1
|
Zhu L, Ding M, Liu L, Yuan P, Shao T, Liu C, Xi C, Han J, Zhou Y, Zhang D, Wang G. Burdock Fructooligosaccharide Protects Against Diabetic Nephropathy in Mice by Regulating Nrf2 Signaling. Pharmacol Res Perspect 2025; 13:e70094. [PMID: 40264355 PMCID: PMC12015130 DOI: 10.1002/prp2.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes mellitus, with oxidative stress playing a critical role in its development. Burdock fructooligosaccharide (BFO), a major compound in Burdock, exhibits antioxidative effects. However, its mechanisms of action and effects on diabetic nephropathy are not clear enough. This study aims to explore the mechanisms of BFO and its impact on streptozotocin-induced diabetic nephropathy in mice. Male C57BL/6J mice were randomly divided into normal control, DN, and BFO groups. Relevant serum biochemical parameters were detected using kits. Renal injury was evaluated through fluorescence microscopy, histopathology, and transmission electron microscopy. Nrf2/HO-1 signaling was analyzed via quantitative real-time PCR, western blotting, and immunohistochemistry. In DN mice, BFO significantly reduced fasting blood glucose, kidney index, urine protein, serum creatinine, blood urea nitrogen, total cholesterol, triglyceride, and low-density lipoprotein cholesterol, while significantly increasing high-density lipoprotein, SOD, and CAT levels. Additionally, BFO protected against streptozotocin-induced renal injury, restored podocyte function, increased both mRNA and protein expression of Nrf2, HO-1, and Bcl-2, and decreased those of Bax. In conclusion, BFO can be used to treat streptozotocin-induced renal injury in mice and is a promising candidate for diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Lei Zhu
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Mengru Ding
- School of PharmacyWannan Medical CollegeWuhuChina
- Department of PharmacyFuyang Tumor HospitalFuyangChina
| | - Lina Liu
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital, Yijishan Hospital of Wannan Medical CollegeWuhuChina
| | - Pingchuan Yuan
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Taili Shao
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Chunyan Liu
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Chuanhu Xi
- School of PharmacyWannan Medical CollegeWuhuChina
| | - Jun Han
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHMWannan Medical CollegeWuhuChina
| | - Yuyan Zhou
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHMWannan Medical CollegeWuhuChina
| | - Donglin Zhang
- School of StomatologyWannan Medical CollegeWuhuChina
| | - Guodong Wang
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| |
Collapse
|
2
|
Yang S, Liu P, Zhang Y, Xu H, Lan J, Jiang H, Jin G, Bai X. Single-cell transcriptome atlas in C57BL/6 mice encodes morphological phenotypes in the aging kidneys. BMC Nephrol 2024; 25:137. [PMID: 38641839 PMCID: PMC11031943 DOI: 10.1186/s12882-024-03514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 04/21/2024] Open
Abstract
C57BL/6 mice are frequently utilized as murine models with the desired genetic background for altertion in multiple research contexts. So far, there is still a lack of comprehensive kidney morphology and single-cell transcriptome atlas at all stages of growth of C57BL/6 mice. To provide an interactive set of reference standards for the scientific community, we performed the current study to investigate the kidney's development throughout the capillary-loop stage until senescence. Eight groups, with five to six mice each, represented embryonic stage (embryos 18.5 days), suckling period (1 day after birth), juvenile stage (1 month old), adulthood (containing 3 months old, 6 months old and 10 months old), reproductive senescence stage (20 months old), and post-senescence stage (30 months old), respectively. With age, the thickness of the glomerular basement membrane (GBM) was increased. Notably, GBM knobs appeared at three months and became frequent with age. Using single-cell transcriptome data, we evaluated how various biological process appear in particular cell types and investigated the potential mechanism of formation of GBM konbs. In conclusion, having access to detailed kidney morphology and single-cell transcriptome maps from C57BL/6 mice at various developmental stages of C57BL/6 mice would be a novel and major resource for biological research and testing of prospective therapeutic approaches.
Collapse
Affiliation(s)
- Shanzhi Yang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| | - Peimin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| | - Yan Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| | - Haosen Xu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| | - Jinyi Lan
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| | - Huan Jiang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| | - Guoxiang Jin
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China.
| | - Xiaoyan Bai
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China.
| |
Collapse
|
3
|
Villalpando-Sánchez DC, Barajas-Medina CA, Alvarez-Aguilar C, López-Ortiz G, Romero-Henríquez LF, Gómez-García A. Advanced Oxidative Protein Products Had a Diagnostic Accuracy for Identifying Chronic Kidney Disease in Adult Population. Metabolites 2024; 14:37. [PMID: 38248840 PMCID: PMC10821176 DOI: 10.3390/metabo14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Chronic Kidney Disease (CKD) is a serious public health problem. Hyperglycemia stimulates the production of reactive oxygen species that cause oxidative damage to proteins. AOPPs constitute a group of oxidized dityrosine-containing proteins that are generated during periods of oxidative stress. They have proved to be a valuable early marker of oxidative tissue damage and active mediators of inflammation associated with the uremic state. To analyze if advanced oxidative protein products (AOPPs) have diagnostic accuracy for identifying chronic kidney disease (CKD) in the adult population. We conducted a diagnostic test validation study in 302 adults ≥20 years old, of both sexes, with and without T2D. After obtaining informed consent, a comprehensive clinical history, anthropometric measurements (weight, BMI) and blood pressure were recorded. Glucose, cholesterol, triglyceride, HDL-c, LDL-c and AOPPs were determinates. Glomerular filtration rate (GFR) was calculated using Cockcroft-Gault (C-G) corrected by body surface area (BSA, mL/min/1.73 m2), CKD-EPI and MDRD equations to identify five stages of CKD. This study follows the Standards for Reporting Diagnostic Accuracy Studies (STARD). The median value of AOPPs was 198.32 µmol/L (minimum-maximum value: 113.48-522.42 µmol/L). The group with patients diagnosed with T2D exhibited higher concentrations (median: 487.39 µmol/L) compared to the non-diabetic group (median: 158.50 µmol/L, p = 0.0001). The selected cut-off point was ≥200 µmol/L using the closest to the median value of AOPPs with sensitivity and specificity as follows: C-G: sensitivity 96.58%; specificity 80%; likelihood ratio: 4.83; CKD-EPI: sensitivity 95.76%; specificity 79.89%; likelihood ratio: 4.76; MDRD: sensitivity 86.55%; specificity: 73.22%; likelihood ratio: 3.23. A difference was observed between AOPPs and chronic kidney disease stage. This study provides evidence that AOPPs ≥ 200 µmol/L have diagnostic accuracy in identifying stage 4-5 CKD by C-G, MDRD and CKD-EPI equations in adults with and without T2D.
Collapse
Affiliation(s)
- Diana Carolina Villalpando-Sánchez
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico;
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Mexico
| | | | - Cleto Alvarez-Aguilar
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Mexico;
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04510, Mexico;
| | - Luisa F. Romero-Henríquez
- Posgrado en Pedagogía, Facultad de Filosofía y Letras, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04510, Mexico;
| | - Anel Gómez-García
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Mexico
| |
Collapse
|
4
|
Cho A, Jin W, Lee J, Shin N, Lee MS, Li L, Yang SH, Park KS, Yang CW, Kim DK, Oh YK, Lim CS, Lee JP. Periostin deficiency attenuates kidney fibrosis in diabetic nephropathy by improving pancreatic β-cell dysfunction and reducing kidney EMT. Sci Rep 2023; 13:17599. [PMID: 37845302 PMCID: PMC10579313 DOI: 10.1038/s41598-023-44177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with kidney fibrosis. A previous study revealed that periostin (POSTN) contributes to kidney fibrosis. This study examined the role of POSTN in DN. The urinary concentrations of POSTN and TNC increased according to the severity of DN in human samples. Streptozotocin (STZ) was administered after unilateral nephrectomy (UNXSTZ) to induce DN in wild-type and Postn-null mice. Four experimental groups were generated: wild-typeham (WT Sham), wild-type UNXSTZ (WT STZ), Postn-null Sham (KO Sham), and Postn-null UNXSTZ (KO STZ). After 20 weeks, the KO STZ group had lower levels of urine albumin excretion, glomerular sclerosis, and interstitial fibrosis than those of the WT STZ group. Additionally, the KO STZ group had lower expression of fibrosis markers, including TNC. The KO STZ group showed better glucose regulation than the WT STZ model. Furthermore, the KO STZ group exhibited significantly preserved pancreatic islet integrity and insulin expression. HK-2 cells were used to observe the aggravation of fibrosis caused by POSTN under TGF-β conditions. We stimulated INS-1 cells with streptozotocin and evaluated the viability of these cells. The anti-POSTN antibody treatment of INS-1 cells with streptozotocin resulted in higher cell viability than that with treatment with streptozotocin alone. The absence of POSTN in DN contributes to renal fibrosis alleviation by improving pancreatic β-cell function. Additionally, there is an association between POSTN and TNC.
Collapse
Affiliation(s)
- Ara Cho
- Translational Medicine Major, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wencheng Jin
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nayeon Shin
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Myoung Seok Lee
- Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Lilin Li
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Critical Care Medicine, Yanbian University Hospital, Yanji, Jilin, China
| | - Seung Hee Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul Woo Yang
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Translational Medicine Major, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Liang J, Liu Y. Animal Models of Kidney Disease: Challenges and Perspectives. KIDNEY360 2023; 4:1479-1493. [PMID: 37526653 PMCID: PMC10617803 DOI: 10.34067/kid.0000000000000227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Kidney disease is highly prevalent and affects approximately 850 million people worldwide. It is also associated with high morbidity and mortality, and current therapies are incurable and often ineffective. Animal models are indispensable for understanding the pathophysiology of various kidney diseases and for preclinically testing novel remedies. In the last two decades, rodents continue to be the most used models for imitating human kidney diseases, largely because of the increasing availability of many unique genetically modified mice. Despite many limitations and pitfalls, animal models play an essential and irreplaceable role in gaining novel insights into the mechanisms, pathologies, and therapeutic targets of kidney disease. In this review, we highlight commonly used animal models of kidney diseases by focusing on experimental AKI, CKD, and diabetic kidney disease. We briefly summarize the pathological characteristics, advantages, and drawbacks of some widely used models. Emerging animal models such as mini pig, salamander, zebrafish, and drosophila, as well as human-derived kidney organoids and kidney-on-a-chip are also discussed. Undoubtedly, careful selection and utilization of appropriate animal models is of vital importance in deciphering the mechanisms underlying nephropathies and evaluating the efficacy of new treatment options. Such studies will provide a solid foundation for future diagnosis, prevention, and treatment of human kidney diseases.
Collapse
Affiliation(s)
- Jianqing Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
6
|
Liu J, Zhu X, Sun L, Gao Y. Characterization and anti-diabetic evaluation of sulfated polysaccharide from Spirulina platensis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Klotho-derived peptide 6 ameliorates diabetic kidney disease by targeting Wnt/β-catenin signaling. Kidney Int 2022; 102:506-520. [PMID: 35644285 DOI: 10.1016/j.kint.2022.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023]
Abstract
Diabetic kidney disease (DKD) is one of the most common and devastating complications of diabetic mellitus, and its prevalence is rising worldwide. Klotho, an anti-aging protein, is kidney protective in DKD. However, its large size, prohibitive cost and structural complexity hamper its potential utility in clinics. Here we report that Klotho-derived peptide 6 (KP6) mimics Klotho function and ameliorates DKD. In either an accelerated model of DKD induced by streptozotocin and advanced oxidation protein products in unilateral nephrectomized mice or db/db mice genetically prone to diabetes, chronic infusion of KP6 reversed established proteinuria, attenuated glomerular hypertrophy, mitigated podocyte damage, and ameliorated glomerulosclerosis and interstitial fibrotic lesions, but did not affect serum phosphorus and calcium levels. KP6 inhibited β-catenin activation in vivo and blocked the expression of its downstream target genes in glomerular podocytes and tubular epithelial cells. In vitro, KP6 prevented podocyte injury and inhibited β-catenin activation induced by high glucose without affecting Wnt expression. Co-immunoprecipitation revealed that KP6 bound to Wnt ligands and disrupted the engagement of Wnts with low density lipoprotein receptor-related protein 6, thereby interrupting Wnt/β-catenin signaling. Mutated KP6 with a scrambled amino acid sequence failed to bind Wnts and did not alleviate DKD in db/db mice. Thus, our studies identified KP6 as a novel Klotho-derived peptide that ameliorated DKD by blocking Wnt/β-catenin. Hence, our findings also suggest a new therapeutic strategy for the treatment of patients with DKD.
Collapse
|
8
|
Abstract
Apocynin is a naturally occurring acetophenone, found in the roots of Apocynum cannabinum and Picrorhiza kurroa. Various chemical and pharmaceutical modifications have been carried out to enhance the absorption and duration of action of apocynin, like, formulation of chitosan-based apocynin-loaded solid lipid nanoparticles, chitosan-oligosaccharide based nanoparticles, and biodegradable polyanhydride nanoparticles. Apocynin has been subjected to a wide range of experimental screening and has proved to be useful for amelioration of a variety of disorders, like diabetic complications, neurodegeneration, cardiovascular disorders, lung cancer, hepatocellular cancer, pancreatic cancer, and pheochromocytoma. Apocynin has been primarily reported as an NADPH oxidase (NOX) inhibitor and prevents translocation of its p47phox subunit to the plasma membrane, observed in neurodegeneration and hypertension. However, recent studies highlight its off-target effects that it is able to function as a scavenger of non-radical oxidant species, which is relevant for its activity against NOX 4 mediated production of hydrogen peroxide. Additionally, apocynin has shown inhibition of eNOS-dependent superoxide production in diabetic cardiomyopathy, reduction of NLRP3 activation and TGFβ/Smad signaling in diabetic nephropathy, diminished VEGF expression and decreased retinal NF-κB activation in diabetic retinopathy, inhibition of P38/MAPK/Caspase3 pathway in pheochromocytoma, inhibition of AKT-GSK3β and ERK1/2 pathways in pancreatic cancer, and decreased FAK/PI3K/Akt signaling in hepatocellular cancer. This review aims to discuss the pharmacokinetics and mechanisms of the pharmacological actions of apocynin.
Collapse
Affiliation(s)
- Shreya R Savla
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
9
|
Alleviation by Mahuang Fuzi and Shenzhuo Decoction in High Glucose-Induced Podocyte Injury by Inhibiting the Activation of Wnt/ β-Catenin Signaling Pathway, Resulting in Activation of Podocyte Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7809427. [PMID: 32963573 PMCID: PMC7486640 DOI: 10.1155/2020/7809427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 11/17/2022]
Abstract
Background Organ fibrosis is a common endpoint of a variety of diseases. Many studies have shown that the pathogenesis of diabetic kidney disease (DKD) is related to the excessive activation of the Wnt/β-catenin signaling pathway on podocytes, so the treatment of DKD starts from this signaling pathway. At the same time, DKD, as a metabolic disease, has many connections related to podocyte autophagy. Objectives We experimented the effects of Mahuang Fuzi and Shenzhuo decoction (MFSD) which is the combination of Mahuang Fuzi decoction and Shenzhuo decoction in traditional Chinese medicine compounds used "The Golden Chamber" in high glucose-induced podocytes, determined whether this effect was related to Wnt/β-catenin signaling pathway, and further investigated the relationship between this effect and autophagy. Methods The mice podocytes were stimulated by using 30 mmol/L of high glucose and serum containing MFSD or Wnt/β-catenin signaling pathway inhibitor DKK1 (100 ng/ml) was used to intervene podocytes before high glucose stimulation. Podocyte injury-related proteins, Wnt/β-catenin signaling pathway-related proteins, and autophagy-related proteins were detected by using western blotting and immunofluorescence analysis. Results Our results showed that DKK1 and MFSD treatment significantly upregulated the protein expressions of nephrin, podocin, podocalyxin, and podoplanin in high glucose-induced podocytes and downregulated the β-catenin protein expression. Furthermore, the protein expressions of beclin1, LC3B, and P62 were also significantly increased in high glucose-induced podocytes. Conclusion Our experiments confirmed that the destruction of podocytes in DKD is related to the excessive activation of Wnt/β-catenin signaling pathway and the inhibition of autophagy after activation. MFSD treatment can inhibit the activation of Wnt/β-catenin signaling pathway in podocytes stimulated by high glucose and helpful in reducing the podocyte injury. This protective mechanism can be related to the enhancement of podocyte autophagy by MFSD treatment.
Collapse
|
10
|
Chen X, Liu W, Xiao J, Zhang Y, Chen Y, Luo C, Huang Q, Peng F, Gong W, Li S, He X, Zhuang Y, Wu N, Liu Y, Wang Y, Long H. FOXO3a accumulation and activation accelerate oxidative stress-induced podocyte injury. FASEB J 2020; 34:13300-13316. [PMID: 32786113 DOI: 10.1096/fj.202000783r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
Abstract
Podocyte injury is the primary cause of glomerular injury in diabetic nephropathy (DN). Advanced oxidation protein products (AOPPs), the triggers and markers of oxidative stress in DN, have been linked to podocyte damage. However, the underlying mechanism is not yet clear. Here, we investigated the potential role of FOXO3a, a key transcription factor in the response to stress, in mediating AOPPs-induced podocyte injury. We found that FOXO3a expression was increased in the glomeruli of kidney biopsies from patients with DN and it was positively correlated with proteinuria. The serum from patients with DN significantly increased FOXO3a and its downstream genes FasL and Bim, thereby inducing the high level of cleaved caspase3 and the loss of nephrin and podocin expressions in podocytes. Blockade of AOPPs signaling by a neutralizing antibody against the receptor of advanced glycation end products (αRAGE) abolished the effect of DN serum on podocytes, confirming the pathogenic role of AOPPs in DN serum. Downregulation of FOXO3a decreased AOPPs-induced podocyte apoptosis and restored the levels of podocyte markers nephrin and podocin, and upregulation of FOXO3a exacerbated these changes in podocytes after AOPPs treatment. Furthermore, FOXO3a specifically activated proapoptotic genes in podocytes only in the presence of AOPPs. Mechanistically, AOPPs increased the FOXO3a protein levels by inhibiting their autophagic degradation in a ROS/mTOR-dependent manner. Moreover AOPPs activated the accumulated FOXO3a by maintaining FOXO3a in the nucleus, and this process was dependent on ROS-mediated AKT signaling deactivation. These studies suggest that FOXO3a plays a critical role in mediating AOPPs-induced podocyte injury and reveal a new mechanistic linkage of oxidative stress, FOXO3a activation and podocyte injury in DN.
Collapse
Affiliation(s)
- Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenting Liu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zhang
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yihua Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qianyin Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangqiu Gong
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyang He
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Zhuang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Wu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanxia Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxian Wang
- Department of Gerontology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Ma B, Zhu Z, Zhang J, Ren C, Zhang Q. Aucubin alleviates diabetic nephropathy by inhibiting NF-κB activation and inducing SIRT1/SIRT3-FOXO3a signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Mehta N, Gava AL, Zhang D, Gao B, Krepinsky JC. Follistatin Protects Against Glomerular Mesangial Cell Apoptosis and Oxidative Stress to Ameliorate Chronic Kidney Disease. Antioxid Redox Signal 2019; 31:551-571. [PMID: 31184201 DOI: 10.1089/ars.2018.7684] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Interventions to inhibit oxidative stress and apoptosis, important pathogenic contributors toward the progression of chronic kidney disease (CKD), are not well established. Here, we investigated the role of a transforming growth factor beta (TGFβ) superfamily neutralizing protein, follistatin (FST), in the regulation of apoptosis and oxidative stress in glomerular mesangial cells (MCs) and in the progression of CKD. Results: The endoplasmic reticulum (ER) stress inducer thapsigargin (Tg), known to cause MC apoptosis, led to a post-translational increase in the expression of FST. Recombinant FST protected, whereas FST downregulation augmented, Tg-induced apoptosis without affecting Ca2+ release or ER stress induction. Although activins are the primary ligands neutralized by FST, their inhibition with neutralizing antibodies did not affect Tg-induced apoptosis. Instead, FST protected against Tg-induced apoptosis through neutralization of reactive oxygen species (ROS) independently of its ability to neutralize activins. Importantly, administration of FST to mice with CKD protected against renal cell apoptosis and oxidative stress. This was associated with improved kidney function, reduced albuminuria, and attenuation of fibrosis. Innovation and Conclusion: Independent of its activin neutralizing ability, FST protected against Tg-induced apoptosis through neutralization of ROS and consequent suppression of oxidative stress, seen both in vitro and in vivo. Importantly, FST also ameliorated fibrosis and improved kidney function in CKD. FST is, thus, a novel potential therapeutic agent for delaying the progression of CKD. Antioxid. Redox Signal. 31, 551-571.
Collapse
Affiliation(s)
- Neel Mehta
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Agata L Gava
- 2Physiological Sciences Graduate Program, Health Sciences Centre, Federal University of Espirito Santo, Vitoria, Brazil
| | - Dan Zhang
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Bo Gao
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Joan C Krepinsky
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
13
|
Li X, Zhang T, Geng J, Wu Z, Xu L, Liu J, Tian J, Zhou Z, Nie J, Bai X. Advanced Oxidation Protein Products Promote Lipotoxicity and Tubulointerstitial Fibrosis via CD36/β-Catenin Pathway in Diabetic Nephropathy. Antioxid Redox Signal 2019; 31:521-538. [PMID: 31084358 DOI: 10.1089/ars.2018.7634] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aims: Diabetic nephropathy (DN) is the principal cause of mortality and morbidity in diabetic patients, the progression of which correlates best with tubulointerstitial fibrosis (TIF). Advanced oxidation protein products (AOPPs) have been detected in patients with chronic renal failure, causing injuries to proximal tubular epithelial cells. CD36, a known receptor for AOPP, is an important modulator of lipid homeostasis, predisposing to renal tubular damage. However, whether AOPPs induce lipotoxicity via the CD36 receptor pathway remains unknown. Herein, we tested the hypothesis that AOPPs accumulation in diabetes incurs lipotoxicity, causing renal TIF via the CD36 signaling pathway. Results: In DN patients and diabetic mice in vivo, AOPPs overload induces lipogenesis (upregulation of CD36 and sterol regulatory element-binding protein 1), fibrosis (upregulation of Fibronectin), and renal function decline (increased serum creatinine and N-acetyl-β-d-glucosaminidase, decreased estimated glomerular filtration rate). In HK-2 cells in vitro, high glucose stimulated AOPPs-induced lipotoxicity, apoptosis, and fibrosis via the CD36 receptor pathway. In addition, apocynin abrogated AOPPs-induced lipid accumulation and CD36 inhibition significantly mitigated AOPPs-induced mitochondrial injuries, lipotoxicity, and renal fibrosis. Further, we provide mechanistic evidence that AOPPs overload induces the enrichment of β-catenin binding the CD36 promoter region. Innovation and Conclusion: Our data reveal a major role of AOPPs in triggering lipotoxicity and fibrosis via CD36-dependent Wnt/β-catenin activation, providing new evidence for understanding the role of lipid accumulation in DN.
Collapse
Affiliation(s)
- Xiao Li
- 1Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ting Zhang
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Geng
- 3Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhuguo Wu
- 4Department of Internal Medicine, the Second Clinical Medical College, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Liting Xu
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jixing Liu
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianwei Tian
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhanmei Zhou
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jing Nie
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoyan Bai
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Strain and sex-based glucocentric & behavioral differences between KK/HlJ and C57BL/6J mice. Physiol Behav 2019; 210:112646. [PMID: 31400379 DOI: 10.1016/j.physbeh.2019.112646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Small-animal models are the most widely used preclinical model for studying the etiology, pathology and treatment of diabetes, prediabetes and diabetic comorbidities. Diabetic patients are burdened with higher rates of depression, anxiety and cognitive decline due to inadequate control of blood glucose levels, vascular damage and aberrant CNS insulin signaling. The C57BL/6J model is amongst the most widely used mouse model due to its susceptibility to diet-induced obesity (DIO). This strain has also been well-characterized in behavioral research studies. However the C57BL/6J model has a number of limitations: [1] overt fasting hyperglycemia can only be induced by dietary manipulation and/or chemical ablation of the pancreatic beta cells. [2] There is heterogeneity in the obesogenic response to hypercaloric feeding as well as sex-dependent differences, with males being more responsive. The KK inbred strain has been used to study aspects of the metabolic syndrome and prediabetes due to inherent glucose intolerance, hyperinsulinemia and insulin resistance. However KK/HlJ mice are less well-characterized and there have been fewer behavioral studies reported. The aim of this study was to examine differences in male and female glucocentric parameters between KK/HlJ and C57BL/6J mice, and to compare their performance in a variety of standard behavioral tests relating to general, anxiogenic and cognitive paradigms. METHODS Strain differences in male and female KK/HlJ and C57BL/6J mouse adiposity, glucose and insulin parameters were studied together with group differences in standard Open Field, Object Recognition, Elevated Plus Maze, Light-Dark Transition, Porsolt test, Marble Burying, Social Recognition and Morris Water Maze tests. Correlations between behavioral variables were analyzed. RESULTS AND CONCLUSION In addition to being uniformly larger, hyperinsulinemic and more insulin intolerant than C57BL/6J mice, we observed marked strain and sex-differences in KK/HlJ behavior. KK/HlJ mice exhibited less locomotor and vertical exploratory behavior in comparison to C57BL/6J, whereas object exploration and novel object discrimination were superior in KK/HlJ mice. Female KK/HlJ mice were faster swimmers, whereas the males exhibited greater spatial cognition and place-learning during the MWM test.
Collapse
|
15
|
Wu Y, Li Y, Jiang T, Yuan Y, Li R, Xu Z, Zhong X, Jia G, Liu Y, Xie L, Xu K, Zhang H, Li X, Xiao J. Reduction of cellular stress is essential for Fibroblast growth factor 1 treatment for diabetic nephropathy. J Cell Mol Med 2018; 22:6294-6303. [PMID: 30320493 PMCID: PMC6237604 DOI: 10.1111/jcmm.13921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/10/2018] [Accepted: 08/26/2018] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is one of general and common complication of diabetes, which severely affects the physical and mental health of diabetic patients. Fibroblast growth factor 1 (FGF1), an effective control agent of blood glucose, plays an effective treatment role on diabetes-induced renal injury. But the specific molecule mechanism underlying it is still unclear. Since induction of cellular stress is the main and common mechanism of diabetes-induced complication, we hypothesized that reduction of cellular stress is also the molecular mechanism of FGF1 treatment for DN. Here, we have further confirmed that FGF1 significantly ameliorated the diabetes-induced renal interstitial fibrosis and glomerular damage. The expression levels of collagen and α-smooth muscle actin (α-SMA) also dramatically induced in kidney from db/db mice, but these effects were blocked by FGF1 administration. Our mechanistic investigation had further revealed that diabetes significantly induced oxidative stress, nitrosative stress, and endoplasmic reticulum (ER) stress with upregulation of malondialdehyde (MDA), nitrotyrosine level, ER stress makers and downregulation of antioxidant capacity (AOC). FGF1 treatment significantly attenuated the effect of diabetes on cellular stress. We conclude that FGF1-associated glucose decreases and subsequent reduction of cellular stress is the another potential molecule mechanism underlying FGF1 treatment for DN.
Collapse
Affiliation(s)
- Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yiyang Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Jiang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Yuan
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zeping Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingfeng Zhong
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gaili Jia
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Yanlong Liu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ling Xie
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|