1
|
Li J, Jia B, Xu Y, Zhao Y, Wang S, Yang R, Su L, Zeng X, Li Q, Luo C. Inhibition of mitoNEET ameliorates traumatic brain injury-induced ferroptosis and cognitive dysfunction by stabilizing dihydroorotate dehydrogenase. Exp Neurol 2025; 389:115235. [PMID: 40189124 DOI: 10.1016/j.expneurol.2025.115235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Due to the complexity of the causes and mechanisms of traumatic brain injury (TBI), there is still a lack of effective clinical treatments. Ferroptosis is an iron-dependent mode of cell death characterized by lipid peroxidation, which is involved in the pathophysiology of TBI. The process of ferroptosis involves mitochondria, and mitochondrial alterations are important biomarkers for the detection of ferroptosis. As an iron‑sulfur [2Fe-2S] cluster protein, mitoNEET (gene: CISD1) is located on the outer surface of mitochondria, and plays a key role in regulating cellular energy use, lipid metabolism, and mitochondrial iron content. However, whether mitoNEET is involved in regulating ferroptosis and cognitive decline caused by TBI is unclear. RESULTS In the present study, we observed that a mitoNEET ligand or inhibitor, NL-1 intervention significantly inhibited the occurrence of ferroptosis and alleviated neuronal injury after TBI. The gain and loss-function models of mitoNEET were then used to confirm the role of mitoNEET in ferroptosis and cognitive dysfunction after TBI. Knockdown of mitoNEET alleviated cognitive dysfunction and exhibited significant anti-ferroptosis effects in a mouse model of TBI, whereas mitoNEET overexpression exerted the opposite effects. Furthermore, silencing of DHODH blocked the anti-ferroptosis and neuroprotective effects of NL-1. CONCLUSIONS Taken together, these data demonstrated that NL-1 reversed TBI-induced ferroptosis and neurodegeneration, at least in part through the activation of mitoNEET/DHODH signaling axis. Pharmacological and gene inhibition of mitoNEET ameliorated TBI-induced ferroptosis and cognitive dysfunction. Mechanically, NL-1 may be through targeting mitoNEET to potentiate DHODH-mediated ferroptosis defense.
Collapse
Affiliation(s)
- Jing Li
- Department of Forensic Medicine, School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China; Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Department of Forensic Medicine, School of Basic Medicine, Soochow University, Suzhou 215123, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine, Soochow University, Suzhou 215123, China
| | - Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine, Soochow University, Suzhou 215123, China
| | - Yang Zhao
- Department of Forensic Medicine, School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Shangwen Wang
- Department of Forensic Medicine, School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Rui Yang
- Department of Forensic Medicine, School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Li Su
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Xiaofeng Zeng
- Department of Forensic Medicine, School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Qianqian Li
- Department of Forensic Medicine, School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China.
| | - Chengliang Luo
- Department of Forensic Medicine, School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China; Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Department of Forensic Medicine, School of Basic Medicine, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Wu HH, Zhu Q, Liang N, Xiang Y, Xu TY, Huang ZC, Cai JY, Weng LL, Ge HS. CISD2 regulates oxidative stress and mitophagy to maintain the balance of the follicular microenvironment in PCOS. Redox Rep 2024; 29:2377870. [PMID: 39010730 PMCID: PMC467114 DOI: 10.1080/13510002.2024.2377870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of CISD2 to the onset and progression of PCOS. METHODS Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage. RESULTS We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. CISD2 inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress. CONCLUSIONS Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.
Collapse
Affiliation(s)
- Hong-Hui Wu
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
| | - Qi Zhu
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Na Liang
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
| | - Yu Xiang
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Tian-Yue Xu
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Zi-Chao Huang
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jie-Yu Cai
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ling-Lin Weng
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hong-Shan Ge
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing Medical University, Nanjing, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
3
|
Zhou S, Liu D, Fan K, Liu H, Zhang XD. Atomic-level design of biomimetic iron-sulfur clusters for biocatalysis. NANOSCALE 2024; 16:18644-18665. [PMID: 39257356 DOI: 10.1039/d4nr02883j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Designing biomimetic materials with high activity and customized biological functions by mimicking the central structure of biomolecules has become an important avenue for the development of medical materials. As an essential electron carrier, the iron-sulfur (Fe-S) clusters have the advantages of simple structure and high electron transport capacity. To rationally design and accurately construct functional materials, it is crucial to clarify the electronic structure and conformational relationships of Fe-S clusters. However, due to the complex catalytic mechanism and synthetic process in vitro, it is hard to reveal the structure-activity relationship of Fe-S clusters accurately. This review introduces the main structural types of Fe-S clusters and their catalytic mechanisms first. Then, several typical structural design strategies of biomimetic Fe-S clusters are systematically introduced. Furthermore, the development of Fe-S clusters in the biocatalytic field is enumerated, including tumor treatment, antibacterial, virus inhibition and plant photoprotection. Finally, the problems and development directions of Fe-S clusters are summarized. This review aims to guide people to accurately understand and regulate the electronic structure of Fe-S at the atomic level, which is of great significance for designing biomimetic materials with specific functions and expanding their applications in biocatalysis.
Collapse
Affiliation(s)
- Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Di Liu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Kelong Fan
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haile Liu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Tang CF, Ding H, Wu YQ, Miao ZA, Wang ZX, Wang WX, Pan Y, Kong LD. Gastrodin attenuates high fructose-induced sweet taste preference decrease by inhibiting hippocampal neural stem cell ferroptosis. J Adv Res 2024:S2090-1232(24)00427-2. [PMID: 39353531 DOI: 10.1016/j.jare.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION High fructose intake has been implicated as a risk factor for behavioral disorders, potentially through cell ferroptosis induction in the central nervous system. Neural stem cells (NSCs) are crucial for maintaining hippocampal neurogenesis to resist behavioral alterations. Gastrodin, derived from the traditional Chinese herb Gastrodia elata, has neuroprotective effect. OBJECTIVES This study aimed to elucidate the underlying mechanism by which high fructose induces sweet taste preference and assesses the impact of gastrodin on hippocampal NSC ferroptosis. METHODS Mice and cultured NSCs were treated with high fructose and/or gastrodin, respectively. NSC ferroptosis was evaluated by assay of lipid peroxidation and DNA double-strand breaks. Transcriptome sequencing (RNA-seq), Western blotting, and chromatin immunoprecipitation (ChIP) were employed to explore the potential mechanism underlying high fructose-induced NSC ferroptosis and the modulation of gastrodin. Simultaneously, specific gene expression was regulated by lentivirus injection into the hippocampus of mice. RESULTS Our data showed that gastrodin mitigated sweet taste preference decline and hippocampal NSC ferroptosis in high fructose-fed mice, being consistent with reduction of reactive oxygen species (ROS) and iron accumulation in hippocampal NSC mitochondria. Mechanistically, we identified CDGSH iron-sulfur domain 1 (CISD1) as a mediator of NSC ferroptosis, with its expression being augmented by high fructose. Overexpression of Zic family member 2 (ZIC2) increased the transcription of Cisd1 gene. Additionally, overexpression of Zic2 with lentiviral vectors in hippocampus showed the decreased sweet taste preference in mice, consistently up-regulated CISD1 protein expression and reduced hippocampal NSC number. Gastrodin downregulated ZIC2 expression to inhibit CISD1 transcription in its attenuation of high fructose-induced NSC ferroptosis and sweet taste preference decrease. CONCLUSION Collectively, high fructose can drive hippocampal NSC ferroptosis by upregulating ZIC2 and CISD1 expression, thereby contributing to the decline in sweet taste preference. Gastrodin emerges as a promising agent for mitigating NSC ferroptosis and improving sweet taste preference.
Collapse
Affiliation(s)
- Chuan-Feng Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Hong Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Ya-Qian Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zi-An Miao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zi-Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Wen-Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| |
Collapse
|
5
|
Skolik R, Geldenhuys W, Konkle M, Menze M. Biochemical Control of the Mitochondrial Protein MitoNEET by Biological Thiols and Lipid-derived Electrophiles. ADVANCES IN REDOX RESEARCH 2023; 7:100059. [PMID: 39364216 PMCID: PMC11448853 DOI: 10.1016/j.arres.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
MitoNEET is a mitochondrial [2Fe-2S] protein known for its involvement in cellular metabolism, iron regulation, and oxidative stress. The protein has been associated with diseases ranging from diabetes to Parkinson's disease which has prompted development of compounds designed to selectively target mitoNEET. Unfortunately, drug development is limited due to a lack of understanding on the mechanistic level how mitoNEET integrates into pathophysiological processes. In particular, biological compounds that govern mitoNEET function are still ill defined. We demonstrate an oxygen-dependent reaction with biological thiols catalyzed by mitoNEET. Furthermore, we observed that formation of a covalently linked mitoNEET homodimer is controlled by both thiols and lipid-derived electrophiles. Finally, we demonstrate that reduced glutathione (L-GSH) regulates the reactivity of two lipid-derived biomarkers of oxidative stress, 4-HNE and 4-ONE, towards mitoNEET. We find that exposure to L-GSH prior to treatment with either of the electrophilic aldehydes prevents the formation of the covalently linked mitoNEET dimer. Meanwhile, addition of L-GSH after electrophile treatment recovers mitoNEET from the 4-HNE induced modification but not from the modification induced by 4-ONE. Our results collectively suggest that the thiol-electrophile redox balance governing ferroptotic cell death also controls mitoNEET's state at multiple biochemical levels. These results indicate a possible role for mitoNEET in thiol-mediated oxidative stress and may inform about development of probes designed to modulate mitoNEET activity to improve pathophysiological states.
Collapse
Affiliation(s)
- R.A Skolik
- Department of Biology, University of Louisville, Louisville, KY
| | - W.J. Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV
| | - M.E Konkle
- Department of Chemistry, Ball State University, Muncie, IN
| | - M.A. Menze
- Department of Biology, University of Louisville, Louisville, KY
| |
Collapse
|
6
|
Boos JR, Jandrain HN, Hagiuda E, Taguchi AT, Hasegawa K, Fedun BL, Taylor SJ, Elad SM, Faber SE, Kumasaka T, Iwasaki T, Geldenhuys WJ. Structure and biological evaluation of Caenorhabditis elegans CISD-1/mitoNEET, a KLP-17 tail domain homologue, supports attenuation of paraquat-induced oxidative stress through a p38 MAPK-mediated antioxidant defense response. ADVANCES IN REDOX RESEARCH : AN OFFICIAL JOURNAL OF THE SOCIETY FOR REDOX BIOLOGY AND MEDICINE AND THE SOCIETY FOR FREE RADICAL RESEARCH-EUROPE 2022; 6:100048. [PMID: 36533211 PMCID: PMC9757825 DOI: 10.1016/j.arres.2022.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
CISD-1/mitoNEET is an evolutionarily conserved outer mitochondrial membrane [2Fe-2S] protein that regulates mitochondrial function and morphology. The [2Fe-2S] clusters are redox reactive and shown to mediate oxidative stress in vitro and in vivo. However, there is limited research studying CISD-1/mitoNEET mediation of oxidative stress in response to environmental stressors. In this study, we have determined the X-ray crystal structure of Caenorhabditis elegans CISD-1/mitoNEET homologue and evaluated the mechanisms of oxidative stress resistance to the pro-oxidant paraquat in age-synchronized populations by generating C. elegans gain and loss of function CISD-1 models. The structure of the C. elegans CISD-1/mitoNEET soluble domain refined at 1.70-Å resolution uniquely shows a reversible disulfide linkage at the homo-dimeric interface and also represents the N-terminal tail domain for dimerization of the cognate kinesin motor protein KLP-17 involved in chromosome segregation dynamics and germline development of the nematode. Moreover, overexpression of CISD-1/mitoNEET in C. elegans has revealed beneficial effects on oxidative stress resistance against paraquat-induced reactive oxygen species generation, corroborated by increased activation of the p38 mitogen-activated protein kinase (MAPK) signaling cascade.
Collapse
Affiliation(s)
- Jacob R. Boos
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Hanna N. Jandrain
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Emi Hagiuda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Alexander T. Taguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Bailey L. Fedun
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah J. Taylor
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sofhia M. Elad
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah E. Faber
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Toshio Iwasaki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Werner J. Geldenhuys
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
7
|
Fontenot CR, Cheng Z, Ding H. Nitric oxide reversibly binds the reduced [2Fe-2S] cluster in mitochondrial outer membrane protein mitoNEET and inhibits its electron transfer activity. Front Mol Biosci 2022; 9:995421. [PMID: 36158570 PMCID: PMC9490426 DOI: 10.3389/fmolb.2022.995421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
MitoNEET is a mitochondrial outer membrane protein that regulates energy metabolism, iron homeostasis, and production of reactive oxygen species in cells. Aberrant expression of mitoNEET in tissues has been linked to type II diabetes, neurodegenerative diseases, and several types of cancer. Structurally, the N-terminal domain of mitoNEET has a single transmembrane alpha helix that anchors the protein to mitochondrial outer membrane. The C-terminal cytosolic domain of mitoNEET hosts a redox active [2Fe-2S] cluster via an unusual ligand arrangement of three cysteine and one histidine residues. Here we report that the reduced [2Fe-2S] cluster in the C-terminal cytosolic domain of mitoNEET (mitoNEET45-108) is able to bind nitric oxide (NO) without disruption of the cluster. Importantly, binding of NO at the reduced [2Fe-2S] cluster effectively inhibits the redox transition of the cluster in mitoNEET45-108. While the NO-bound [2Fe-2S] cluster in mitoNEET45-108 is stable, light excitation releases NO from the NO-bound [2Fe-2S] cluster and restores the redox transition activity of the cluster in mitoNEET45-108. The results suggest that NO may regulate the electron transfer activity of mitoNEET in mitochondrial outer membrane via reversible binding to its reduced [2Fe-2S] cluster.
Collapse
Affiliation(s)
| | | | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
8
|
The Cluster Transfer Function of AtNEET Supports the Ferredoxin-Thioredoxin Network of Plant Cells. Antioxidants (Basel) 2022; 11:antiox11081533. [PMID: 36009251 PMCID: PMC9405330 DOI: 10.3390/antiox11081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
NEET proteins are conserved 2Fe-2S proteins that regulate the levels of iron and reactive oxygen species in plant and mammalian cells. Previous studies of seedlings with constitutive expression of AtNEET, or its dominant-negative variant H89C (impaired in 2Fe-2S cluster transfer), revealed that disrupting AtNEET function causes oxidative stress, chloroplast iron overload, activation of iron-deficiency responses, and cell death. Because disrupting AtNEET function is deleterious to plants, we developed an inducible expression system to study AtNEET function in mature plants using a time-course proteomics approach. Here, we report that the suppression of AtNEET cluster transfer function results in drastic changes in the expression of different members of the ferredoxin (Fd), Fd-thioredoxin (TRX) reductase (FTR), and TRX network of Arabidopsis, as well as in cytosolic cluster assembly proteins. In addition, the expression of Yellow Stripe-Like 6 (YSL6), involved in iron export from chloroplasts was elevated. Taken together, our findings reveal new roles for AtNEET in supporting the Fd-TFR-TRX network of plants, iron mobilization from the chloroplast, and cytosolic 2Fe-2S cluster assembly. In addition, we show that the AtNEET function is linked to the expression of glutathione peroxidases (GPXs), which play a key role in the regulation of ferroptosis and redox balance in different organisms.
Collapse
|
9
|
Tasnim H, Ding H. Electron transfer activity of the nanodisc-bound mitochondrial outer membrane protein mitoNEET. Free Radic Biol Med 2022; 187:50-58. [PMID: 35609862 PMCID: PMC10693299 DOI: 10.1016/j.freeradbiomed.2022.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/13/2022]
Abstract
MitoNEET is the first iron-sulfur protein found in mitochondrial outer membrane. Abnormal expression of mitoNEET in cells has been linked to several types of cancer, type II diabetes, and neurodegenerative diseases. Structurally, mitoNEET is anchored to mitochondrial outer membrane via its N-terminal single transmembrane alpha helix. The C-terminal cytosolic domain of mitoNEET binds a [2Fe-2S] cluster via three cysteine and one histidine residues. It has been shown that mitoNEET has a crucial role in energy metabolism, iron homeostasis, and free radical production in cells. However, the exact function of mitoNEET remains elusive. Previously, we reported that the C-terminal soluble domain of mitoNEET has a specific binding site for flavin mononucleotide (FMN) and can transfer electrons from FMNH2 to oxygen or ubiquinone-2 via its [2Fe-2S] cluster. Here we have constructed a hybrid protein using the N-terminal transmembrane domain of Escherichia coli YneM and the C-terminal soluble domain of human mitoNEET and assembled the hybrid protein YneM-mitoNEET into phospholipid nanodiscs. The results show that the [2Fe-S] clusters in the nanodisc-bound YneM-mitoNEET can be rapidly reduced by FMNH2 which is reduced by flavin reductase using NADH as the electron donor. Addition of lumichrome, a FMN analog, effectively inhibits the FMNH2-mediated reduction of the [2Fe-2S] clusters in the nanodisc-bound YneM-mitoNEET. The reduced [2Fe-2S] clusters in the nanodisc-bound YneM-mitoNEET are quickly oxidized by oxygen under aerobic conditions or by ubiquinone-10 in the nanodiscs under anaerobic conditions. Because NADH oxidation is required for cellular glycolytic activity, we propose that the mitochondrial outer membrane protein mitoNEET may promote glycolysis by transferring electrons from FMNH2 to oxygen or ubiquinone-10 in mitochondria.
Collapse
Affiliation(s)
- Homyra Tasnim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
10
|
Inhibition of mitoNEET attenuates LPS-induced inflammation and oxidative stress. Cell Death Dis 2022; 13:127. [PMID: 35136051 PMCID: PMC8825830 DOI: 10.1038/s41419-022-04586-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022]
Abstract
MitoNEET (mitochondrial protein containing Asn–Glu–Glu–Thr (NEET) sequence) is a 2Fe–2S cluster-containing integral membrane protein that resides in the mitochondrial outer membrane and participates in a redox-sensitive signaling and Fe–S cluster transfer. Thus, mitoNEET is a key regulator of mitochondrial oxidative capacity and iron homeostasis. Moreover, mitochondrial dysfunction and oxidative stress play critical roles in inflammatory diseases such as sepsis. Increased iron levels mediated by mitochondrial dysfunction lead to oxidative damage and generation of reactive oxygen species (ROS). Increasing evidence suggests that targeting mitoNEET to reverse mitochondrial dysfunction deserves further investigation. However, the role of mitoNEET in inflammatory diseases is unknown. Here, we investigated the mechanism of action and function of mitoNEET during lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. Levels of mitoNEET protein increased during microbial or LPS-induced sepsis. Pharmacological inhibition of mitoNEET using mitoNEET ligand-1 (NL-1) decreased the levels of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in animal models of sepsis, as well as LPS-induced inflammatory responses by macrophages in vitro. Inhibition of mitoNEET using NL-1 or mitoNEET shRNA abrogated LPS-induced ROS formation and mitochondrial dysfunction. Furthermore, mitochondrial iron accumulation led to generation of LPS-induced ROS, a process blocked by NL-1 or shRNA. Taken together, these data suggest that mitoNEET could be a key therapeutic molecule that targets mitochondrial dysfunction during inflammatory diseases and sepsis.
Collapse
|
11
|
Oakley K, Sterling K, Shearer J, Kim E. Controlled Protonation of [2Fe-2S] Leading to MitoNEET Analogues and Concurrent Cluster Modification. Inorg Chem 2021; 60:16074-16078. [PMID: 34672568 DOI: 10.1021/acs.inorgchem.1c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MitoNEET, a key regulatory protein in mitochondrial energy metabolism, exhibits a uniquely ligated [2Fe-2S] cluster with one histidine and three cysteines. This unique cluster has been postulated to sense the redox environment and release Fe-S cofactors under acidic pH. Reported herein is a synthetic system that shows how [2Fe-2S] clusters react with protons and rearrange their coordination geometry. The low-temperature stable, site-differentiated clusters [Fe2S2(SPh)3(CF3COO)]2- and [Fe2S2(SPh)3(py)]- have been prepared via controlled protonation below -35 °C and characterized by NMR, UV-vis, and X-ray absorption spectroscopy. Both complexes exhibit anodically shifted redox potentials compared to [Fe2S2(SPh)4]2- and convert to [Fe4S4(SPh)4]2- upon warming to room temperature. The current study provides insight into how mitoNEET releases its [2Fe-2S] in response to highly tuned acidic conditions, the chemistry of which may have further implications in Fe-S biogenesis.
Collapse
Affiliation(s)
- Kady Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kevin Sterling
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
12
|
Baschiera E, Sorrentino U, Calderan C, Desbats MA, Salviati L. The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic Biol Med 2021; 166:277-286. [PMID: 33667628 DOI: 10.1016/j.freeradbiomed.2021.02.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Coenzyme Q (CoQ) is a redox active lipid that plays a central role in cellular homeostasis. It was discovered more than 60 years ago because of its role as electron transporter in the mitochondrial respiratory chain. Since then it has become evident that CoQ has many other functions, not directly related to bioenergetics. It is a cofactor of several mitochondrial dehydrogenases involved in the metabolism of lipids, amino acids, and nucleotides, and in sulfide detoxification. It is a powerful antioxidant and it is involved in the control of programmed cell death by modulating both apoptosis and ferroptosis. CoQ deficiency is a clinically and genetically heterogeneous group of disorders characterized by the impairment of CoQ biosynthesis. CoQ deficient patients display defects in cellular bioenergetics, but also in the other pathways in which CoQ is involved. In this review we will focus on the functions of CoQ not directly related to the respiratory chain, and on how their impairment is relevant for the pathophysiology of CoQ deficiency. A better understanding of the complex set of events triggered by CoQ deficiency will allow to design novel approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Elisa Baschiera
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Cristina Calderan
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy.
| |
Collapse
|
13
|
López-Lluch G. Coenzyme Q homeostasis in aging: Response to non-genetic interventions. Free Radic Biol Med 2021; 164:285-302. [PMID: 33454314 DOI: 10.1016/j.freeradbiomed.2021.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
Coenzyme Q (CoQ) is a key component for many essential metabolic and antioxidant activities in cells in mitochondria and cell membranes. Mitochondrial dysfunction is one of the hallmarks of aging and age-related diseases. Deprivation of CoQ during aging can be the cause or the consequence of this mitochondrial dysfunction. In any case, it seems clear that aging-associated CoQ deprivation accelerates mitochondrial dysfunction in these diseases. Non-genetic prolongevity interventions, including CoQ dietary supplementation, can increase CoQ levels in mitochondria and cell membranes improving mitochondrial activity and delaying cell and tissue deterioration by oxidative damage. In this review, we discuss the importance of CoQ deprivation in aging and age-related diseases and the effect of prolongevity interventions on CoQ levels and synthesis and CoQ-dependent antioxidant activities.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología Del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
14
|
Tasnim H, Landry AP, Fontenot CR, Ding H. Exploring the FMN binding site in the mitochondrial outer membrane protein mitoNEET. Free Radic Biol Med 2020; 156:11-19. [PMID: 32445867 PMCID: PMC7434653 DOI: 10.1016/j.freeradbiomed.2020.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
MitoNEET is a mitochondrial outer membrane protein that hosts a redox active [2Fe-2S] cluster in the C-terminal cytosolic domain. Increasing evidence has shown that mitoNEET has an essential role in regulating energy metabolism in human cells. Previously, we reported that the [2Fe-2S] clusters in mitoNEET can be reduced by the reduced flavin mononucleotide (FMNH2) and oxidized by oxygen or ubiquinone-2, suggesting that mitoNEET may act as a novel redox enzyme catalyzing electron transfer from FMNH2 to oxygen or ubiquinone. Here, we explore the FMN binding site in mitoNEET by using FMN analogs and find that lumiflavin, like FMN, at nanomolar concentrations can mediate the redox transition of the mitoNEET [2Fe-2S] clusters in the presence of flavin reductase and NADH (100 μM) under aerobic conditions. The electron paramagnetic resonance (EPR) measurements show that both FMN and lumiflavin can dramatically change the EPR spectrum of the reduced mitoNEET [2Fe-2S] clusters and form a covalently bound complex with mitoNEET under blue light exposure, suggesting that FMN/lumiflavin has specific interactions with the [2Fe-2S] clusters in mitoNEET. In contrast, lumichrome, another FMN analog, fails to mediate the redox transition of the mitoNEET [2Fe-2S] clusters and has no effect on the EPR spectrum of the reduced mitoNEET [2Fe-2S] clusters under blue light exposure. Instead, lumichrome can effectively inhibit the FMNH2-mediated reduction of the mitoNEET [2Fe-2S] clusters, indicating that lumichrome may act as a potential inhibitor to block the electron transfer activity of mitoNEET.
Collapse
Affiliation(s)
- Homyra Tasnim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aaron P Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Chelsey R Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
15
|
Wang Y, Lee J, Ding H. Light-induced release of nitric oxide from the nitric oxide-bound CDGSH-type [2Fe-2S] clusters in mitochondrial protein Miner2. Nitric Oxide 2019; 89:96-103. [PMID: 31150776 DOI: 10.1016/j.niox.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 01/06/2023]
Abstract
Human mitochondrial matrix protein Miner2 hosts two [2Fe-2S] clusters via two CDGSH (Cys-Asp-Gly-Ser-His) motifs. Unlike other iron-sulfur clusters in proteins, the reduced CDGSH-type [2Fe-2S] clusters in Miner2 are able to bind nitric oxide (NO) and form stable NO-bound [2Fe-2S] clusters without disruption of the clusters. Here we report that the NO-bound Miner2 [2Fe-2S] clusters can quickly release NO upon the visible light excitation. The UV-visible and Electron Paramagnetic Resonance (EPR) measurements show that the NO-bound Miner2 [2Fe-2S] clusters are converted to the reduced Miner2 [2Fe-2S] clusters upon the light excitation under anaerobic conditions, suggesting that NO binding in the reduced Miner2 [2Fe-2S] clusters is reversible. Additional studies reveal that binding of NO effectively inhibits the redox transition of the Miner2 [2Fe-2S] clusters, indicating that NO may modulate the physiological activity of Miner2 in mitochondria by directly binding to the CDGSH-type [2Fe-2S] clusters in the protein.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jeonghoon Lee
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|