1
|
Chen J, Zhou L, Li X, Wu X, Li Y, Si L, Deng Y. Protective effect of zerumbone on sepsis-induced acute lung injury through anti-inflammatory and antioxidative activity via NF-κB pathway inhibition and HO-1 activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2241-2255. [PMID: 37812239 DOI: 10.1007/s00210-023-02706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023]
Abstract
Sepsis is a systemic illness for which there are no effective preventive or therapeutic therapies. Zerumbone, a natural molecule, has anti-oxidative and anti-inflammatory properties that may help to prevent sepsis. In the present study, we have assessed the protective effect of zerumbone against sepsis-induced acute lung injury (ALI) and its underlying mechanisms. During the experiment, mice were divided into five groups: a sham group, a sepsis-induced ALI group, and three sepsis groups that are pre-treated with zerumbone at different concentrations. We found that zerumbone greatly decreased the sepsis-induced ALI using histological investigations. Also, zerumbone treatment reduced the sepsis-induced inflammatory cytokine concentrations as well as the number of infiltrating inflammatory cells in BALF compared to non-treated sepsis animals. The zerumbone-pretreated sepsis groups had reduced pulmonary myeloperoxidase (MPO) activity than the sepsis groups. Moreover, the mechanism underlying the protective action of zerumbone on sepsis is accomplished by the activation of antioxidant genes such as nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), superoxide dismutase (SOD), and heme oxygenase 1 (HO-1). The obtained results revealed that zerumbone inhibited the sepsis-induced ALI through its anti-inflammatory and antioxidative activity via inhibition of the NF-κB pathway and activation of HO-1 pathway. Our findings demonstrate that zerumbone pretreatment suppresses sepsis-induced ALI via antioxidative activities and anti-inflammatory, implying that zerumbone could be a viable preventive agent for sepsis-induced ALI.
Collapse
Affiliation(s)
- Jianjun Chen
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Liangliang Zhou
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Xinxin Li
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Xufeng Wu
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Yingbin Li
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yijun Deng
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China.
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China.
| |
Collapse
|
2
|
Jin S, Li Y, Luo C, Cheng X, Tao W, Li H, Wang W, Qin M, Xie G, Han F. Corydalis tomentella Franch. Exerts anti-inflammatory and analgesic effects by regulating the calcium signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117499. [PMID: 38042392 DOI: 10.1016/j.jep.2023.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis tomentella Franch. is a perennial cespitose plant commonly used to treat stomachaches as a folk medicine. The C. tomentella total alkaloids have good protective effects against acute liver injury and potential anti-hepatoma and anti-Alzheimer's disease activities. AIM OF THE STUDY To establish an effective purification process for total alkaloids from C. tomentella and investigate the mechanism of their anti-inflammatory effects. MATERIALS AND METHODS Corydalis tomentella were purified using macroporous resin. Then the crude and purified C. tomentella extracts (cCTE and pCTE) were qualitatively analyzed using UPLC-Triple-TOF-MS/MS. The cCTE and pCTE were used to investigate and compare their anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW264.7 cells. Doses at 100, 200 and 400 mg/kg/d of pCTE were used to study their anti-inflammatory and analgesic activities in mice with xylene-induced ear swelling and acetic acid-induced writhing tests. Content of nitric oxide (NO), interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were determined both in RAW264.7 cells and mice. Network pharmacology was used to predict the anti-inflammatory mechanism of C. tomentella, and the key enzymes were validated using qPCR and Western Blot analysis. Concentration of intracellular Ca2+ was detected using flow cytometric analysis. RESULTS The C. tomentella total alkaloid purity increased from 6.29% to 47.34% under optimal purification conditions. A total of 54 alkaloids were identified from CTE. Both cCTE and pCTE could suppress the LPS-induced production of NO, IL-6, IL-1β, and TNF-α in RAW264.7 cells. The pCTE exhibited a more potent anti-inflammatory effect; it also inhibited pain induced by xylene and acetic acid in mice. The calcium signaling pathway is associated with the anti-inflammatory and analgesic activities of C. tomentella. The mRNA expression of nitric oxide synthase (NOS) 2, NOS3 and calmodulin1 (CALM1) was regulated by C. tomentella through the reduction of inflammation-induced Ca2+ influx, and it also exhibited a more pronounced effect than the positive control (L-NG-nitro arginine methyl ester). CONCLUSIONS Purified C. tomentella extract shows anti-inflammatory effect both in vitro and in vivo. It exerts anti-inflammatory and analgesic effects through the calcium signaling pathway by down-regulating NOS2 and CALM1 expression and up-regulating NOS3 expression in LPS-induced RAW264.7 cells, and decreasing intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Shuyi Jin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yveting Li
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Chuan Luo
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China.
| | - Xinyi Cheng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Tao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hongting Li
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wanli Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Han
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China.
| |
Collapse
|
3
|
Zheng SY, Shao X, Qi Z, Yan M, Tao MH, Wu XM, Zhang L, Ma J, Li A, Chang MX. Zebrafish nos2a benefits bacterial proliferation via suppressing ROS and inducing NO production to impair the expressions of inflammatory cytokines and antibacterial genes. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109178. [PMID: 37863126 DOI: 10.1016/j.fsi.2023.109178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
The enzyme nitric oxide synthase 2 or inducible NOS (NOS2), reactive oxygen species (ROS) and nitric oxide (NO) are important participants in various inflammatory and immune responses. However, the functional significances of the correlations among piscine NOS2, ROS and NO during pathogen infection remain unclear. In teleost, there are two nos2 genes (nos2a and nos2b). It has been previously reported that zebrafish nos2a behaves as a classical inducible NOS, and nos2b exerts some functions similar to mammalian NOS3. In the present study, we reported the functional characterization of zebrafish nos2a during bacterial infection. We found that zebrafish nos2a promoted bacterial proliferation, accompanied by an increased susceptibility to Edwardsiella piscicida infection. The nagative regulation of zebrafish nos2a during E. piscicida infection was characterized by the impaired ROS levels, the induced NO production and the decreased expressions of proinflammatory cytokines, antibacterial genes and oxidant factors. Furthermore, although both inducing ROS and inhibiting NO production significantly inhibited bacterial proliferation, only inhibiting NO production but not inducing ROS significantly increased resistance to E. piscicida infection. More importantly, ROS supplementation and inhibition of NO completely abolished this detrimental consequence mediated by zebrafish nos2a during E. piscicida infection. All together, these results firstly demonstrate that the innate response mediated by zebrafish nos2a in promoting bacterial proliferation is dependent on the lower ROS level and higher NO production. The present study also reveals that inhibition of NO can be effective in the protection against E. piscicida infection.
Collapse
Affiliation(s)
- Si Yao Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinbin Shao
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, 325005, China
| | - Zhitao Qi
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Maocang Yan
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, 325005, China
| | - Min Hui Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lining Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, 325005, China
| | - Jianzhong Ma
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, 325005, China
| | - An Li
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, 325005, China.
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
4
|
Chattopadhyay A, Joseph JP, Jagdish S, Chaudhuri S, Ramteke NS, Karhale AK, Waturuocha U, Saini DK, Nandi D. High throughput screening identifies auranofin and pentamidine as potent compounds that lower IFN-γ-induced Nitric Oxide and inflammatory responses in mice: DSS-induced colitis and Salmonella Typhimurium-induced sepsis. Int Immunopharmacol 2023; 122:110569. [PMID: 37392571 DOI: 10.1016/j.intimp.2023.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Interferon-gamma (IFN-γ) is a type II interferon produced primarily by T cells and natural killer cells. IFN-γ induces the expression of inducible nitric oxide synthase (NOS2) to catalyze Nitric Oxide (NO) production in various immune and non-immune cells. Excessive IFN-γ-activated NO production is implicated in several inflammatory diseases, including peritonitis and inflammatory bowel diseases. In this study, we screened the LOPAC®1280 library in vitro on the H6 mouse hepatoma cell line to identify novel non-steroidal small molecule inhibitors of IFN-γ-induced NO production. Compounds with the highest inhibitory activity were validated, which led to identifying the lead compounds: pentamidine, azithromycin, rolipram, and auranofin. Auranofin was the most potent compound determined based on IC50 and goodness of fit analyses. Mechanistic investigations revealed that majority of the lead compounds suppress the IFN-γ-induced transcription of Nos2 without negatively affecting NO-independent processes, such as the IFN-γ-induced transcription of Irf1, Socs1 and MHC class 1 surface expression. However, all four compounds lower IFN-γ-induced reactive oxygen species amounts. In addition, auranofin significantly reduced IFN-γ-mediated NO and IL6 production in resident as well as thioglycolate-elicited peritoneal macrophages (PMs). Finally, in vivo testing of the lead compounds in the pre-clinical DSS-induced ulcerative colitis mice model revealed pentamidine and auranofin to be the most potent and protective lead compounds. Also, pentamidine and auranofin greatly increase the survival of mice in another inflammatory model: Salmonella Typhimurium-induced sepsis. Overall, this study identifies novel anti-inflammatory compounds targeting IFN-γ-induced NO-dependent processes to alleviate two distinct inflammatory models of disease.
Collapse
Affiliation(s)
- Avik Chattopadhyay
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Joel P Joseph
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sirisha Jagdish
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Somak Chaudhuri
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nikita S Ramteke
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Uchenna Waturuocha
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Wang C, Yin L, Fu P, Lu G, Zhai X, Yang C. Anti-inflammatory effect of ApoE23 on Salmonella typhimurium-induced sepsis in mice. Open Med (Wars) 2023; 18:20230767. [PMID: 37533741 PMCID: PMC10390754 DOI: 10.1515/med-2023-0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Two independent experiments were performed with three groups each (sepsis control, sepsis, and sepsis with apoE23 treatment) to investigate the anti-inflammatory effect of apolipoprotein 23 (apoE23) in a mouse model of sepsis induced by S. typhimurium. Survival rates; plasma level variations in tumor necrosis factor (TNF)-α, interleukin (IL)-6, and lipopolysaccharide (LPS); S. typhimurium colony-forming units in the spleen tissue; and mRNA and protein expression levels of low-density lipoprotein receptor (LDLR), LDLR-related protein (LRP), syndecan-1, and scavenger receptor B1 were evaluated in the livers of mice from the three groups. Results found that the survival rate of septic mice treated with apoE23 was 100% within 48 h, while it was only 40% in septic mice without apoE23 treatment (P < 0.001). The plasma LPS, TNF-α, and IL-6 levels and the S. typhimurium load in mice in the apoE23-treated group were significantly lower than those in septic mice (P < 0.05). Moreover, apoE23 restored the downregulated expression of LDLR and LRP in the liver tissue of septic mice. So apoE23 exhibits an anti-inflammatory effect in the mouse model of S. typhimurium-induced sepsis. Further studies are required to understand the mechanisms underlying the anti-inflammatory effects of apoE23.
Collapse
Affiliation(s)
- Chuanqing Wang
- Department of Nosocomial Infection Control and the Clinical Microbiology Laboratory, Children’s Hospital of Fudan University, Shanghai200032, China
- Department of Nosocomial Infection Control, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Lijun Yin
- Department of Nosocomial Infection Control, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Pan Fu
- Department of the Clinical Microbiology Laboratory, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Xiaowen Zhai
- Department of Hematology, Children’s Hospital of Fudan University, Shanghai, 399 Wanyuan Road, Shanghai200032, China
| | - Changsheng Yang
- The Institute of Cardiovascular Diseases of Shanghai, Key Laboratory of Viral Heart Diseases, Ministry of Health, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai200032, China
| |
Collapse
|
6
|
Rananaware SR, Pathak S, Majumdar S, Joseph JP, Ramteke NS, Adiga V, Nandi D. Dynamic changes in thymic sub-populations during acute and long-term infections with virulent and virulence-attenuated Salmonella Typhimurium strains in C57BL/6 and autoimmune-prone lpr mice. Microb Pathog 2023; 177:106034. [PMID: 36813006 DOI: 10.1016/j.micpath.2023.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
SALMONELLA Typhimurium infection in mice results in drastic loss of immature CD4- CD8- double negative (DN) and CD4+ CD8+ double positive (DP) thymic subsets compared to mature single positive (SP) subsets. We investigated changes in thymocyte sub-populations post infection with a wild type (WT) virulent strain and ΔrpoS, a virulence-attenuated strain, of Salmonella Typhimurium in C57BL/6 (B6) and Fas-deficient autoimmune-prone lpr mice. The WT strain caused acute thymic atrophy with greater loss of thymocytes in lpr mice compared to B6 mice. Infection with ΔrpoS caused progressive thymic atrophy in B6 and lpr mice. Analysis of thymocyte subsets revealed that immature thymocytes including the DN, immature single positive (ISP), and DP thymocytes underwent extensive loss. SP thymocytes were more resistant to loss in WT-infected B6 mice, whereas WT-infected lpr and ΔrpoS-infected mice exhibited depletion of SP thymocytes. Overall, thymocyte sub-populations exhibited differential susceptibilities depending on bacterial virulence and the host background.
Collapse
Affiliation(s)
| | - Sanmoy Pathak
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Joel P Joseph
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Nikita S Ramteke
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
7
|
ERdj5 protects goblet cells from endoplasmic reticulum stress-mediated apoptosis under inflammatory conditions. Exp Mol Med 2023; 55:401-412. [PMID: 36759578 PMCID: PMC9981579 DOI: 10.1038/s12276-023-00945-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
Endoplasmic reticulum stress is closely associated with the onset and progression of inflammatory bowel disease. ERdj5 is an endoplasmic reticulum-resident protein disulfide reductase that mediates the cleavage and degradation of misfolded proteins. Although ERdj5 expression is significantly higher in the colonic tissues of patients with inflammatory bowel disease than in healthy controls, its role in inflammatory bowel disease has not yet been reported. In the current study, we used ERdj5-knockout mice to investigate the potential roles of ERdj5 in inflammatory bowel disease. ERdj5 deficiency causes severe inflammation in mouse colitis models and weakens gut barrier function by increasing NF-κB-mediated inflammation. ERdj5 may not be indispensable for goblet cell function under steady-state conditions, but its deficiency induces goblet cell apoptosis under inflammatory conditions. Treatment of ERdj5-knockout mice with the chemical chaperone ursodeoxycholic acid ameliorated severe colitis by reducing endoplasmic reticulum stress. These findings highlight the important role of ERdj5 in preserving goblet cell viability and function by resolving endoplasmic reticulum stress.
Collapse
|
8
|
Cazals A, Rau A, Estellé J, Bruneau N, Coville JL, Menanteau P, Rossignol MN, Jardet D, Bevilacqua C, Bed’Hom B, Velge P, Calenge F. Comparative analysis of the caecal tonsil transcriptome in two chicken lines experimentally infected with Salmonella Enteritidis. PLoS One 2022; 17:e0270012. [PMID: 35976909 PMCID: PMC9384989 DOI: 10.1371/journal.pone.0270012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Managing Salmonella enterica Enteritidis (SE) carriage in chicken is necessary to ensure human food safety and enhance the economic, social and environmental sustainability of chicken breeding. Salmonella can contaminate poultry products, causing human foodborne disease and economic losses for farmers. Both genetic selection for a decreased carriage and gut microbiota modulation strategies could reduce Salmonella propagation in farms. Two-hundred and twenty animals from the White Leghorn inbred lines N and 61 were raised together on floor, infected by SE at 7 days of age, transferred into isolators to prevent oro-fecal recontamination and euthanized at 12 days post-infection. Caecal content DNA was used to measure individual Salmonella counts (ISC) by droplet digital PCR. A RNA sequencing approach was used to measure gene expression levels in caecal tonsils after infection of 48 chicks with low or high ISC. The analysis between lines identified 7516 differentially expressed genes (DEGs) corresponding to 62 enriched Gene Ontology (GO) Biological Processes (BP) terms. A comparison between low and high carriers allowed us to identify 97 DEGs and 23 enriched GO BP terms within line 61, and 1034 DEGs and 288 enriched GO BP terms within line N. Among these genes, we identified several candidate genes based on their putative functions, including FUT2 or MUC4, which could be involved in the control of SE infection, maybe through interactions with commensal bacteria. Altogether, we were able to identify several genes and pathways associated with differences in SE carriage level. These results are discussed in relation to individual caecal microbiota compositions, obtained for the same animals in a previous study, which may interact with host gene expression levels for the control of the caecal SE load.
Collapse
Affiliation(s)
- Anaïs Cazals
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Andrea Rau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Peronne, France
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Nicolas Bruneau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Jean-Luc Coville
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | - Deborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Bertrand Bed’Hom
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Philippe Velge
- UMR ISP, INRAE, Université F. Rabelais, Nouzilly, France
| | - Fanny Calenge
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
9
|
Singh J, Lee Y, Kellum JA. A new perspective on NO pathway in sepsis and ADMA lowering as a potential therapeutic approach. Crit Care 2022; 26:246. [PMID: 35962414 PMCID: PMC9373887 DOI: 10.1186/s13054-022-04075-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The nitric oxide pathway plays a critical role in vascular homeostasis. Increased levels of systemic nitric oxide (NO) are observed in preclinical models of sepsis and endotoxemia. This has led to the postulation that vasodilation by inducible nitric oxide synthase (iNOS) generated NO may be a mechanism of hypotension in sepsis. However, contrary to the expected pharmacological action of a nitric oxide synthase (NOS) inhibitor, clinical studies with L-NAME produced adverse cardiac and pulmonary events, and higher mortality in sepsis patients. Thus, the potential adverse effects of NO in human sepsis and shock have not been fully established. In recent years, the emerging new understanding of the NO pathway has shown that an endogenously produced inhibitor of NOS, asymmetric dimethylarginine (ADMA), a host response to infection, may play an important role in the pathophysiology of sepsis as well as organ damage during ischemia–reperfusion. ADMA induces microvascular dysfunction, proinflammatory and prothrombotic state in endothelium, release of inflammatory cytokines, oxidative stress and mitochondrial dysfunction. High levels of ADMA exist in sepsis patients, which may produce adverse effects like those observed with L-NAME. Several studies have demonstrated the association of plasma ADMA levels with mortality in sepsis patients. Preclinical studies in sepsis and ischemia–reperfusion animal models have shown that lowering of ADMA reduced organ damage and improved survival. The clinical finding with L-NAME and the preclinical research on ADMA “bed to bench” suggest that ADMA lowering could be a potential therapeutic approach to attenuate progressive organ damage and mortality in sepsis. Testing of this approach is now feasible by using the pharmacological molecules that specifically lower ADMA.
Collapse
|
10
|
Kumar P, Soory A, Mustfa SA, Sarmah DT, Devvanshi H, Chatterjee S, Bossis G, Ratnaparkhi GS, Srikanth CV. Bidirectional regulation between AP-1 and SUMO genes modulates inflammatory signalling during Salmonella infection. J Cell Sci 2022; 135:276158. [PMID: 35904007 DOI: 10.1242/jcs.260096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Post-translational modifications (PTMs), such as SUMOylation, are known to modulate fundamental processes of a cell. Infectious agents such as Salmonella Typhimurium (STm) that causes gastroenteritis, utilizes PTM mechanism SUMOylation to highjack host cell. STm suppresses host SUMO-pathway genes Ubc9 and PIAS1 to perturb SUMOylation for an efficient infection. In the present study, the regulation of SUMO-pathway genes during STm infection was investigated. A direct binding of c-Fos, a component of AP-1 (Activator Protein-1), to promoters of both UBC9 and PIAS1 was observed. Experimental perturbation of c-Fos led to changes in expression of both Ubc9 and PIAS1. STm infection of fibroblasts with SUMOylation deficient c-Fos (c-FOS-KOSUMO-def-FOS) resulted in uncontrolled activation of target genes, resulting in massive immune activation. Infection of c-FOS-KOSUMO-def-FOS cells favored STm replication, indicating misdirected immune mechanisms. Finally, chromatin Immuno-precipitation assays confirmed a context dependent differential binding and release of AP-1 to/from target genes due to its Phosphorylation and SUMOylation respectively. Overall, our data point towards existence of a bidirectional cross-talk between c-Fos and the SUMO pathway and highlighting its importance in AP-1 function relevant to STm infection and beyond.
Collapse
Affiliation(s)
- Pharvendra Kumar
- Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India.,Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | | | | | - Dipanka Tanu Sarmah
- Translational Health Science and Technology Institute, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| | - Himadri Devvanshi
- Translational Health Science and Technology Institute, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| | - Samrat Chatterjee
- Translational Health Science and Technology Institute, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), Univ Montpellier, CNRS, Montpellier, France
| | | | - C V Srikanth
- Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| |
Collapse
|
11
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
12
|
Zhang Y, Chen S, Tian W, Zhu H, Li W, Dai W, Zhang X, Gu X, Su D. Emerging Trends and Hot Spots in Sepsis-Associated Encephalopathy Research From 2001 to 2021: A Bibliometric Analysis. Front Med (Lausanne) 2022; 9:817351. [PMID: 35295600 PMCID: PMC8918530 DOI: 10.3389/fmed.2022.817351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Study Objectives To evaluate sepsis-associated encephalopathy (SAE) research and to quantitatively and qualitatively predict research hot spots using bibliometric analysis. Methods We extracted relevant publications from the Web of Science Core Collection on July 28, 2021. We investigated the retrieved data by bibliometric analysis (e.g. co-cited and cluster analysis, keyword co-occurrence) using the software CiteSpace and VOSviewer, the Online Analysis Platform of Literature Metrology (http://bibliometric.com/) and Bibliometrix to analyse and predict the trends and hot spots in this field. Main Results We identified 1,582 published articles and reviews on SAE from 2001 to 2021. During this period, the number of manuscripts on SAE increased steadily and peaked in 2021. The USA and China were the leading countries that had a critical impact on SAE research. Among all institutions, Vanderbilt University and Pittsburgh University held leading positions and became central in the collaboration network. Among all the journals, Critical Care Medicine published the maximum number of manuscripts in the field of SAE within 20 years. Dal-Pizzol Felipe was the most productive author (61 papers) and received the largest number of citations (930 citations). Co-citation cluster analysis revealed that the most popular terms on SAE in the manner of cluster labels were critical illness, sepsis-associated encephalopathy, polymicrobial sepsis, posterior reversible encephalopathy syndrome, rat brain, intensive care unit, prior sepsis, molecular hydrogen, inflammation drive, metabolic encephalopathies, delirium pathophysiology, and clinical neuroscience. Keyword burst detection indicated that neuroinflammation, blood-brain barrier (BBB) and mitochondria dysfunction were the current research hot spots. Conclusions Our study revealed that neuroinflammation, blood-brain barrier, and mitochondria dysfunction had been the research foci of SAE over the past 20 years. These have emerged as the basis for transformation from basic research to clinical application in finding effective methods for the prevention and treatment of SAE.
Collapse
|
13
|
Romero-Pinedo S, Barros DIR, Ruiz-Magaña MJ, Maganto-García E, Moreno de Lara L, Abadía-Molina F, Terhorst C, Abadía-Molina AC. SLAMF8 Downregulates Mouse Macrophage Microbicidal Mechanisms via PI3K Pathways. Front Immunol 2022; 13:910112. [PMID: 35837407 PMCID: PMC9273976 DOI: 10.3389/fimmu.2022.910112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Signaling lymphocytic activation molecule family 8 (SLAMF8) is involved in the negative modulation of NADPH oxidase activation. However, the impact of SLAMF8 downregulation on macrophage functionality and the microbicide mechanism remains elusive. To study this in depth, we first analyzed NADPH oxidase activation pathways in wild-type and SLAMF8-deficient macrophages upon different stimulus. Herein, we describe increased phosphorylation of the Erk1/2 and p38 MAP kinases, as well as increased phosphorylation of NADPH oxidase subunits in SLAMF8-deficient macrophages. Furthermore, using specific inhibitors, we observed that specific PI3K inhibition decreased the differences observed between wild-type and SLAMF8-deficient macrophages, stimulated with either PMA, LPS, or Salmonella typhimurium infection. Consequently, SLAMF8-deficient macrophages also showed increased recruitment of small GTPases such as Rab5 and Rab7, and the p47phox subunit to cytoplasmic Salmonella, suggesting an impairment of Salmonella-containing vacuole (SCV) progression in SLAMF8-deficient macrophages. Enhanced iNOS activation, NO production, and IL-6 expression were also observed in the absence of SLAMF8 upon Salmonella infection, either in vivo or in vitro, while overexpression of SLAMF8 in RAW264.7 macrophages showed the opposite phenotype. In addition, SLAMF8-deficient macrophages showed increased activation of Src kinases and reduced SHP-1 phosphate levels upon IFNγ and Salmonella stimuli in comparison to wild-type macrophages. In agreement with in vitro results, Salmonella clearance was augmented in SLAMF8-deficient mice compared to that in wild-type mice. Therefore, in conclusion, SLAMF8 intervention upon bacterial infection downregulates mouse macrophage activation, and confirmed that SLAMF8 receptor could be a potential therapeutic target for the treatment of severe or unresolved inflammatory conditions.
Collapse
Affiliation(s)
- Salvador Romero-Pinedo
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Domingo I Rojas Barros
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - María José Ruiz-Magaña
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Elena Maganto-García
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Laura Moreno de Lara
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Francisco Abadía-Molina
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Instituto de Nutrición Y Tecnología de los Alimentos "José Mataix", (INYTIA), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ana C Abadía-Molina
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.,Departamento de Bioqu´ımica y Biolog´ıa Molecular III e Inmunolog´ıa, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
14
|
Dorvigny BM, Tavares LS, de Almeida IA, Santana LN, de Souza Silva E, de Souza JKU, Soares AF, da Silva Júnior VA, Lima-Filho JV. Antiinflammatory and antiinfective effect of caffeine in a mouse model of disseminated salmonellosis. Phytother Res 2021; 36:1652-1663. [PMID: 34910341 DOI: 10.1002/ptr.7349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/09/2022]
Abstract
Caffeine has been reported for its antiinflammatory properties by stimulating phagocytosis. In this study, we investigated the antiinflammatory and antiinfective potential of caffeine in murine macrophage cell cultures and Swiss mice infected with virulent Salmonella enterica serotype typhimurium. Peritoneal macrophages (pMØ) were treated with caffeine on 96-well plates for 24 hr and then infected with Salmonella for 4 hr. In another experiment, the pMØ were first infected with the bacterium for 4 hr and then treated with caffeine for 24 hr. In addition, Swiss mice were inoculated, intraperitoneally, with S. typhimurium and then received caffeine intravenously. Control groups received phosphate-buffered saline (PBS) or dexamethasone. We found that treatments with caffeine increased the macrophage cell viability and reduced the intracellular bacterial load. The administration of caffeine to Swiss mice reduced the infiltration of leukocytes into the peritoneal cavity after the bacterial challenge. Furthermore, the bacterial burdens in the peritoneal fluid, bloodstream, spleen, and liver were decreased by caffeine treatment. The expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, and inducible nitric oxide synthase (iNOs) were down-regulated after infection in caffeine-treated mice. We can conclude that caffeine has both antiinflammatory and antiinfective properties that can be useful for management of bacterial infections along with antibiotics.
Collapse
Affiliation(s)
| | | | | | - Lucas Nunes Santana
- Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | | - Anísio Francisco Soares
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
15
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
16
|
Verma T, Majumdar S, Yadav S, Ahmed SM, Umapathy S, Nandi D. Cell-free hemoglobin is a marker of systemic inflammation in mouse models of sepsis: a Raman spectroscopic study. Analyst 2021; 146:4022-4032. [PMID: 34032232 DOI: 10.1039/d1an00066g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sepsis is a life-threatening condition caused by heightened host immune responses post infection. Despite intensive research, most of the existing diagnostic methods remain non-specific, labour-intensive, time-consuming or are not sensitive enough for rapid and timely diagnosis of the onset and progression of sepsis. The present work was undertaken to explore the potential of Raman spectroscopy to identify the biomarkers of sepsis in a label-free and minimally invasive manner using different mouse models of inflammation. The sera of BALB/c mice infected with Salmonella Typhimurium reveal extensive hemolysis, as indicated by the Raman bands that are characteristic of the porphyrin ring of hemoglobin (668, 743, 1050, 1253 and 1397 cm-1) which increase in a kinetic manner. These markers are also observed in a lipopolysaccharide-induced endotoxic shock model, but not in a thioglycollate-induced sterile peritonitis model. These data demonstrate that hemolysis is a signature of systemic, but not localised, inflammation. To further validate our observations, sepsis was induced in the nitric oxide synthase 2 (Nos2-/-) deficient strain which is more sensitive to infection. Interestingly, Nos2-/- mice exhibit a higher degree of hemolysis than C57BL/6 mice. Sepsis-induced hemolysis was also confirmed using resonance Raman spectroscopy with 442 nm excitation which demonstrated a pronounced increase in the resonant Raman bands at 670 and 1350 cm-1 in sera of the infected mice. This is the first study to identify inflammation-induced hemolysis in mouse models of sepsis using Raman spectral signatures for hemoglobin. The possible implications of this method in detecting hemolysis in different inflammatory pathologies, such as the ongoing COVID-19 pandemic, are discussed.
Collapse
Affiliation(s)
- Taru Verma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| | - Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shikha Yadav
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Syed Moiz Ahmed
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Siva Umapathy
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India. and Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Dipankar Nandi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India. and Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
17
|
Duan B, Shao L, Liu R, Msuthwana P, Hu J, Wang C. Lactobacillus rhamnosus GG defense against Salmonella enterica serovar Typhimurium infection through modulation of M1 macrophage polarization. Microb Pathog 2021; 156:104939. [PMID: 33964416 DOI: 10.1016/j.micpath.2021.104939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
Lactobacillus rhamnosus GG (LGG), a model probiotic strain, plays an important role in immune regulatory activity to prevent and treat intestinal inflammation or diarrhea. However, the effect of the immune modulation of LGG on macrophages to prevent Salmonella infection has not been thoroughly studied. In this study, C57BL/6 mice were pre-administered LGG for 7 days continuously, and then infected with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium). The results of the in vivo study indicated that LGG could reduce body weight loss, death rate and intestinal inflammatory response caused by S. Typhimurium. LGG also limited S. Typhimurium dissemination to liver and spleen, and thereby protected against infection. In vitro study, we observed that LGG enhanced the phagocytic and bactericidal ability of macrophages and upregulated M1 macrophage characters (e.g. iNOS, NO and IL-12) against S. Typhimurium. In addition, LGG also elevated IL-10 secretion, which was helpful to ameliorate intestinal inflammatory injury caused by S. Typhimurium. In conclusion, LGG could modulate M1 macrophage polarization and offer protective effects against S. Typhimurium infection.
Collapse
Affiliation(s)
- Bingjie Duan
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China
| | - Lina Shao
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China
| | - Ruihan Liu
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China
| | - Petunia Msuthwana
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China.
| |
Collapse
|
18
|
Pathak S, Gokhroo A, Kumar Dubey A, Majumdar S, Gupta S, Almeida A, Mahajan GB, Kate A, Mishra P, Sharma R, Kumar S, Vishwakarma R, Balakrishnan A, Atreya H, Nandi D. 7-Hydroxy Frullanolide, a sesquiterpene lactone, increases intracellular calcium amounts, lowers CD4 + T cell and macrophage responses, and ameliorates DSS-induced colitis. Int Immunopharmacol 2021; 97:107655. [PMID: 33901737 DOI: 10.1016/j.intimp.2021.107655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/19/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Sesquiterpene lactones are a class of anti-inflammatory molecules obtained from plants belonging to the Asteraceae family. In this study, the effects of 7-hydroxy frullanolide (7HF), a sesquiterpene lactone, in inhibiting CD4+ T cell and peritoneal macrophage responses were investigated. 7HF, in a dose dependent manner, lowers CD69 upregulation, IL2 production and CD4+ T cell cycling upon activation with the combination of anti-CD3 and anti-CD28. Further mechanistic studies demonstrated that 7HF, at early time points, increases intracellular Ca2+ amounts, over and above the levels induced upon activation. The functional relevance of 7HF-induced Ca2+ increase was confirmed using sub-optimal amounts of BAPTA, an intracellular Ca2+ chelator, which lowers lactate and rescues CD4+ T cell cycling. In addition, 7HF lowers T cell cycling with the combination of PMA and Ionomycin. However, 7HF increases CD4+ T cell cycling with sub-optimal activating signals: only PMA or anti-CD3. Furthermore, LPS-induced nitrite and IL6 production by peritoneal macrophages is inhibited by 7HF in a Ca2+-dependent manner. Studies with Ca2+ channel inhibitors, Ruthenium Red and 2-Aminoethoxydiphenyl borate, lowers the inhibitory effects of 7HF on CD4+ T cell and macrophage responses. In silico studies demonstrated that 7HF binds to Ca2+ channels, TRPV1, IP3R and SERCA, which is mechanistically important. Finally, intraperitoneal administration of 7HF lowers serum inflammatory cytokines, IFNγ and IL6, and reduces the effects of DSS-induced colitis with respect to colon length and colon damage. Overall, this study sheds mechanistic light on the anti-inflammatory potential of 7HF, a natural plant compound, in lowering immune responses.
Collapse
Affiliation(s)
- Sanmoy Pathak
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Abhijeet Gokhroo
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ashim Kumar Dubey
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Souradeep Gupta
- NMR Research Facility, Indian Institute of Science, Bangalore 560012, India
| | - Asha Almeida
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Girish B Mahajan
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Abhijeet Kate
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Prabhu Mishra
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Rajiv Sharma
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Sanjay Kumar
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Ram Vishwakarma
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Arun Balakrishnan
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Hanudatta Atreya
- NMR Research Facility, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
19
|
Rananaware SR, Pathak S, Chakraborty S, Bisen RY, Chattopadhyay A, Nandi D. Autoimmune-prone lpr mice exhibit a prolonged but lethal infection with an attenuated Salmonella Typhimurium strain. Microb Pathog 2020; 150:104684. [PMID: 33301858 DOI: 10.1016/j.micpath.2020.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/15/2022]
Abstract
Autoimmunity can potentially pre-dispose to, exacerbate or ameliorate pathogenic infections. The current study was designed to compare and understand the infection outcomes with Salmonella enterica serovar Typhimurium ATCC 14028s (S. Typhimurium) wild type (WT) and attenuated ΔrpoS strains, in autoimmune-prone lpr mice. C57BL/6 (B6) and B6/lpr (lpr) 6-8 weeks old mice were orally infected with S. Typhimurium WT and ΔrpoS strains. Disease outcomes were assessed with respect to survival, organ bacterial load, tissue damage and inflammation in infected mice. The acute infection stage (day 4) was examined and compared to the later stages (up to day 12) post ΔrpoS infection. S. Typhimurium WT exhibited an acute and lethal infection in both B6 and lpr mice. However, the ΔrpoS strain exhibited prolonged infection with reduced mortality in B6 mice but complete mortality in lpr mice. During late infection, bacterial load and serum IFNγ levels were higher in the ΔrpoS strain infected lpr mice compared to B6 mice. The ΔrpoS strain infected lpr mice also exhibited greater bacterial faecal shedding and greater tissue histopathological changes. Interestingly, ΔrpoS-infected B6 mice displayed minimal microbial load in the brain; however, sustained brain bacterial load was observed in ΔrpoS-infected lpr mice, corresponding to abnormal gait. Overall, S. Typhimurium ΔrpoS is competent in establishing infection but compromised in sustaining it. Nonetheless, lpr mice are less efficient in controlling this attenuated infection. The findings from the study demonstrate that genetic pre-disposition to autoimmunity is sufficient for greater host susceptibility to infection by attenuated S. Typhimurium strains.
Collapse
Affiliation(s)
- Supriya Rajendra Rananaware
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| | - Sanmoy Pathak
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| | - Subhashish Chakraborty
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| | - Rajeshwari Yadorao Bisen
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| | - Avik Chattopadhyay
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
20
|
Sousa BF, Silva AFBD, Lima-Filho JV, Agostinho AG, Oliveira DN, de Alencar NMN, de Freitas CDT, Ramos MV. Latex proteins downregulate inflammation and restores blood-coagulation homeostasis in acute Salmonella infection. Mem Inst Oswaldo Cruz 2020; 115:e200458. [PMID: 33237133 PMCID: PMC7682140 DOI: 10.1590/0074-02760200458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Calotropis procera latex protein fraction (LP) was previously shown to protect animals from septic shock. Further investigations showed that LP modulate nitric oxide and cytokines levels. OBJECTIVES To evaluate whether the protective effects of LP, against lethal bacterial infection, is observed in its subfractions (LPPII and LPPIII). METHODS Subfractions (5 and 10 mg/kg) were tested by i.p. administration, 24 h before challenging with lethal injection (i.p.) of Salmonella Typhimurium. LPPIII (5 mg/kg) which showed higher survival rate was assayed to evaluate bacterial clearance, histopathology, leukocyte recruitment, plasma coagulation time, cytokines and NO levels. FINDINGS LPPIII protected 70% of animals of death. The animals given LPPIII exhibited reduced bacterial load in blood and peritoneal fluid after 24 h compared to the control. LPPIII promoted macrophage infiltration in spleen and liver. LPPIII restored the coagulation time of infected animals, increased IL-10 and reduced NO in blood. MAIN CONCLUSIONS LPPIII recruited macrophages to the target organs of bacterial infection. This addressed inflammatory stimulus seems to reduce bacterial colonisation in spleen and liver, down regulate bacterial spread and contribute to avoid septic shock.
Collapse
Affiliation(s)
- Brandon Ferraz Sousa
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| | | | - José Vitor Lima-Filho
- Universidade Federal Rural de Pernambuco, Departamento de Biologia, Recife, PE, Brasil
| | - Anderson Gomes Agostinho
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| | | | | | | | - Márcio Viana Ramos
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| |
Collapse
|
21
|
Ni J, Zhao Y, Su J, Liu Z, Fang S, Li L, Deng J, Fan G. Toddalolactone Protects Lipopolysaccharide-Induced Sepsis and Attenuates Lipopolysaccharide-Induced Inflammatory Response by Modulating HMGB1-NF-κB Translocation. Front Pharmacol 2020; 11:109. [PMID: 32153412 PMCID: PMC7047824 DOI: 10.3389/fphar.2020.00109] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/28/2020] [Indexed: 01/17/2023] Open
Abstract
Toddalolactone (TA-8) is a main compound isolated from Toddalia asiatica (L.) Lam., and its anti-inflammatory activity and anti-inflammatory mechanism are less studied. In the present study, we investigated the anti-inflammatory effects of TA-8. Our experimental results showed that TA-8 inhibited the production of pro-inflammatory cytokines by both lipopolysaccharide (LPS)-activated RAW 264.7 cells and septic mice. Moreover, TA-8 suppressed the NF-κB transcriptional activity, reduced the nuclear translocation and phosphorylation of NF-κB, blocked the translocation of HMGB1 from the nucleus to cytosol, and decreased LPS-induced up-regulation of TLR4 and IKBKB expression, and decreased IκBα phosphorylation. In addition, the administration of TA-8 decreased LPS-induced liver damage markers (AST and ALT), attenuated infiltration of inflammatory cells and tissue damage of lung, liver, and kidney, and improved survival in septic mice. Taken together, these results suggested that toddalolactone protects LPS-induced sepsis and attenuates LPS-induced inflammatory response by modulating HMGB1-NF-κB translocation. TA-8 could potentially be a novel anti-inflammatory and immunosuppressive drug candidate in the treatment of sepsis and septic shock.
Collapse
Affiliation(s)
- Jingyu Ni
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxuan Zhao
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Su
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihao Liu
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiming Fang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Lactobacillus reuteri protects mice against Salmonella typhimurium challenge by activating macrophages to produce nitric oxide. Microb Pathog 2019; 137:103754. [PMID: 31539587 DOI: 10.1016/j.micpath.2019.103754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Lactobacillus reuteri, a typical intestinal symbiotic bacterium, plays an important role in maintaining intestinal flora stability and host health. However, the effect of Lactobacillus reuteri on peritoneal macrophages has not been thoroughly studied. Our study indicated that Lactobacillus reuteri could activate macrophages and that macrophages treated with Lactobacillus reuteri have an enhanced ability to phagocytose and to kill intracellular Salmonella typhimurium. Lactobacillus reuteri may reduce the inflammatory response caused by Salmonella typhimurium by regulating NO, thus effectively protecting mice against Salmonella typhimurium invasion and dissemination to the liver and spleen. Taken together, these data demonstrated the protective effect of Lactobacillus reuteri on macrophages and mice challenged with Salmonella typhimurium through in vitro and in vivo experiments.
Collapse
|
23
|
Pascual-Ramirez J, Koutrouvelis A. The nitric oxide pathway antagonists in septic shock: Meta-analysis of controlled clinical trials. J Crit Care 2019; 51:34-38. [DOI: 10.1016/j.jcrc.2019.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/09/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
|
24
|
Liu L, Dai W, Xiang C, Chi J, Zhang M. 1,10-Secoguaianolides from Artemisia austro-yunnanensis and Their Anti-Inflammatory Effects. Molecules 2018; 23:E1639. [PMID: 29976846 PMCID: PMC6099792 DOI: 10.3390/molecules23071639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 11/16/2022] Open
Abstract
Seven 1,10-secoguaianolides 1⁻7, including a new one (compound 1), were isolated from Artemisia austro-yunnanensis and identified by HRESIMS and other spectroscopic methods. Their anti-inflammatory effects were evaluated by the model of LPS-induced RAW264.7 cells in vitro. Bioassay results showed that six of them (1⁻4, 6 and 7), with the exception of 5, produce some cytotoxicity on RAW264.7 cells at its high dosage, can significantly decrease the release of NO, TNF-α, IL-1β, IL-6 and PGE2 in a dose dependent manner, and down-regulate the expression of proteins iNOS and COX-2. The mechanism study indicated they regulated the NF-κB dependent transcriptional activity through decreasing the phosphorylation of NF-κB. Further, the relationship between their structures and cytokines to anti-inflammatory were studied by PCA and discussed.
Collapse
Affiliation(s)
- Lan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Weifeng Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jun Chi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Mi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
25
|
Spurthi KM, Sarikhani M, Mishra S, Desingu PA, Yadav S, Rao S, Maity S, Tamta AK, Kumar S, Majumdar S, Jain A, Raghuraman A, Khan D, Singh I, Samuel RJ, Ramachandra SG, Nandi D, Sundaresan NR. Toll-like receptor 2 deficiency hyperactivates the FoxO1 transcription factor and induces aging-associated cardiac dysfunction in mice. J Biol Chem 2018; 293:13073-13089. [PMID: 29929978 DOI: 10.1074/jbc.ra118.001880] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/09/2018] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern-recognition receptors involved in innate immunity. Previous studies have shown that TLR2 inhibition protects the heart from acute stress, including myocardial infarction and doxorubicin-induced cardiotoxicity in animal models. However, the role of TLR2 in the development of aging-associated heart failure is not known. In this work, we studied aging-associated changes in structure and function of TLR2-deficient mice hearts. Whereas young TLR2-KO mice did not develop marked cardiac dysfunction, 8- and 12-month-old TLR2-KO mice exhibited spontaneous adverse cardiac remodeling and cardiac dysfunction in an age-dependent manner. The hearts of the 8-month-old TLR2-KO mice had increased fibrosis, cell death, and reactivation of fetal genes. Moreover, TLR2-KO hearts displayed reduced infiltration by macrophages, increased numbers of myofibroblasts and atrophic cardiomyocytes, and higher levels of the atrophy-related ubiquitin ligases MuRF-1 and atrogin-1. Mechanistically, TLR2 deficiency impaired the PI3K/Akt signaling pathway, leading to hyperactivation of the transcription factor Forkhead box protein O1 (FoxO1) and, in turn, to elevated expression of FoxO target genes involved in the regulation of muscle wasting and cell death. AS1842856-mediated chemical inhibition of FoxO1 reduced the expression of the atrophy-related ubiquitin ligases and significantly reversed the adverse cardiac remodeling while improving the contractile functions in the TLR2-KO mice. Interestingly, TLR2 levels decreased in hearts of older mice, and the activation of TLR1/2 signaling improved cardiac functions in these mice. These findings suggest that TLR2 signaling is essential for protecting the heart against aging-associated adverse remodeling and contractile dysfunction in mice.
Collapse
Affiliation(s)
- Kondapalli Mrudula Spurthi
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Mohsen Sarikhani
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sneha Mishra
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Perumal Arumugam Desingu
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shikha Yadav
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Swathi Rao
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sangeeta Maity
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ankit Kumar Tamta
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shweta Kumar
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shamik Majumdar
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Aditi Jain
- the Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India, and
| | - Aishwarya Raghuraman
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Danish Khan
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ishwar Singh
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Rosa J Samuel
- the Central Animal Facility, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subbaraya G Ramachandra
- the Central Animal Facility, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Dipankar Nandi
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Nagalingam R Sundaresan
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India,
| |
Collapse
|