GMC101 strains. These results confirm that knockdown of mitoferrin-1 can slow the progress of disease in Alzheimer model of C. elegans and suggest that mitoferrin-1 plays a major role in mediating mitochondrial iron metabolism in this process.
Collapse
Affiliation(s)
- Jiatao Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sixi Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Li Hu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huan Niu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qianqian Sun
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenna Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guoqian Tan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghui Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - LongJin Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
33
|
Butterfield DA. Perspectives on Oxidative Stress in Alzheimer’s Disease and Predictions of Future Research Emphases. J Alzheimers Dis 2018; 64:S469-S479. [DOI: 10.3233/jad-179912] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
34
|
Antioxidant Enzyme Activities in Rabbits Under Oxidative Stress Induced By High Fat Diet. J Vet Res 2018; 62:199-205. [PMID: 30364903 PMCID: PMC6200285 DOI: 10.2478/jvetres-2018-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/10/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION The aim of this study was to investigate whether the type and form of oil (raw/non-oxidised (N) or post-frying/oxidised (O)) consumed in high-fat diets affect the oxidative status of an organism, as observed by malondialdehyde (MDA) concentration as an oxidative factor and antioxidant enzyme activity. MATERIAL AND METHODS Fats in the diet came from rapeseed oil (R) and olive oil (O). RESULTS The applied diet caused a decrease in MDA concentration (μmol/L) in serum in group RN from 2.94 ± 0.87 to 1.76 ± 0.13, in group ON from 2.45 ± 0.62 to 1.50 ± 0.10, and in group OO from 2.70 ± 1.16 to 1.84 ± 0.36. Meanwhile, MDA concentration (mmol/L) increased in blood haemolysate in group RO from 0.15 ± 0.07 to 0.22 ± 0.03 and in group OO from 0.17 ± 0.02 to 0.22 ± 0.02. The observed changes caused a response of the enzymatic antioxidant system in both models, especially followed by an increase in activities of total superoxide dismutase and its mitochondrial isoenzyme in all experimental groups, while its cytosolic isoenzyme activity increased only in ON and OO groups. Increased activity of glutathione peroxidase (GPX) in groups RN and RO and of catalase (CAT) in groups ON and OO was observed. Significant differences in responses to the different types and forms of oils were probably caused by the different oxidative stability of the studied oils. CONCLUSION This diet disturbed the body's oxidative status; however, during the six-month study the enzymatic antioxidant system remained effective.
Collapse
|
35
|
Head E, Helman AM, Powell D, Schmitt FA. Down syndrome, beta-amyloid and neuroimaging. Free Radic Biol Med 2018; 114:102-109. [PMID: 28935420 PMCID: PMC5748259 DOI: 10.1016/j.freeradbiomed.2017.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
This review focuses on the role of Aβ in AD pathogenesis in Down syndrome and current approaches for imaging Aβ in vivo. We will describe how Aβ deposits with age, the posttranslational modifications that can occur, and detection in biofluids. Three unique case studies describing partial trisomy 21 cases without APP triplication, and the occurrences of low level mosaic trisomy 21 in an early onset AD patient are presented. Brain imaging for Aβ includes those by positron emission tomography and ligands (Pittsburgh Compound B, Florbetapir, and FDDNP) that bind Aβ have been published and are summarized here. In combination, we have learned a great deal about Aβ in DS in terms of characterizing age of onset of this pathology and it is exciting to note that there is a clinical trial in DS targeting Aβ that may lead to clinical benefits.
Collapse
Affiliation(s)
- Elizabeth Head
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Pharmacology & Nutritional Sciences, Lexington, KY 40536, United States.
| | - Alex M Helman
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Pharmacology & Nutritional Sciences, Lexington, KY 40536, United States; University of Kentucky, Magnetic Resonance Imaging and Spectroscopy Center, Lexington, KY 40536, United States; University of Kentucky, Department of Neurology, Lexington, KY 40536, United States
| | - David Powell
- University of Kentucky, Magnetic Resonance Imaging and Spectroscopy Center, Lexington, KY 40536, United States
| | - Frederick A Schmitt
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Neurology, Lexington, KY 40536, United States
| |
Collapse
|
36
|
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown, Center on Aging, University of Kentucky, Lexington, KY 40506 USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|