1
|
Zhou J, Gao T, Tang W, Wang Z, Zhao L, Wang L. Cyclophilin D knockdown/knockout promotes microglia M2 polarization by inhibiting STAT1 to alleviate neuroinflammation in neonatal white matter injury. Brain Res 2025; 1856:149596. [PMID: 40132721 DOI: 10.1016/j.brainres.2025.149596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
The activation of microglia cells is intimately associated with the pathophysiology of neuroinflammation and neonatal white matter injury (WMI). Cyclophilin D (CypD), a matrix cyclophilin, is known to be one of the important regulators of mitochondrial permeability transition pore. Currently, CypD has been discovered the function of regulating inflammation. However, its impact on microglia in the context of neonatal WMI remains unclear. In our study, CypD inhibition ameliorated microglia activation, decreased pro-inflammatory factor levels, and increased anti-inflammatory factor levels in both neonatal WMI mice and oxygen glucose deprivation/reperfusion (OGD/R)-induced BV2 microglial cells. CypD knockout promoted myelination and rescued neurological function in mice following hypoxic-ischemic injury. In addition, CypD knockdown alleviated mitochondrial dysfunction of BV2 microglial cells. RNA-Seq indicated that CypD inhibition downregulated STAT1. Western blotting results verified that CypD inhibition significantly downregulated the phosphorylation level of STAT1. Our research revealed the protective role of CypD inhibition in neuroinflammation and mitochondrial function of microglia. Targeting CypD expression in microglia may be a potential therapeutic option for neonatal WMI.
Collapse
Affiliation(s)
- Jiayu Zhou
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ting Gao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province 510623, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ziming Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ling Zhao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
2
|
Shi Q, Liu Y, Yang W, Li Y, Wang C, Gao K. The covalent modification of STAT1 cysteines by sulforaphane promotes antitumor immunity via blocking IFN-γ-induced PD-L1 expression. Redox Biol 2025; 81:103543. [PMID: 39961271 PMCID: PMC11875811 DOI: 10.1016/j.redox.2025.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
Sulforaphane (SFN), a natural compound found in cruciferous vegetables, possesses well-documented antitumor properties. However, the precise functions and mechanisms of SFN in cancer suppression remain poorly understood. Here we provide evidence to demonstrate that SFN exerts more pronounced antitumor effects in immunocompetent mice compared to immunodeficient mice, suggesting the involvement of the host immune system in SFN-mediated tumor suppression. Furthermore, we reveal that SFN primarily acts through CD8+ cytotoxic T lymphocytes (CTLs) to enhance antitumor immunity by blocking the IFN-γ-mediated induction of PD-L1, a critical immune checkpoint receptor expressed in cancer cells. Importantly, our findings indicate that the suppression of PD-L1 expression by SFN is independent of the NRF2 protein stabilization pathway. Instead, SFN inhibits IFN-γ-mediated activation of STAT1, a key transcription factor involved in PD-L1 induction. Mechanistically, SFN covalently modifies specific cysteine residues (C155 and C174) on STAT1, resulting in the inhibition of its transcriptional activity. Notably, SFN-mediated downregulation of PD-L1 contributes to its antitumor immune effects, as demonstrated by enhanced anti-CTLA-4-mediated cytotoxicity. These findings indicate that SFN's antitumor effect extends beyond its direct cytotoxic properties, as it also actively engages the host immune system. This underscores SFN's immense potential as an immune-modulating agent in cancer therapy.
Collapse
Affiliation(s)
- Qing Shi
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan, Fudan University, Shanghai, 200438, China
| | - Yajuan Liu
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wanqi Yang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China; Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China.
| |
Collapse
|
3
|
Wang Y, Cao L, Wang K, Chen J, Li X, Zhao Z, Han X, Ni K, Liu D, Wu X, Wang G. The IL-1β/STAT1 Axis inhibits STAT3 function via Sequestration of the transcriptional activator GLIS2, leading to postoperative vascular dysfunction. Int Immunopharmacol 2024; 143:113372. [PMID: 39418736 DOI: 10.1016/j.intimp.2024.113372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Surgery-induced endothelial dysfunction is crucial in thrombus formation, driven by the release of inflammatory mediators due to surgical trauma. The STAT family, known for amplifying inflammatory responses via cytokine activation, plays an unclear role in the signaling mechanisms from surgery to molecular activation, and their regulatory effects on inflammation vary. This study aimed to identify key signaling pathways responsible for vascular dysfunction post-surgery and to discover potential targets for predicting or preventing thrombosis. To explore this, endothelial cells were co-cultured with post-surgical trauma serum and analyzed using various assays. Bioinformatics analysis linked surgical trauma with pathways involving thrombosis, interleukins, cytokines, and STAT signaling. Elevated inflammatory mediators were observed in mouse serum post-surgical trauma, with IL-6 activating STAT3 to enhance endothelial proliferation, while IL-1β activated STAT1, inhibiting STAT3's effects. Gli-similar 2 (GLIS2), a novel coactivator of STAT3, was found to regulate STAT transcription. STAT1, however, inhibited GLIS2's interaction with STAT3, suppressing STAT3's role in endothelial proliferation. The study concludes that IL-1β-triggered STAT1 activation impedes GLIS2-STAT3 interaction, reducing STAT3's transcriptional activity and leading to endothelial dysfunction, presenting new targets for preventing post-surgical trauma endothelial dysfunction and thrombosis.
Collapse
Affiliation(s)
- Yi Wang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Liang Cao
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ke Wang
- Department of Neonatal Medical Center, Qingdao Women and Children's Hospital, Qingdao University, Class B Key Disciplines of Newborns, Qingdao 266000, China
| | - Jing Chen
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Haping Road No. 150, Nangang District, Harbin 150081, Heilongjiang, China
| | - Xinxin Li
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zinan Zhao
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xue Han
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ke Ni
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Haping Road No. 150, Nangang District, Harbin 150081, Heilongjiang, China
| | - Dandan Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Haping Road No. 150, Nangang District, Harbin 150081, Heilongjiang, China
| | - Xiaohong Wu
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Guonian Wang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
4
|
Saei AA, Lundin A, Lyu H, Gharibi H, Luo H, Teppo J, Zhang X, Gaetani M, Végvári Á, Holmdahl R, Gygi SP, Zubarev RA. Multifaceted Proteome Analysis at Solubility, Redox, and Expression Dimensions for Target Identification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401502. [PMID: 39120068 PMCID: PMC11481203 DOI: 10.1002/advs.202401502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Multifaceted interrogation of the proteome deepens the system-wide understanding of biological systems; however, mapping the redox changes in the proteome has so far been significantly more challenging than expression and solubility/stability analyses. Here, the first high-throughput redox proteomics approach integrated with expression analysis (REX) is devised and combined with the Proteome Integral Solubility Alteration (PISA) assay. The whole PISA-REX experiment with up to four biological replicates can be multiplexed into a single tandem mass tag TMTpro set. For benchmarking this compact tool, HCT116 cells treated with auranofin are analyzed, showing great improvement compared with previous studies. PISA-REX is then applied to study proteome remodeling upon stimulation of human monocytes by interferon α (IFN-α). Applying this tool to study the proteome changes in plasmacytoid dendritic cells (pDCs) isolated from wild-type versus Ncf1-mutant mice treated with interferon α, shows that NCF1 deficiency enhances the STAT1 pathway and modulates the expression, solubility, and redox state of interferon-induced proteins. Providing comprehensive multifaceted information on the proteome, the compact PISA-REX has the potential to become an industry standard in proteomics and to open new windows into the biology of health and disease.
Collapse
Affiliation(s)
- Amir A. Saei
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- BiozentrumUniversity of BaselBasel4056Switzerland
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholm17165Sweden
| | - Albin Lundin
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hezheng Lyu
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Huqiao Luo
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Jaakko Teppo
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Xuepei Zhang
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Massimiliano Gaetani
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Rikard Holmdahl
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Steven P. Gygi
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
| | - Roman A. Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| |
Collapse
|
5
|
Federici L, Masulli M, De Laurenzi V, Allocati N. The Role of S-Glutathionylation in Health and Disease: A Bird's Eye View. Nutrients 2024; 16:2753. [PMID: 39203889 PMCID: PMC11357436 DOI: 10.3390/nu16162753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Protein glutathionylation is a reversible post-translational modification that involves the attachment of glutathione to cysteine residues. It plays a role in the regulation of several cellular processes and protection against oxidative damage. Glutathionylation (GS-ylation) modulates protein function, inhibits or enhances enzymatic activity, maintains redox homeostasis, and shields several proteins from irreversible oxidative stress. Aberrant GS-ylation patterns are thus implicated in various diseases, particularly those associated with oxidative stress and inflammation, such as cardiovascular diseases, neurodegenerative disorders, cancer, and many others. Research in the recent years has highlighted the potential to manipulate protein GS-ylation for therapeutic purposes with strategies that imply both its enhancement and inhibition according to different cases. Moreover, it has become increasingly evident that monitoring the GS-ylation status of selected proteins offers diagnostic potential in different diseases. In this review, we try to summarize recent research in the field with a focus on our current understanding of the molecular mechanisms related to aberrant protein GS-ylation.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| |
Collapse
|
6
|
Feng J, Song H, Province M, Li G, Payne PRO, Chen Y, Li F. PathFinder: a novel graph transformer model to infer multi-cell intra- and inter-cellular signaling pathways and communications. Front Cell Neurosci 2024; 18:1369242. [PMID: 38846640 PMCID: PMC11155453 DOI: 10.3389/fncel.2024.1369242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Recently, large-scale scRNA-seq datasets have been generated to understand the complex signaling mechanisms within the microenvironment of Alzheimer's Disease (AD), which are critical for identifying novel therapeutic targets and precision medicine. However, the background signaling networks are highly complex and interactive. It remains challenging to infer the core intra- and inter-multi-cell signaling communication networks using scRNA-seq data. In this study, we introduced a novel graph transformer model, PathFinder, to infer multi-cell intra- and inter-cellular signaling pathways and communications among multi-cell types. Compared with existing models, the novel and unique design of PathFinder is based on the divide-and-conquer strategy. This model divides complex signaling networks into signaling paths, which are then scored and ranked using a novel graph transformer architecture to infer intra- and inter-cell signaling communications. We evaluated the performance of PathFinder using two scRNA-seq data cohorts. The first cohort is an APOE4 genotype-specific AD, and the second is a human cirrhosis cohort. The evaluation confirms the promising potential of using PathFinder as a general signaling network inference model.
Collapse
Affiliation(s)
- Jiarui Feng
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Haoran Song
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, United States
- NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, United States
| | - Philip R. O. Payne
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
7
|
Cadenas-Garrido P, Schonvandt-Alarcos A, Herrera-Quintana L, Vázquez-Lorente H, Santamaría-Quiles A, Ruiz de Francisco J, Moya-Escudero M, Martín-Oliva D, Martín-Guerrero SM, Rodríguez-Santana C, Aragón-Vela J, Plaza-Diaz J. Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification. Antioxidants (Basel) 2024; 13:127. [PMID: 38275652 PMCID: PMC10812581 DOI: 10.3390/antiox13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.
Collapse
Affiliation(s)
- Paula Cadenas-Garrido
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Ailén Schonvandt-Alarcos
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Alicia Santamaría-Quiles
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Jon Ruiz de Francisco
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Marina Moya-Escudero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - David Martín-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, 18071 Granada, Spain;
| | - Sandra M. Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - César Rodríguez-Santana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Julio Plaza-Diaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Feng J, Province M, Li G, Payne PR, Chen Y, Li F. PathFinder: a novel graph transformer model to infer multi-cell intra- and inter-cellular signaling pathways and communications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575534. [PMID: 38293243 PMCID: PMC10827077 DOI: 10.1101/2024.01.13.575534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Recently, large-scale scRNA-seq datasets have been generated to understand the complex and poorly understood signaling mechanisms within microenvironment of Alzheimer's Disease (AD), which are critical for identifying novel therapeutic targets and precision medicine. Though a set of targets have been identified, however, it remains a challenging to infer the core intra- and inter-multi-cell signaling communication networks using the scRNA-seq data, considering the complex and highly interactive background signaling network. Herein, we introduced a novel graph transformer model, PathFinder, to infer multi-cell intra- and inter-cellular signaling pathways and signaling communications among multi-cell types. Compared with existing models, the novel and unique design of PathFinder is based on the divide-and-conquer strategy, which divides the complex signaling networks into signaling paths, and then score and rank them using a novel graph transformer architecture to infer the intra- and inter-cell signaling communications. We evaluated PathFinder using scRNA-seq data of APOE4-genotype specific AD mice models and identified novel APOE4 altered intra- and inter-cell interaction networks among neurons, astrocytes, and microglia. PathFinder is a general signaling network inference model and can be applied to other omics data-driven signaling network inference.
Collapse
Affiliation(s)
- Jiarui Feng
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, 65212, USA
- NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Philip R.O. Payne
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Sun Y, Liang M, Xing Y, Duan Y, Zhang S, Deng B, Xiang X, Zhou B. Cyasterone has a protective effect on steroid-induced Osteonecrosis of the femoral head. PLoS One 2023; 18:e0293530. [PMID: 37903142 PMCID: PMC10615314 DOI: 10.1371/journal.pone.0293530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/30/2023] [Indexed: 11/01/2023] Open
Abstract
CONTEXT Cyasterone alleviated the apoptosis of BMSCs induced by Dexamethasone via the PI3K/AKT signaling pathway. In addition, Cyasterone had a protective effect on SIONFH model rats by reducing the percentage of empty bone lacunae. OBJECTIVE To study the effect of Cyasterone on apoptosis of rat BMSCs and its function on the SIONFH rat model. METHODS Rat BMSCs were cultured and divided into Control, DXM and Cyasterone (DXM+Cyasterone) groups. The apoptosis of each group was detected by flow cytometry, the expressions of Caspase-3 and Caspase-9 were detected by immunofluorescence staining, and the mRNA and protein expressions of AKT, BAX, P53, P85, Bcl-2 and Cytochrome C were detected by qPCR and WB. In animal experiments, the femoral head of rats were subjected to HE staining and Micro-CT to observe the necrosis and repair conditions. RESULTS The apoptosis rate of DXM and Cyasterone groups increased compared with Control group, and the apoptosis rate of Cyasterone group decreased compared with DXM group. Compared with DXM group, the mRNA expression of BAX, P53, P85 and Cytochrome C in Cyasterone group were increased, while the protein expression of AKT and Bcl-2 decreased. The histopathological and morphological analysis showed that Cyasterone promoted the trabecular bone structure in rat, which evenly benefit for the repair of SIONFH. CONCLUSION Cyasterone can reduce the apoptosis of rat BMSCs induced by Dexamethasone, and help promoting the bone repair in SIONFH rats.
Collapse
Affiliation(s)
- Youqiang Sun
- Department of Sports Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Mengmeng Liang
- Department of Obstetrics, Guangdong Women and Chifldren Hospital, Guangzhou, 510010, Guangdong Province, China
| | - Yuemeng Xing
- The First Clinical College of Guangzhouf University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Yinfan Duan
- The First Clinical College of Guangzhouf University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuangxiao Zhang
- Department of Sports Medicine, Heyuan Hospital of Chinese Medicine, Heyuan, 517000, Guangdong Province, China
| | - Baogui Deng
- Department of Sports Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xiaobing Xiang
- Department of Sports Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Bengen Zhou
- Department of Sports Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| |
Collapse
|
10
|
Yin H, Sun Y, Ya B, Guo Y, Zhao H, Zhang L, Wang F, Zhang W, Yang Q. Apelin-13 protects against cisplatin-induced ototoxicity by inhibiting apoptosis and regulating STAT1 and STAT3. Arch Toxicol 2023; 97:2477-2493. [PMID: 37395757 DOI: 10.1007/s00204-023-03544-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
The ototoxic side effect of cisplatin is a main cause of sensorineural hearing loss. This side effect limits the clinical application of cisplatin and affects patients' quality of life. This study was designed to investigate the effect of apelin-13 on cisplatin-induced C57BL/6 mice hearing loss model and explore the potential underlying molecular mechanisms. Mice were intraperitoneally injected with 100 μg/kg apelin-13 2 h before 3 mg/kg cisplatin injection for 7 consecutive days. Cochlear explants cultured in vitro were pretreated with 10 nM apelin-13 2 h prior to 30 μM cisplatin treatment for another 24 h. Hearing test and morphology results showed that apelin-13 attenuated cisplatin-induced mice hearing loss and protected cochlear hair cells and spiral ganglion neurons from damage. In vivo and in vitro experimental results showed that apelin-3 reduced cisplatin-induced apoptosis of hair cells and spiral ganglion neurons. In addition, apelin-3 preserved mitochondrial membrane potential and inhibited ROS production in cultured cochlear explants. Mechanistic studies showed that apelin-3 decreased cisplatin-induced cleaved caspase 3 expression but increased Bcl-2; inhibited the expression of pro-inflammatory factors TNF-a and IL-6; and increased STAT1 phosphorylation but decreased STAT3 phosphorylation. In conclusion, our results indicate that apelin-13 could be a potential otoprotective agent to prevent cisplatin-induced ototoxicity by inhibiting apoptosis, ROS production, TNF-α and IL-6 expression, and regulating phosphorylation of STAT1 and STAT3 transcription factors.
Collapse
Affiliation(s)
- Haiyan Yin
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China.
| | - Yinuo Sun
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Bailiu Ya
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Yan Guo
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Lili Zhang
- Department of Otolaryngology-Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Weiwei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
11
|
Barra JM, Kozlovskaya V, Burnette KS, Banerjee RR, Fraker CA, Kharlampieva E, Tse HM. Localized cytotoxic T cell-associated antigen 4 and antioxidant islet encapsulation alters macrophage signaling and induces regulatory and anergic T cells to enhance allograft survival. Am J Transplant 2023; 23:498-511. [PMID: 36731781 PMCID: PMC10291560 DOI: 10.1016/j.ajt.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
The loss of functional β-cell mass is a hallmark of type 1 diabetes. Islet transplantation represents a promising alternative approach, but immune-mediated graft destruction remains a major challenge. We sought to use islet encapsulation technologies to improve graft survival and function without systemic immunosuppression. We hypothesized islet encapsulation with nanothin coatings consisting of tannic acid (TA), an antioxidant; poly(N-vinylpyrrolidone) (PVPON), a biocompatible polymer; and cytotoxic T cell-associated antigen 4 immunoglobulin (CTLA-4-Ig), an inhibitory immune receptor, will elicit localized immunosuppression to prolong islet allograft function and suppress effector T cell responses. In the absence of systemic immunosuppression, we demonstrated (PVPON/TA/CTLA-4-Ig)-encapsulated NOD.Rag islet grafts maintain function significantly longer than control IgG-containing (PVPON/TA/IgG) and nonencapsulated controls after transplantation into diabetic C57BL/6 mice. This protection coincided with diminished proinflammatory macrophage responses mediated by signal transducer and activator of transcription 1 signaling, decreased proinflammatory T cell effector responses, and CTLA-4-Ig-specific concomitant increases in anergic CD4+ T cells and regulatory T cells. Our results provide evidence that conjugation of CTLA-4-Ig to (PVPON/TA) coatings can suppress T cell activation, enhance regulatory T cell populations, prolong islet allograft survival, and induce localized immunosuppression after transplantation.
Collapse
Affiliation(s)
- Jessie M Barra
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - KaLia S Burnette
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ronadip R Banerjee
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher A Fraker
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, Florida, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA; Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
12
|
Shen XY, Han Y, Gao ZK, Han PP, Bi X. Pre exposure to enriched environment alleviates brain injury after ischemia-reperfusion by inhibiting p38MAPK/STAT1 pathway. Mol Biol Rep 2023; 50:2243-2255. [PMID: 36572761 PMCID: PMC10011282 DOI: 10.1007/s11033-022-08184-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Stroke is one of the major diseases that endangers human health. It is widely reported that enriched environment (EE) can improve the neurological function in different brain injury models. Recently, relevant researches have indicated that MAPK pathway is closely related to the inflammatory response in nervous system related diseases. However, whether pre exposure to EE (EE pretreatment) has a preventive effect, and its mechanism are not clear. Therefore, this study aimed to determine the possible benefits and related mechanisms of EE in preventing brain injury after acute ischemia-reperfusion. METHODS Adult Sprague Dawley rats were kept in enriched or standardized environments for 21 days. Then the middle cerebral artery of rats was occluded for one hour and 30 min, and then reperfusion was performed. Then their neurological deficit score was evaluated. Cerebral edema, along with ELISA and protein quantities of p38MAPK, JNK, ERK, IL-1β, TNF-α, and co-localization of Iba1 were assessed. Changes in neuroinflammation and apoptosis were also detected in the penumbra cortex. RESULTS Our research showed that EE pretreatment significantly alleviated acute cerebral ischemia-reperfusion injury in rats. Including the reduction of brain edema and apoptosis, and the improvement of neurological scores. In addition, the protein level of p38MAPK was significantly down regulated in EE pretreatment group, and the downstream protein STAT1 had the same trend. In addition, immunofluorescence results showed that Iba1 in EE pretreatment group decreased, the ELISA results showed that the classical proinflammatory cytokines increased significantly, while anti-inflammatory cytokines in EE pretreatment group increased, and the same results were obtained by Western blot analysis. CONCLUSION On the whole, our research demonstrated that EE pretreatment can have a protective effect on the organism by inhibiting the p38 MAPK/STAT1 pathway. Thus, EE can be one of the most promising means of disease prevention. Secondly, p38MAPK/STAT1 pathway may be a latent target for the prevention of acute ischemic stroke.
Collapse
Affiliation(s)
- Xin-Ya Shen
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Yu Han
- Shanghai University of Sport, 200438, Shanghai, China
| | - Zhen-Kun Gao
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ping-Ping Han
- Shanghai University of Sport, 200438, Shanghai, China
| | - Xia Bi
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 201318, Shanghai, China.
| |
Collapse
|
13
|
Pinus mugo Essential Oil Impairs STAT3 Activation through Oxidative Stress and Induces Apoptosis in Prostate Cancer Cells. Molecules 2022; 27:molecules27154834. [PMID: 35956786 PMCID: PMC9369512 DOI: 10.3390/molecules27154834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Essential oils (EOs) and their components have been reported to possess anticancer properties and to increase the sensitivity of cancer cells to chemotherapy. The aim of this work was to select EOs able to downregulate STAT3 signaling using Western blot and RT-PCR analyses. The molecular mechanism of anti-STAT3 activity was evaluated through spectrophotometric and fluorometric analyses, and the biological effect of STAT3 inhibition was analyzed by flow cytometry and wound healing assay. Herein, Pinus mugo EO (PMEO) is identified as an inhibitor of constitutive STAT3 phosphorylation in human prostate cancer cells, DU145. The down-modulation of the STAT3 signaling cascade decreased the expression of anti-proliferative as well as anti-apoptotic genes and proteins, leading to the inhibition of cell migration and apoptotic cell death. PMEO treatment induced a rapid drop in glutathione (GSH) levels and an increase in reactive oxygen species (ROS) concentration, resulting in mild oxidative stress. Pretreatment of cells with N-acetyl-cysteine (NAC), a cell-permeable ROS scavenger, reverted the inhibitory action of PMEO on STAT3 phosphorylation. Moreover, combination therapy revealed that PMEO treatment displayed synergism with cisplatin in inducing the cytotoxic effect. Overall, our data highlight the importance of STAT3 signaling in PMEO cytotoxic activity, as well as the possibility of developing adjuvant therapy or sensitizing cancer cells to conventional chemotherapy.
Collapse
|
14
|
Bibli SI, Fleming I. Oxidative Post-Translational Modifications: A Focus on Cysteine S-Sulfhydration and the Regulation of Endothelial Fitness. Antioxid Redox Signal 2021; 35:1494-1514. [PMID: 34346251 DOI: 10.1089/ars.2021.0162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Changes in the oxidative balance can affect cellular physiology and adaptation through redox signaling. The endothelial cells that line blood vessels are particularly sensitive to reactive oxygen species, which can alter cell function by a number of mechanisms, including the oxidative post-translational modification (oxPTM) of proteins on critical cysteine thiols. Such modifications can act as redox-switches to alter the function of targeted proteins. Recent Advances: Mapping the cysteine oxPTM proteome and characterizing the effects of individual oxPTMs to gain insight into consequences for cellular responses has proven challenging. A recent addition to the list of reversible oxPTMs that contributes to cellular redox homeostasis is persulfidation or S-sulfhydration. Critical Issues: It has been estimated that up to 25% of proteins are S-sulfhydrated, making this modification almost as abundant as phosphorylation. In the endothelium, persulfides are generated by the trans-sulfuration pathway that catabolizes cysteine and cystathionine to generate hydrogen sulfide (H2S) and H2S-related sulfane sulfur compounds (H2Sn). This pathway is of particular importance for the vascular system, as the enzyme cystathionine γ lyase (CSE) in endothelial cells accounts for a significant portion of total vascular H2S/H2Sn production. Future Directions: Impaired CSE activity in endothelial dysfunction has been linked with marked changes in the endothelial cell S-sulfhydrome and can contribute to the development of atherosclerosis and hypertension. It will be interesting to determine how changes in the S-sulfhydration of specific networks of proteins contribute to endothelial cell physiology and pathophysiology. Antioxid. Redox Signal. 35, 1494-1514.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Butturini E, Butera G, Pacchiana R, Carcereri de Prati A, Mariotto S, Donadelli M. Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms. Cells 2021; 10:cells10113149. [PMID: 34831372 PMCID: PMC8618966 DOI: 10.3390/cells10113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Mariotto
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| | - Massimo Donadelli
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| |
Collapse
|
16
|
Diallo M, Herrera F. The role of understudied post-translational modifications for the behavior and function of Signal Transducer and Activator of Transcription 3. FEBS J 2021; 289:6235-6255. [PMID: 34235865 DOI: 10.1111/febs.16116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
The Signal Transducer and Activator of Transcription (STAT) family of transcription factors is involved in inflammation, immunity, development, cancer, and response to injury, among other biological phenomena. Canonical STAT signaling is often represented as a 3-step pathway involving the sequential activation of a membrane receptor, an intermediate kinase, and a STAT transcription factor. The rate-limiting phosphorylation at a highly conserved C-terminal tyrosine residue determines the nuclear translocation and transcriptional activity of STATs. This apparent simplicity is actually misleading and can hardly explain the pleiotropic nature of STATs, the existence of various noncanonical STAT pathways, or the key role of the N-terminal domain in STAT functions. More than 80 post-translational modifications (PTMs) have been identified for STAT3, but their functions remain barely understood. Here, we provide a brief but comprehensive overview of these underexplored PTMs and their role on STAT3 canonical and noncanonical functions. A less tyrosine-centric point of view may be required to advance our understanding of STAT signaling.
Collapse
Affiliation(s)
- Mickael Diallo
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Federico Herrera
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
17
|
Cozzolino F, Iacobucci I, Monaco V, Monti M. Protein-DNA/RNA Interactions: An Overview of Investigation Methods in the -Omics Era. J Proteome Res 2021; 20:3018-3030. [PMID: 33961438 PMCID: PMC8280749 DOI: 10.1021/acs.jproteome.1c00074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The fields of application
of functional proteomics are not limited
to the study of protein–protein interactions; they also extend
to those involving protein complexes that bind DNA or RNA. These interactions
affect fundamental processes such as replication, transcription, and
repair in the case of DNA, as well as transport, translation, splicing,
and silencing in the case of RNA. Analytical or preparative experimental
approaches, both in vivo and in vitro, have been developed to isolate and identify DNA/RNA binding proteins
by exploiting the advantage of the affinity shown by these proteins
toward a specific oligonucleotide sequence. The present review proposes
an overview of the approaches most commonly employed in proteomics
applications for the identification of nucleic acid-binding proteins,
such as affinity purification (AP) protocols, EMSA, chromatin purification
methods, and CRISPR-based chromatin affinity purification, which are
generally associated with mass spectrometry methodologies for the
unbiased protein identification.
Collapse
Affiliation(s)
- Flora Cozzolino
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.,Interuniversity Consortium National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro, 305-00136 Rome, Italy
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
18
|
Martina JA, Guerrero‐Gómez D, Gómez‐Orte E, Antonio Bárcena J, Cabello J, Miranda‐Vizuete A, Puertollano R. A conserved cysteine-based redox mechanism sustains TFEB/HLH-30 activity under persistent stress. EMBO J 2021; 40:e105793. [PMID: 33314217 PMCID: PMC7849306 DOI: 10.15252/embj.2020105793] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Mammalian TFEB and TFE3, as well as their ortholog in Caenorhabditis elegans HLH-30, play an important role in mediating cellular response to a variety of stress conditions, including nutrient deprivation, oxidative stress, and pathogen infection. In this study, we identify a novel mechanism of TFEB/HLH-30 regulation through a cysteine-mediated redox switch. Under stress conditions, TFEB-C212 undergoes oxidation, allowing the formation of intermolecular disulfide bonds that result in TFEB oligomerization. TFEB oligomers display increased resistance to mTORC1-mediated inactivation and are more stable under prolonged stress conditions. Mutation of the only cysteine residue present in HLH-30 (C284) significantly reduced its activity, resulting in developmental defects and increased pathogen susceptibility in worms. Therefore, cysteine oxidation represents a new type of TFEB post-translational modification that functions as a molecular switch to link changes in redox balance with expression of TFEB/HLH-30 target genes.
Collapse
Affiliation(s)
- José A Martina
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - David Guerrero‐Gómez
- Redox Homeostasis GroupInstituto de Biomedicina de Sevilla (IBIS)Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
| | - Eva Gómez‐Orte
- Centro de Investigación Biomédica de la Rioja (CIBIR)LogroñoSpain
| | - José Antonio Bárcena
- Department of Biochemistry and Molecular BiologyUniversity of Córdoba and Córdoba Maimónides Institute for Biomedical Research (IMIBIC)CórdobaSpain
| | - Juan Cabello
- Centro de Investigación Biomédica de la Rioja (CIBIR)LogroñoSpain
| | - Antonio Miranda‐Vizuete
- Redox Homeostasis GroupInstituto de Biomedicina de Sevilla (IBIS)Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
| | - Rosa Puertollano
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
19
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
20
|
Boriero D, Carcereri de Prati A, Antonini L, Ragno R, Sohji K, Mariotto S, Butturini E. The anti-STAT1 polyphenol myricetin inhibits M1 microglia activation and counteracts neuronal death. FEBS J 2020; 288:2347-2359. [PMID: 32981207 DOI: 10.1111/febs.15577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Abstract
Microglia activation toward M1 pro-inflammatory phenotype represents one of the earliest events of neurological disorders. Therefore, reducing microglia activation should inhibit neuroinflammation, thereby delaying the progression of neurodegeneration. Recently, we pointed out the role of STAT1 signaling in hypoxia-induced M1 activation and proposed STAT1 as a suitable molecular target for the prevention and treatment of neurodegeneration. Myricetin (MYR) is a natural flavonoid that exhibits a specific anti-STAT1 activity correlated with its direct interaction with STAT1 protein itself. Herein, we investigated the anti-inflammatory effect of MYR and its ability to protect neurons from death in an in vitro model of neurotoxicity using the neuroblast-like SH-SY5Y cells that were exposed to conditioned media from hypoxia-activated microglia BV2 cells. We demonstrate that MYR pretreatment is able to switch off hypoxia-induced M1 microglia polarization through the inhibition of STAT1 signaling. The analysis of the molecular mechanism suggests that the direct interaction of MYR with STAT1 impairs its S-glutathionylation and phosphorylation. Moreover, treatment of SH-SY5Y cells with conditioned medium from hypoxia-activated microglia pretreated with MYR produced a significant reduction in neuronal viability. Our data indicate that MYR may represent a promising candidate for prevention and treatment of neuroinflammation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Diana Boriero
- Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | | | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Kazuo Sohji
- University of Human Arts and Sciences, Saitama, Japan
| | - Sofia Mariotto
- Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Elena Butturini
- Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Rashdan NA, Shrestha B, Pattillo CB. S-glutathionylation, friend or foe in cardiovascular health and disease. Redox Biol 2020; 37:101693. [PMID: 32912836 PMCID: PMC7767732 DOI: 10.1016/j.redox.2020.101693] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Glutathione is a low molecular weight thiol that is present at high levels in the cell. The high levels of glutathione in the cell make it one of the most abundant antioxidants contributing to cellular redox homeostasis. As a general rule, throughout cardiovascular disease and progression there is an imbalance in redox homeostasis characterized by reactive oxygen species overproduction and glutathione underproduction. As research into these imbalances continues, glutathione concentrations are increasingly being observed to drive various physiological and pathological signaling responses. Interestingly in addition to acting directly as an antioxidant, glutathione is capable of post translational modifications (S-glutathionylation) of proteins through both chemical interactions and enzyme mediated events. This review will discuss both the chemical and enzyme-based S-glutathionylation of proteins involved in cardiovascular pathologies and angiogenesis.
Collapse
Affiliation(s)
- N A Rashdan
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - B Shrestha
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - C B Pattillo
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA.
| |
Collapse
|
22
|
Butturini E, Carcereri de Prati A, Mariotto S. Redox Regulation of STAT1 and STAT3 Signaling. Int J Mol Sci 2020; 21:ijms21197034. [PMID: 32987855 PMCID: PMC7582491 DOI: 10.3390/ijms21197034] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023] Open
Abstract
STAT1 and STAT3 are nuclear transcription factors that regulate genes involved in cell cycle, cell survival and immune response. The cross-talk between these signaling pathways determines how cells integrate the environmental signals received ultimately translating them in transcriptional regulation of specific sets of genes. Despite being activated downstream of common cytokine and growth factors, STAT1 and STAT3 play essentially antagonistic roles and the disruption of their balance directs cells from survival to apoptotic cell death or from inflammatory to anti-inflammatory responses. Different mechanisms are proposed to explain this yin-yang relationship. Considering the redox aspect of STATs proteins, this review attempts to summarize the current knowledge of redox regulation of STAT1 and STAT3 signaling focusing the attention on the post-translational modifications that affect their activity.
Collapse
|
23
|
Guo L, Chen S, Liu Q, Ren H, Li Y, Pan J, Luo Y, Cai T, Liu R, Chen J, Wang Y, Wang X, Huang N, Li J. Glutaredoxin 1 regulates macrophage polarization through mediating glutathionylation of STAT1. Thorac Cancer 2020; 11:2966-2974. [PMID: 32893965 PMCID: PMC7529579 DOI: 10.1111/1759-7714.13647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background Macrophage polarization affects tumor growth, metabolism, and many other tumor processes. M1 macrophages can promote antitumor immunity response. Signal transducer and activator of transcription 1 (STAT1) is one of the critical transcription factors in this process, which promotes the expression of a series of inflammatory molecules. STAT1 has been reported as a potential target of reactive oxygen species (ROS)‐induced glutathionylation, while the glutathionylation of STAT1 in macrophages and its underlying regulatory mechanism remains unclear. Glutaredoxin 1 (Grx1) functions as a deglutathionylation enzyme, which regulates the activities of many proteins through reversing glutathionylation. Methods GeneChip and RT‐qPCR was first applied to test the mRNA level of Grx1 in M1 macrophages. Western blot was then used to evaluate the variations of the Grx1 protein expression in M1 macrophages. Next, immunoprecipitation was used to investigate the glutathionylated STAT1 in both wild‐type and Grx1−/− mouse macrophages. Finally, the induced alterations of STAT1 activity and function by Grx1 in M1 macrophage were examined by western blot and RT‐qPCR. Results In M1‐type macrophages, the levels of Grx1 were elevated. Glutathionylation of STAT1 was negatively regulated by Grx1. Furthermore, depletion of Grx1 increased the activity of STAT1, and thereby promoted the mRNA level of C‐X‐C motif chemokine ligand 9 (CXCL9) during M1‐type polarization of macrophages. Conclusions Grx1 controlled deglutathionylation of STAT1, which in turn might regulate M1‐type polarization of macrophages.
Collapse
Affiliation(s)
- Lijuan Guo
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shanze Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,Key Laboratory of Shenzhen Respiratory Diseases, Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Qingrong Liu
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongyu Ren
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuhao Li
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junyue Pan
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuhan Luo
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tongzhou Cai
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruofan Liu
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junli Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoying Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ning Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Yan Z, Zhan J, Qi W, Lin J, Huang Y, Xue X, Pan X. The Protective Effect of Luteolin in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Front Pharmacol 2020; 11:1195. [PMID: 32903480 PMCID: PMC7435053 DOI: 10.3389/fphar.2020.01195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/22/2020] [Indexed: 01/22/2023] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a frequently occurring type of nontraumatic osteonecrosis. A failure of the timely treatment can eventually result in the collapse of the subchondral bone structure. Luteolin (Lut), a compound extracted from Rhizoma Drynariae, is reported to possess multiple pharmacological properties including anticancer, antioxidant, antiapoptosis, and antiinflammatory properties. However, whether Lut has a protective effect on the development of GIONFH remains unclear. In this study, we evaluated the effect of Lut on Dexamethasone (Dex)-induced STAT1/caspase3 pathway in vitro and evaluated GIONFH model in vivo. In vitro, Lut inhibited the upregulation of Dex-induced phospho-STAT1, cleaved caspase9, and cleaved caspase3. In addition, Lut inhibited Dex-induced expression of Bax and cytochrome c and increased the expression of B cell lymphoma-2(Bcl-2). In vivo, Lut decreased the proportion of empty lacunae in rats with GIONFH. Taken together, these findings indicate that Lut may have therapeutic potential in the treatment of GIONFH. Further, this effect might be achieved by suppressing mitochondrial apoptosis of osteoblasts via inhibition of STAT1 activity.
Collapse
Affiliation(s)
- Zijian Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, WenZhou Medical University, Wenzhou, China
| | - Jingdi Zhan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, WenZhou Medical University, Wenzhou, China
| | - Weihui Qi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, WenZhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yijiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinghe Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Natural Sesquiterpene Lactones Enhance Chemosensitivity of Tumor Cells through Redox Regulation of STAT3 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4568964. [PMID: 31781335 PMCID: PMC6855087 DOI: 10.1155/2019/4568964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
STAT3 is a nuclear transcription factor that regulates genes involved in cell cycle, cell survival, and immune response. Although STAT3 activation drives cells to physiological response, its deregulation is often associated with the development and progression of many solid and hematological tumors as well as with drug resistance. STAT3 is a redox-sensitive protein, and its activation state is related to intracellular GSH levels. Under oxidative conditions, STAT3 activity is regulated by S-glutathionylation, a reversible posttranslational modification of cysteine residues. Compounds able to suppress STAT3 activation and, on the other hand, to modulate intracellular redox homeostasis may potentially improve cancer treatment outcome. Nowadays, about 35% of commercial drugs are natural compounds that derive from plant extracts used in phytotherapy and traditional medicine. Sesquiterpene lactones are an interesting chemical group of plant-derived compounds often employed in traditional medicine against inflammation and cancer. This review focuses on sesquiterpene lactones able to downmodulate STAT3 signaling leading to an antitumor effect and correlates the anti-STAT3 activity with their ability to decrease GSH levels in cancer cells. These properties make them lead compounds for the development of a new therapeutic strategy for cancer treatment.
Collapse
|
26
|
Immunoprecipitation methods to identify S-glutathionylation in target proteins. MethodsX 2019; 6:1992-1998. [PMID: 31667096 PMCID: PMC6812339 DOI: 10.1016/j.mex.2019.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022] Open
Abstract
S-glutathionylation is a reversible post-translational modification of proteins that generate a mixed disulfide between glutathione to thiolate anion of cysteine residues in target proteins. In the last ten years, S-glutathionylation has been extensively studied since it represents the cellular response to oxidative stress, in physiological as well as pathological conditions. This modification may be a protective mechanism from irreversible oxidative damage and, on the other hand, may modulate protein folding and function. Due to the importance of S-glutathionylation in cellular redox signaling, various methods have been developed to identify S-gluthationylated proteins. Herein, we describe two easy methods to recognized S-glutathionylation of a target protein after oxidative stress in cellular extracts based on different immunoprecipitation procedures. The immunoprecipitation assay allows the capture of one glutathionylated protein using a specific antibody that binds to the target protein. The presence of S-glutathionylation in the immunoprecipitated protein is identified using anti-glutathione antibody. The second type of approach is based on the detection of the glutathionylated protein with biotin/streptavidin technique. After different steps of protection of non-oxidized thiolic groups and reduction of S-glutathionylated groups, the newly-formed protein free-thiols are labeled with biotin-GSH. The modified protein can be isolate with streptavidin-beads and recognized using an antibody against target protein. •S-glutathionylation is a reversible post-translational modification of proteins that recently has been emerged as important signaling in the redox regulation of protein function.•Both methods to identify glutathionylated proteins are economic, easy and do not require particular equipment.•The setups of both methods guarantee high reproducibility.
Collapse
|
27
|
Lermant A, Murdoch CE. Cysteine Glutathionylation Acts as a Redox Switch in Endothelial Cells. Antioxidants (Basel) 2019; 8:E315. [PMID: 31426416 PMCID: PMC6720164 DOI: 10.3390/antiox8080315] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Oxidative post-translational modifications (oxPTM) of receptors, enzymes, ion channels and transcription factors play an important role in cell signaling. oxPTMs are a key way in which oxidative stress can influence cell behavior during diverse pathological settings such as cardiovascular diseases (CVD), cancer, neurodegeneration and inflammatory response. In addition, changes in oxPTM are likely to be ways in which low level reactive oxygen and nitrogen species (RONS) may contribute to redox signaling, exerting changes in physiological responses including angiogenesis, cardiac remodeling and embryogenesis. Among oxPTM, S-glutathionylation of reactive cysteines emerges as an important regulator of vascular homeostasis by modulating endothelial cell (EC) responses to their local redox environment. This review summarizes the latest findings of S-glutathionylated proteins in major EC pathways, and the functional consequences on vascular pathophysiology. This review highlights the diversity of molecules affected by S-glutathionylation, and the complex consequences on EC function, thereby demonstrating an intricate dual role of RONS-induced S-glutathionylation in maintaining vascular homeostasis and participating in various pathological processes.
Collapse
Affiliation(s)
- Agathe Lermant
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Colin E Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK.
| |
Collapse
|
28
|
Wang H, Zhang Y, Xia F, Zhang W, Chen P, Yang G. Protective effect of silencing Stat1 on high glucose-induced podocytes injury via Forkhead transcription factor O1-regulated the oxidative stress response. BMC Mol Cell Biol 2019; 20:27. [PMID: 31337338 PMCID: PMC6652005 DOI: 10.1186/s12860-019-0209-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background Podocyte plays an important role in maintaining the integrity and function of the glomerular filtration barrier. Various studies reported that forkhead transcription factor (Fox) O1 played a key role in anti-oxidative signaling. This study aimed to investigate the role of Stat1 in high glucose (HG) -induced podocyte injury. Methods Under normal glucose, hypertonic and HG stimulated podocyte conditions, cell counting kit-8 (CCK-8) assay, flow cytometry and western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were respectively carried out to determine cell viability, apoptosis, reactive oxygen species (ROS) production and related genes expressions. We then respectively used silent Stat1, simultaneous silencing Stat1 and FoxO1 and over-expression of FoxO1, to observe whether they/it could reverse the damage of podocytes induced by HG. Results High glucose attenuated cell survival and promoted cell apoptosis in MPC-5 cells at the same time, and it was also observed to promote the protein expression of Stat1 and the FoxO1 expression inhibition. Silencing Stat1 could reverse HG-induced podocytes injury. Specifically, siStat1 increased cell viability, inhibited cell apoptosis and attenuated ROS level in a high-glucose environment. Cleaved caspase-3 and pro-apoptosis protein Bax was significantly down-regulated, and anti-apoptosis protein Bcl-2 was up-regulated by siStat1. The antioxidant genes Catalase, MnSOD, NQO1 and HO1 were up-regulated by siStat1. We found that silencing FoxO1 reversed the protective effect of siStat1 on the HG-induced podocytes injury. Conclusions Silencing Stat1 could reverse the effects of high glucose-triggered low cell viability, cell apoptosis and ROS release and the functions of Stat1 might be involved in FoxO1 mediated-oxidative stress in nucleus.
Collapse
Affiliation(s)
- Hongkun Wang
- Department of Nephrology, The First Affiliated Hospital of Baotou Medical College Inner Mongolia University of Science and Technology, Baotou, China
| | - Yanhui Zhang
- Department of Nephrology, The First Affiliated Hospital of Baotou Medical College Inner Mongolia University of Science and Technology, Baotou, China
| | - Fangfang Xia
- Department of Nephrology, North Hospital, Baotou, China
| | - Wei Zhang
- Central Laboratory, The First Affiliated Hospital of Baotou Medical College Inner Mongolia University of Science and Technology, No.41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China
| | - Peng Chen
- Department of Nutriology, The First Affiliated Hospital of Baotou Medical College Inner Mongolia University of Science and Technology, Baotou, China
| | - Guoan Yang
- Central Laboratory, The First Affiliated Hospital of Baotou Medical College Inner Mongolia University of Science and Technology, No.41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China.
| |
Collapse
|
29
|
Butturini E, Boriero D, Carcereri de Prati A, Mariotto S. STAT1 drives M1 microglia activation and neuroinflammation under hypoxia. Arch Biochem Biophys 2019; 669:22-30. [PMID: 31121156 DOI: 10.1016/j.abb.2019.05.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
Microglia are resident immune cells that act as the first active defence in the central nervous system. These cells constantly monitor the tissue microenvironment and rapidly react in response to hypoxia, infection and injuries. Hypoxia in the brain has been detected in several neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. Hypoxic conditions activate microglia cells towards M1 phenotype resulting in oxidative stress and the release of pro-inflammatory cytokines. Recently, we have demonstrated that oxidative stress induces S-glutathionylation of the STAT1 and hyper-activates its signaling in microglia BV2 cells pointing out the importance of this transcription factor in neuroinflammation. In this paper we analyse the cellular mechanisms that drive M1 microglia activation in BV2 cells in response to hypoxia correlating it to STAT1 activation. The analysis of the molecular mechanism of STAT1 signaling reveals that hypoxia generates oxidative stress and induces both phosphorylation and S-glutathionylation of STAT1 that are responsible of its aberrant activation. The silencing of STAT1 protein expression counteracts hypoxia-M1 microglia phenotype suggesting the strong link between hypoxia-STAT1 and STAT1-microglia activation.
Collapse
Affiliation(s)
- Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| | - Diana Boriero
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
30
|
Zhang J, Ye ZW, Singh S, Townsend DM, Tew KD. An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free Radic Biol Med 2018; 120:204-216. [PMID: 29578070 PMCID: PMC5940525 DOI: 10.1016/j.freeradbiomed.2018.03.038] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
By nature of the reversibility of the addition of glutathione to low pKa cysteine residues, the post-translational modification of S-glutathionylation sanctions a cycle that can create a conduit for cell signaling events linked with cellular exposure to oxidative or nitrosative stress. The modification can also avert proteolysis by protection from over-oxidation of those clusters of target proteins that are substrates. Altered functions are associated with S-glutathionylation of proteins within the mitochondria and endoplasmic reticulum compartments, and these impact energy production and protein folding pathways. The existence of human polymorphisms of enzymes involved in the cycle (particularly glutathione S-transferase P) create a scenario for inter-individual variance in response to oxidative stress and a number of human diseases with associated aberrant S-glutathionylation have now been identified.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Shweta Singh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street, MSC141, Charleston, SC 29425, United States
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States.
| |
Collapse
|