1
|
Shen N, Polyanskaya A, Qi X, Al Othman A, Permyakova A, Volkova M, Mezentsev A, Durymanov M. Modification of mesenchymal stromal cells with silibinin-loaded PLGA nanoparticles improves their therapeutic efficacy for cutaneous wound repair. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102767. [PMID: 38906391 DOI: 10.1016/j.nano.2024.102767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
The use of mesenchymal stromal cells (MSCs) for treating chronic inflammatory disorders, wounds, and ischemia-reperfusion injuries has shown improved healing efficacy. However, the poor survival rate of transplanted cells due to oxidative stress in injured or inflamed tissue remains a significant concern for MSC-based therapies. In this study, we developed a new approach to protect MSCs from oxidative stress, thereby improving their survival in a wound microenvironment and enhancing their therapeutic effect. We produced PLGA nanoparticles loaded with the cytoprotective phytochemical silibinin (SBN), and used them to modify MSCs. Upon internalization, these nanoformulations released SBN, activating the Nrf2/ARE signaling pathway, resulting in threefold reduction in intracellular ROS content and improved cell survival under oxidative stress conditions. Modification of MSCs with SBN-loaded PLGA nanoparticles increased their survival upon transplantation to full-thickness cutaneous wounds and improved wound healing. This study suggests that MSC modification with cytoprotective nanoparticles could be a promising approach for improving wound healing.
Collapse
Affiliation(s)
- Ningfei Shen
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Anna Polyanskaya
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Xiaoli Qi
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Aya Al Othman
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Anastasia Permyakova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russia
| | - Marina Volkova
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Alexandre Mezentsev
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Mikhail Durymanov
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia; Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russia.
| |
Collapse
|
2
|
Osei GY, Adu-Amankwaah J, Koomson S, Beletaa S, Ahmad MK, Asiamah EA, Smith-Togobo C, Abdul Razak SR. Revolutionizing colorectal cancer treatment: unleashing the potential of miRNAs in targeting cancer stem cells. Future Oncol 2023; 19:2369-2382. [PMID: 37970643 DOI: 10.2217/fon-2023-0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Colorectal cancer (CRC) is a significant contributor to cancer mortality worldwide, and the presence of cancer stem cells (CSC) represents a major challenge for achieving effective treatment. miRNAs have emerged as critical regulators of gene expression, and recent studies have highlighted their role in regulating stemness and therapeutic resistance in CRC stem cells. This review highlights the mechanisms of CSC development, therapy resistance and the potential of miRNAs as therapeutic targets for CRC. It emphasizes the promise of miRNAs as a novel approach to CRC treatment and calls for further research to explore effective miRNA-based therapies and strategies for delivering miRNAs to CSCs in vivo.
Collapse
Affiliation(s)
- George Yiadom Osei
- Department of Biomedical Sciences, Advanced Medical & Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
- Department of Medical Laboratory Sciences, University of Health & Allied Sciences, PMB 31, Ho, Ghana
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Selina Koomson
- Department of Medical Laboratory Sciences, University of Health & Allied Sciences, PMB 31, Ho, Ghana
| | - Solomon Beletaa
- Department of Medical Laboratory Sciences, University of Health & Allied Sciences, PMB 31, Ho, Ghana
| | - Muhammad Khairi Ahmad
- Department of Biomedical Sciences, Advanced Medical & Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Emmanuel Akomanin Asiamah
- Department of Medical Laboratory Sciences, University of Health & Allied Sciences, PMB 31, Ho, Ghana
- Discipline of Public Health Medicine, School of Nursing & Public Health, University of KwaZulu-Natal, Durban, 4001, South Africa
- Cancer & Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Cecilia Smith-Togobo
- Department of Medical Laboratory Sciences, University of Health & Allied Sciences, PMB 31, Ho, Ghana
| | - Siti Razila Abdul Razak
- Department of Biomedical Sciences, Advanced Medical & Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Kuzekova AA, Novoselova TV, Sharapov MG, Mubarakshina EK, Goncharov RG, Khrenov MO. Protective effect of exogenous peroxiredoxin 6 and thymic peptide thymulin on BBB conditions in an experimental model of multiple sclerosis. Arch Biochem Biophys 2023; 746:109729. [PMID: 37633587 DOI: 10.1016/j.abb.2023.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
This study aimed to assess the effects of the immunomodulator thymulin, a thymic peptide with anti-inflammatory effects, and peroxiredoxin 6 (Prdx6), an antioxidant enzyme with dual peroxidase and phospholipase A2 activities, on the blood‒brain barrier (BBB) condition and general health status of animals with relapsing-remitting experimental autoimmune encephalomyelitis (EAE), which is a model of multiple sclerosis in humans. Both thymulin and Prdx6 significantly improved the condition of the BBB, which was impaired by EAE induction, as measured by Evans blue dye accumulation, tight-junction protein loss in brain tissue, and lymphocyte infiltration through the BBB. The effect was associated with significant amelioration of EAE symptoms. Thymulin treatment was accompanied by a decrease in immune cell activation as judged by interleukin-6, -17, and interferon-gamma cytokine levels in serum and NF-kappaB cascade activation in splenocytes of mice with EAE. Prdx6 did not induce significant immunomodulatory effects but abruptly decreased EAE-induced NOX1 and NOX4 gene expression in brain tissue, which may be one of the possible mechanisms of its beneficial effects on BBB conditions and health status. The simultaneous administration of thymulin and Prdx6 resulted in complete symptomatic restoration of mice with EAE. The results demonstrate prospective strategies for multiple sclerosis treatment.
Collapse
Affiliation(s)
- S M Lunin
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia.
| | - E G Novoselova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - O V Glushkova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - S B Parfenyuk
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - A A Kuzekova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - T V Novoselova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - M G Sharapov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - E K Mubarakshina
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - R G Goncharov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - M O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| |
Collapse
|
4
|
Gudkov SV, Gao M, Simakin AV, Baryshev AS, Pobedonostsev RV, Baimler IV, Rebezov MB, Sarimov RM, Astashev ME, Dikovskaya AO, Molkova EA, Kozlov VA, Bunkin NF, Sevostyanov MA, Kolmakov AG, Kaplan MA, Sharapov MG, Ivanov VE, Bruskov VI, Kalinichenko VP, Aiyyzhy KO, Voronov VV, Pimpha N, Li R, Shafeev GA. Laser Ablation-Generated Crystalline Selenium Nanoparticles Prevent Damage of DNA and Proteins Induced by Reactive Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5164. [PMID: 37512437 PMCID: PMC10386620 DOI: 10.3390/ma16145164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
With the help of laser ablation, a technology for obtaining nanosized crystalline selenium particles (SeNPs) has been created. The SeNPs do not exhibit significant toxic properties, in contrast to molecular selenium compounds. The administration of SeNPs can significantly increase the viabilities of SH-SY5Y and PCMF cells after radiation exposure. The introduction of such nanoparticles into the animal body protects proteins and DNA from radiation-induced damage. The number of chromosomal breaks and oxidized proteins decreases in irradiated mice treated with SeNPs. Using hematological tests, it was found that a decrease in radiation-induced leukopenia and thrombocytopenia is observed when selenium nanoparticles are injected into mice before exposure to ionizing radiation. The administration of SeNPs to animals 5 h before radiation exposure in sublethal and lethal doses significantly increases their survival rate. The modification dose factor for animal survival was 1.2. It has been shown that the introduction of selenium nanoparticles significantly normalizes gene expression in the cells of the red bone marrow of mice after exposure to ionizing radiation. Thus, it has been demonstrated that SeNPs are a new gene-protective and radioprotective agent that can significantly reduce the harmful effects of ionizing radiation.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Alexey S Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Roman V Pobedonostsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Ilya V Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Maksim B Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Ruslan M Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Push-chino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, 142290 Pushchino, Russia
| | - Anastasia O Dikovskaya
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Elena A Molkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Valery A Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Nikolay F Bunkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Mikhail A Sevostyanov
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Alexey G Kolmakov
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Mikhail A Kaplan
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Push-chino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, 142290 Pushchino, Russia
| | - Vladimir E Ivanov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, 142290 Pushchino, Russia
| | - Vadim I Bruskov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, 142290 Pushchino, Russia
| | - Valery P Kalinichenko
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- Institute of Fertility of Soils of South Russia, 346493 Persianovka, Russia
| | - Kuder O Aiyyzhy
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Valery V Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Nuttaporn Pimpha
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) 111, Phahonyotin Rd, Klong Luang 12120, Thailand
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Georgy A Shafeev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| |
Collapse
|
5
|
Obrador E, Salvador-Palmer R, Pellicer B, López-Blanch R, Sirerol JA, Villaescusa JI, Montoro A, Dellinger RW, Estrela JM. Combination of natural polyphenols with a precursor of NAD + and a TLR2/6 ligand lipopeptide protects mice against lethal γ radiation. J Adv Res 2023; 45:73-86. [PMID: 35599107 PMCID: PMC10006514 DOI: 10.1016/j.jare.2022.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Effective agents that could confer long-term protection against ionizing radiation in vivo would have applications in medicine, biotechnology, and in air and space travel. However, at present, drugs that can effectively protect against lethal ionizing radiations are still an unmet need. OBJECTIVE To investigate if combinations of natural polyphenols, known for their antioxidant potential, could protect against ionizing radiations. METHODS Plant-derived polyphenols were screened for their potential ability to confer radioprotection to mice given a lethal whole-body γ radiation (137Cs) dose expected to kill 50% of the animals in 30 days. Telomere and centromere staining, Q-FISH and comet assays were used to investigate chromosomal aberration, micronuclei formation and DNA breaks. Molecular oxidations were investigated by enzyme immunoassays and UPLC-MS/MS. RT-PCR, western blotting and siRNA-induced gene silencing were used to study signaling mechanisms and molecular interactions. RESULTS The combination of pterostilbene (PT) and silibinin (SIL) was the most effective against γ-irradiation, resulting in 100% of the mice surviving at 30 days and 20% survival at one year. Treatment post γ-irradiation with two potential radiomitigators nicotinamide riboside (NR, a vitamin B3 derivative), and/or fibroblast-stimulating lipoprotein 1 (FSL1, a toll-like receptor 2/6 agonist), did not extend survival. However, the combination of PT, SIL, NR and FSL1 achieved a 90% survival one year post γ-irradiation. The mechanism involves induction of the Nrf2-dependent cellular antioxidant defense, reduction of NF-kB signaling, upregulation of the PGC-1α/sirtuins 1 and 3 axis, PARP1-dependent DNA repair, and stimulation of hematopoietic cell recovery. The pathway linking Nrf2, sirtuin 3 and SOD2 is key to radioprotection. Importantly, this combination did not interfere with X-ray mediated killing of different tumor cells in vivo. CONCLUSION The combination of the radioprotectors PT and SIL with the radiomitigators NR and FSL1 confer effective, long-term protection against γ radiation in vivo. This strategy is potentially capable of protecting mammals against ionizing radiations.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain.
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain
| | - Blanca Pellicer
- Service of Radiology, Sagunto Hospital, 46520 Sagunto, Valencia, Spain
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain
| | - J Antoni Sirerol
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain
| | - Juan I Villaescusa
- Service of Radiological Protection, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain; Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Alegría Montoro
- Service of Radiological Protection, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain; Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | | | - José M Estrela
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
6
|
Serov DA, Burmistrov DE, Simakin AV, Astashev ME, Uvarov OV, Tolordava ER, Semenova AA, Lisitsyn AB, Gudkov SV. Composite Coating for the Food Industry Based on Fluoroplast and ZnO-NPs: Physical and Chemical Properties, Antibacterial and Antibiofilm Activity, Cytotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4158. [PMID: 36500781 PMCID: PMC9739285 DOI: 10.3390/nano12234158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Bacterial contamination of meat products during its preparation at the enterprise is an important problem for the global food industry. Cutting boards are one of the main sources of infection. In order to solve this problem, the creation of mechanically stable coatings with antibacterial activity is one of the most promising strategies. For such a coating, we developed a composite material based on "liquid" Teflon and zinc oxide nanoparticles (ZnO-NPs). The nanoparticles obtained with laser ablation had a rod-like morphology, an average size of ~60 nm, and a ζ-potential of +30 mV. The polymer composite material was obtained by adding the ZnO-NPs to the polymer matrix at a concentration of 0.001-0.1% using the low-temperature technology developed by the research team. When applying a composite material to a surface with damage, the elimination of defects on a micrometer scale was observed. The effect of the composite material on the generation of reactive oxygen species (H2O2, •OH), 8-oxoguanine in DNA in vitro, and long-lived reactive protein species (LRPS) was evaluated. The composite coating increased the generation of all of the studied compounds by 50-200%. The effect depended on the concentration of added ZnO-NPs. The antibacterial and antibiofilm effects of the Teflon/ZnO NP coating against L. monocytogenes, S. aureus, P. aeruginosa, and S. typhimurium, as well as cytotoxicity against the primary culture of mouse fibroblasts, were studied. The conducted microbiological study showed that the fluoroplast/ZnO-NPs coating has a strong bacteriostatic effect against both Gram-positive and Gram-negative bacteria. In addition, the fluoroplast/ZnO-NPs composite material only showed potential cytotoxicity against primary mammalian cell culture at a concentration of 0.1%. Thus, a composite material has been obtained, the use of which may be promising for the creation of antibacterial coatings in the meat processing industry.
Collapse
Affiliation(s)
- Dmitriy A. Serov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Alexander V. Simakin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Eteri R. Tolordava
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 26, Talalikhina St., 109316 Moscow, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 26, Talalikhina St., 109316 Moscow, Russia
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 26, Talalikhina St., 109316 Moscow, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| |
Collapse
|
7
|
Serov DA, Baimler IV, Burmistrov DE, Baryshev AS, Yanykin DV, Astashev ME, Simakin AV, Gudkov SV. The Development of New Nanocomposite Polytetrafluoroethylene/Fe 2O 3 NPs to Prevent Bacterial Contamination in Meat Industry. Polymers (Basel) 2022; 14:polym14224880. [PMID: 36433009 PMCID: PMC9695638 DOI: 10.3390/polym14224880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
Abstract
The bacterial contamination of cutting boards and other equipment in the meat processing industry is one of the key reasons for reducing the shelf life and consumer properties of products. There are two ways to solve this problem. The first option is to create coatings with increased strength in order to prevent the formation of micro damages that are favorable for bacterial growth. The second possibility is to create materials with antimicrobial properties. The use of polytetrafluoroethylene (PTFE) coatings with the addition of metal oxide nanoparticles will allow to the achieving of both strength and bacteriostatic effects at the same time. In the present study, a new coating based on PTFE and Fe2O3 nanoparticles was developed. Fe2O3 nanoparticles were synthesized by laser ablation in water and transferred into acetone using the developed procedures. An acetone-based colloidal solution was mixed with a PTFE-based varnish. Composites with concentrations of Fe2O3 nanoparticles from 0.001-0.1% were synthesized. We studied the effect of the obtained material on the generation of ROS (hydrogen peroxide and hydroxyl radicals), 8-oxoguanine, and long-lived active forms of proteins. It was found that PTFE did not affect the generation of all the studied compounds, and the addition of Fe2O3 nanoparticles increased the generation of H2O2 and hydroxyl radicals by up to 6 and 7 times, respectively. The generation of 8-oxoguanine and long-lived reactive protein species in the presence of PTFE/Fe2O3 NPs at 0.1% increased by 2 and 3 times, respectively. The bacteriostatic and cytotoxic effects of the developed material were studied. PTFE with the addition of Fe2O3 nanoparticles, at a concentration of 0.001% or more, inhibited the growth of E. coli by 2-5 times compared to the control or PTFE without NPs. At the same time, PTFE, even with the addition of 0.1% Fe2O3 nanoparticles, did not significantly impact the survival of eukaryotic cells. It was assumed that the resulting composite material could be used to cover cutting boards and other polymeric surfaces in the meat processing industry.
Collapse
|
8
|
Burmistrov DE, Serov DA, Simakin AV, Baimler IV, Uvarov OV, Gudkov SV. A Polytetrafluoroethylene (PTFE) and Nano-Al 2O 3 Based Composite Coating with a Bacteriostatic Effect against E. coli and Low Cytotoxicity. Polymers (Basel) 2022; 14:4764. [PMID: 36365757 PMCID: PMC9653981 DOI: 10.3390/polym14214764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
The problem of bacterial contamination through surfaces is important for the food industry. In this regard, there is a growing interest in new coatings based on nanoparticles that can provide a long-term antibacterial effect. Aluminum oxide nanoparticles are a good candidate for such coatings due to their availability and good biocompatibility. In this study, a coating containing aluminum oxide nanoparticles was produced using polytetrafluoroethylene as a polymer matrix-a polymer that exhibits excellent mechanical and physicochemical properties and it is not toxic. The obtained coatings based on "liquid Teflon" containing various concentrations of nanoparticles (0.001-0.1 wt%) prevented the bacterial growth, and they did not exhibit a cytotoxicity on animal cells in vitro. Such coatings are designed not only to provide an antibacterial surface effect, but also to eliminate micro damages on surfaces that inevitably occur in the process of food production.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| |
Collapse
|
9
|
Abstract
Nanocomposites based on polymers and nanoparticles are used in agriculture for photoconversion of solar radiation, as a basis for covering material, as a packaging material, and as functional films. At the same time, nanocomposites are almost never used in agriculture as biosafe structural materials. In this work, we have developed a technology for obtaining a nanocomposite based on PLGA and iron oxide nanoparticles. The nanocomposite has unique physical and chemical properties and also exhibits pronounced antibacterial properties at a concentration of iron oxide nanoparticles of more than 0.01%. At the same time, the nanocomposite does not affect the growth and development of pepper and is biocompatible with mammalian cells. Nanocomposites based on PLGA and iron oxide nanoparticles can be an attractive candidate for the manufacture of structural and packaging materials in agriculture.
Collapse
|
10
|
Gupta DN, Rani R, Kokane AD, Ghosh DK, Tomar S, Sharma AK. Characterization of a cytoplasmic 2-Cys peroxiredoxin from Citrus sinensis and its potential role in protection from oxidative damage and wound healing. Int J Biol Macromol 2022; 209:1088-1099. [PMID: 35452700 DOI: 10.1016/j.ijbiomac.2022.04.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
In present work, the recombinant cytoplasmic 2-Cys peroxiredoxin from Citrus sinensis (CsPrx) was purified and characterized. The peroxidase activity was examined with different substrates using DTT, a non-physiological electron donor. The conformational studies, in oxidized and reduced states, were performed using circular dichroism (CD) and fluorescence measurement. The CD analysis showed higher α-helical content for reduced state of the protein. The thermal stability studies of CsPrx by Differential Scanning Calorimetry (DSC) showed that oxidized state is more stable as compared to the reduced state of CsPrx. In vitro studies showed that the CsPrx provides a protective shield against ROS and free radicals that participate in the degradation of plasmid DNA. The pre-treatment of 10 μM CsPrx provide almost 100% protection against peroxide-mediated cell killing in the Vero cells. CsPrx showed significant cell proliferation and wound healing properties. The superior morphology of viable cells and wound closure was found at 20 μM CsPrx treated for 12 h. The results demonstrated that CsPrx is a multifaceted protein with a significant role in cell proliferation, wound healing and protection against hydrogen peroxide-induced cellular damage. This could be the first report of a plant peroxiredoxin being characterized for biomedical applications.
Collapse
Affiliation(s)
- Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Amol D Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India.
| |
Collapse
|
11
|
Chausov DN, Smirnova VV, Burmistrov DE, Sarimov RM, Kurilov AD, Astashev ME, Uvarov OV, Dubinin MV, Kozlov VA, Vedunova MV, Rebezov MB, Semenova AA, Lisitsyn AB, Gudkov SV. Synthesis of a Novel, Biocompatible and Bacteriostatic Borosiloxane Composition with Silver Oxide Nanoparticles. MATERIALS 2022; 15:ma15020527. [PMID: 35057245 PMCID: PMC8780406 DOI: 10.3390/ma15020527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 01/16/2023]
Abstract
Microbial antibiotic resistance is an important global world health problem. Recently, an interest in nanoparticles (NPs) of silver oxides as compounds with antibacterial potential has significantly increased. From a practical point of view, composites of silver oxide NPs and biocompatible material are of interest. A borosiloxane (BS) can be used as one such material. A composite material combining BS and silver oxide NPs has been synthesized. Composites containing BS have adjustable viscoelastic properties. The silver oxide NPs synthesized by laser ablation have a size of ~65 nm (half-width 60 nm) and an elemental composition of Ag2O. The synthesized material exhibits strong bacteriostatic properties against E. coli at a concentration of nanoparticles of silver oxide more than 0.01%. The bacteriostatic effect depends on the silver oxide NPs concentration in the matrix. The BS/silver oxide NPs have no cytotoxic effect on a eukaryotic cell culture when the concentration of nanoparticles of silver oxide is less than 0.1%. The use of the resulting composite based on BS and silver oxide NPs as a reusable dry disinfectant is due to its low toxicity and bacteriostatic activity and its characteristics are not inferior to the medical alloy nitinol.
Collapse
Affiliation(s)
- Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Veronika V. Smirnova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Ruslan M. Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Alexander D. Kurilov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | | | - Valery A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhny Novgorod, Russia
| | - Maksim B. Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Anastasia A. Semenova
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhny Novgorod, Russia
- Correspondence:
| |
Collapse
|
12
|
Burmistrov DE, Simakin AV, Smirnova VV, Uvarov OV, Ivashkin PI, Kucherov RN, Ivanov VE, Bruskov VI, Sevostyanov MA, Baikin AS, Kozlov VA, Rebezov MB, Semenova AA, Lisitsyn AB, Vedunova MV, Gudkov SV. Bacteriostatic and Cytotoxic Properties of Composite Material Based on ZnO Nanoparticles in PLGA Obtained by Low Temperature Method. Polymers (Basel) 2021; 14:49. [PMID: 35012071 PMCID: PMC8747160 DOI: 10.3390/polym14010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
A low-temperature technology was developed for producing a nanocomposite based on poly (lactic-co-glycolic acid) and zinc oxide nanoparticles (ZnO-NPs), synthesized by laser ablation. Nanocomposites were created containing 0.001, 0.01, and 0.1% of zinc oxide nanoparticles with rod-like morphology and a size of 40-70 nm. The surface of the films from the obtained nanomaterial was uniform, without significant defects. Clustering of ZnO-NPs in the PLGA matrix was noted, which increased with an increase in the concentration of the dopant in the polymer. The resulting nanomaterial was capable of generating reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals. The rate of ROS generation increased with an increase in the concentration of the dopant. It was shown that the synthesized nanocomposite promotes the formation of long-lived reactive protein species, and is also the reason for the appearance of a key biomarker of oxidative stress, 8-oxoguanine, in DNA. The intensity of the process increased with an increase in the concentration of nanoparticles in the matrix. It was found that the nanocomposite exhibits significant bacteriostatic properties, the severity of which depends on the concentration of nanoparticles. In particular, on the surface of the PLGA-ZnO-NPs composite film containing 0.001% nanoparticles, the number of bacterial cells was 50% lower than that of pure PLGA. The surface of the composite is non-toxic to eukaryotic cells and does not interfere with their adhesion, growth, and division. Due to its low cytotoxicity and bacteriostatic properties, this nanocomposite can be used as coatings for packaging in the food industry, additives for textiles, and also as a material for biomedicine.
Collapse
Affiliation(s)
- Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
| | - Veronika V. Smirnova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
| | - Petr I. Ivashkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
| | - Roman N. Kucherov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Kashirskoe Highway 31, 115409 Moscow, Russia
| | - Vladimir E. Ivanov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia;
| | - Vadim I. Bruskov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia;
| | - Mihail A. Sevostyanov
- A. A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Leninsky Prospect 49, 119991 Moscow, Russia; (M.A.S.); (A.S.B.)
| | - Alexander S. Baikin
- A. A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Leninsky Prospect 49, 119991 Moscow, Russia; (M.A.S.); (A.S.B.)
| | - Valery A. Kozlov
- Faculty of Fundamental Sciences, Bauman Moscow State Technical University, Vtoraya Baumanskaya Ul. 5, 105005 Moscow, Russia;
| | - Maksim B. Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia;
| |
Collapse
|
13
|
Li X, Yi J, Zhu J, Zhao C, Cui Y, Shi Y, Hao L, Lu J. Protective effect of coix seed seedling extract on 60 Co-γ radiation-induced oxidative stress in mice. J Food Sci 2021; 87:438-449. [PMID: 34919269 DOI: 10.1111/1750-3841.15991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
Exposure to ionizing radiation (IR) can cause oxidative damage to human body, leading to various diseases and even death. In this study, the potential radioprotective effect of coix seed seedling extract (CSS-E) was studied through a model of 60 Co-γ radiation-induced oxidative stress in mice. Overall radioprotective effect of CSS-E against radiation-induced damage was evaluated by biochemical analysis and histopathological analysis. The results showed that CSS-E could significantly reduce the IR-induced damage to the hematopoietic system. CSS-E-M (200 mg/kg BW) pretreatment could increase the activities of superoxide dismutase in serum, liver, and spleen increased by 31.68%, 45.10%, and 56.67%, respectively, and the glutathione peroxidase levels in serum, liver, and spleen of mice were improved by 19.17%, 41.97%, and 130.56%, respectively. Meanwhile, the glutathione levels of serum, liver, and spleen in CSS-E-M group were increased by 17.10%, 35.06%, and 40.71%, respectively. The contents of MDA in different tissues and serum could be reduced by CSS-E-M treatment to the normal level. Moreover, CSS-E could markedly reduce the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in radiation mice, among which CSS-E-M group showed maximum restoration with decreased AST and ALT levels by 20.13% and 32.76% as compared against IR group. In conclusion, these results indicated that CSS-E could be used as a potential natural radioprotectant against IR-induced damage.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Cui
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, China
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Smirnova VV, Chausov DN, Serov DA, Kozlov VA, Ivashkin PI, Pishchalnikov RY, Uvarov OV, Vedunova MV, Semenova AA, Lisitsyn AB, Simakin AV. A Novel Biodegradable Composite Polymer Material Based on PLGA and Silver Oxide Nanoparticles with Unique Physicochemical Properties and Biocompatibility with Mammalian Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6915. [PMID: 34832317 PMCID: PMC8620072 DOI: 10.3390/ma14226915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
A method for obtaining a stable colloidal solution of silver oxide nanoparticles has been developed using laser ablation. The method allows one to obtain nanoparticles with a monomodal size distribution and a concentration of more than 108 nanoparticles per mL. On the basis of the obtained nanoparticles and the PLGA polymer, a nanocomposite material was manufactured. The manufacturing technology allows one to obtain a nanocomposite material without significant defects. Nanoparticles are not evenly distributed in the material and form domains in the composite. Reactive oxygen species (hydrogen peroxide and hydroxyl radical) are intensively generated on the surfaces of the nanocomposite. Additionally, on the surface of the composite material, an intensive formation of protein long-lived active forms is observed. The ELISA method was used to demonstrate the generation of 8-oxoguanine in DNA on the developed nanocomposite material. It was found that the multiplication of microorganisms on the developed nanocomposite material is significantly decreased. At the same time, the nanocomposite does not inhibit proliferation of mammalian cells. The developed nanocomposite material can be used as an affordable and non-toxic nanomaterial to create bacteriostatic coatings that are safe for humans.
Collapse
Affiliation(s)
- Veronika V. Smirnova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Valery A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
- Department of Fundamental Science, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Petr I. Ivashkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Roman Y. Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
- Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| |
Collapse
|
15
|
Burmistrov DE, Yanykin DV, Paskhin MO, Nagaev EV, Efimov AD, Kaziev AV, Ageychenkov DG, Gudkov SV. Additive Production of a Material Based on an Acrylic Polymer with a Nanoscale Layer of Zno Nanorods Deposited Using a Direct Current Magnetron Discharge: Morphology, Photoconversion Properties, and Biosafety. MATERIALS 2021; 14:ma14216586. [PMID: 34772111 PMCID: PMC8585381 DOI: 10.3390/ma14216586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 01/31/2023]
Abstract
On the basis of a direct current magnetron, a technology has been developed for producing nanoscale-oriented nanorods from zinc oxide on an acrylic polymer. The technology makes it possible to achieve different filling of the surface with zinc oxide nanorods. The nanorods is partially fused into the polymer; the cross section of the nanorods is rather close to an elongated ellipse. It is shown that, with intense abrasion, no delamination of the nanorods from the acrylic polymer is observed. The zinc oxide nanorods abrades together with the acrylic polymer. Zinc oxide nanorods luminesces with the wavelength most preferable for the process of photosynthesis in higher plants. It was shown that plants grown under the obtained material grow faster and gain biomass faster than the control group. In addition, it was found that on surfaces containing zinc oxide nanorods, a more intense formation of such reactive oxygen species as hydrogen peroxide and hydroxyl radical is observed. Intensive formation of long-lived, active forms of the protein is observed on the zinc oxide coating. The formation of 8-oxoguanine in DNA in vitro on a zinc oxide coating was shown using ELISA method. It was found that the multiplication of microorganisms on the developed material is significantly hampered. At the same time, eukaryotic cells of animals grow and develop without hindrance. Thus, the material we have obtained can be used in photonics (photoconversion material for greenhouses, housings for LEDs), and it is also an affordable and non-toxic nanomaterial for creating antibacterial coatings.
Collapse
Affiliation(s)
- Dmitry E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Denis V. Yanykin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Mark O. Paskhin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Egor V. Nagaev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Alexey D. Efimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Andrey V. Kaziev
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia; (A.V.K.); (D.G.A.)
| | - Dmitry G. Ageychenkov
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia; (A.V.K.); (D.G.A.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
- Correspondence:
| |
Collapse
|
16
|
Sharapov MG, Gudkov SV, Lankin VZ, Novoselov VI. Role of Glutathione Peroxidases and Peroxiredoxins in Free Radical-Induced Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1418-1433. [PMID: 34906041 DOI: 10.1134/s0006297921110067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we discuss the pathogenesis of some socially significant diseases associated with the development of oxidative stress, such as atherosclerosis, diabetes, and radiation sickness, as well as the possibilities of the therapeutic application of low-molecular-weight natural and synthetic antioxidants for the correction of free radical-induced pathologies. The main focus of this review is the role of two phylogenetically close families of hydroperoxide-reducing antioxidant enzymes peroxiredoxins and glutathione peroxidases - in counteracting oxidative stress. We also present examples of the application of exogenous recombinant antioxidant enzymes as therapeutic agents in the treatment of pathologies associated with free-radical processes and discuss the prospects of the therapeutic use of exogenous antioxidant enzymes, as well as the ways to improve their therapeutic properties.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergey V Gudkov
- Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, 603022, Russia.,All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, 143050, Russia
| | - Vadim Z Lankin
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, 121552, Russia
| | - Vladimir I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
17
|
Gudkov SV, Simakin AV, Sarimov RM, Kurilov AD, Chausov DN. Novel Biocompatible with Animal Cells Composite Material Based on Organosilicon Polymers and Fullerenes with Light-Induced Bacteriostatic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2804. [PMID: 34835569 PMCID: PMC8625234 DOI: 10.3390/nano11112804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
A technology for producing a nanocomposite based on the borsiloxane polymer and chemically unmodified fullerenes has been developed. Nanocomposites containing 0.001, 0.01, and 0.1 wt% fullerene molecules have been created. It has been shown that the nanocomposite with any content of fullerene molecules did not lose the main rheological properties of borsiloxane and is capable of structural self-healing. The resulting nanomaterial is capable of generating reactive oxygen species (ROS) such as hydrogen peroxide and hydroxyl radicals in light. The rate of ROS generation increases with an increase in the concentration of fullerene molecules. In the absence of light, the nanocomposite exhibits antioxidant properties. The severity of antioxidant properties is also associated with the concentration of fullerene molecules in the polymer. It has been shown that the nanocomposite upon exposure to visible light leads to the formation of long-lived reactive protein species, and is also the reason for the appearance of such a key biomarker of oxidative stress as 8-oxoguanine in DNA. The intensity of the process increases with an increase in the concentration of fullerene molecules. In the dark, the polymer exhibits weak protective properties. It was found that under the action of light, the nanocomposite exhibits significant bacteriostatic properties, and the severity of these properties depends on the concentration of fullerene molecules. Moreover, it was found that bacterial cells adhere to the surfaces of the nanocomposite, and the nanocomposite can detach bacterial cells not only from the surfaces, but also from wetted substrates. The ability to capture bacterial cells is primarily associated with the properties of the polymer; they are weakly affected by both visible light and fullerene molecules. The nanocomposite is non-toxic to eukaryotic cells, the surface of the nanocomposite is suitable for eukaryotic cells for colonization. Due to the combination of self-healing properties, low cytotoxicity, and the presence of bacteriostatic properties, the nanocomposite can be used as a reusable dry disinfectant, as well as a material used in prosthetics.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St., 38, 119991 Moscow, Russia; (A.V.S.); (R.M.S.); (A.D.K.); (D.N.C.)
| | | | | | | | | |
Collapse
|
18
|
Danilejko YK, Belov SV, Egorov AB, Lukanin VI, Sidorov VA, Apasheva LM, Dushkov VY, Budnik MI, Belyakov AM, Kulik KN, Validov S, Yanykin DV, Astashev ME, Sarimov RM, Kalinichenko VP, Glinushkin AP, Gudkov SV. Increase of Productivity and Neutralization of Pathological Processes in Plants of Grain and Fruit Crops with the Help of Aqueous Solutions Activated by Plasma of High-Frequency Glow Discharge. PLANTS 2021; 10:plants10102161. [PMID: 34685970 PMCID: PMC8539132 DOI: 10.3390/plants10102161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
In this work, we, for the first time, manufactured a plasma-chemical reactor operating at a frequency of 0.11 MHz. The reactor allows for the activation of large volumes of liquids in a short time. The physicochemical properties of activated liquids (concentration of hydrogen peroxide, nitrate anions, redox potential, electrical conductivity, pH, concentration of dissolved gases) are characterized in detail. Antifungal activity of aqueous solutions activated by a glow discharge has been investigated. It was shown that aqueous solutions activated by a glow discharge significantly reduce the degree of presence of phytopathogens and their effect on the germination of such seeds. Seeds of cereals (sorghum and barley) and fruit (strawberries) crops were studied. The greatest positive effect was found in the treatment of sorghum seeds. Moreover, laboratory tests have shown a significant increase in sorghum drought tolerance. The effectiveness of the use of glow-discharge-activated aqueous solutions was shown during a field experiment, which was set up in the saline semi-desert of the Northern Caspian region. Thus, the technology developed by us makes it possible to carry out the activation of aqueous solutions on an industrial scale. Water activated by a glow discharge exhibits antifungicidal activity and significantly accelerates the development of the grain and fruit crops we studied. In the case of sorghum culture, glow-discharge-activated water significantly increases drought resistance.
Collapse
Affiliation(s)
- Yuri K. Danilejko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.D.); (S.V.B.); (A.B.E.); (V.I.L.); (V.A.S.); (D.V.Y.); (M.E.A.); (R.M.S.)
| | - Sergey V. Belov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.D.); (S.V.B.); (A.B.E.); (V.I.L.); (V.A.S.); (D.V.Y.); (M.E.A.); (R.M.S.)
| | - Alexey B. Egorov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.D.); (S.V.B.); (A.B.E.); (V.I.L.); (V.A.S.); (D.V.Y.); (M.E.A.); (R.M.S.)
| | - Vladimir I. Lukanin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.D.); (S.V.B.); (A.B.E.); (V.I.L.); (V.A.S.); (D.V.Y.); (M.E.A.); (R.M.S.)
| | - Vladimir A. Sidorov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.D.); (S.V.B.); (A.B.E.); (V.I.L.); (V.A.S.); (D.V.Y.); (M.E.A.); (R.M.S.)
| | - Lyubov M. Apasheva
- Semenov Institute of Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (L.M.A.); (V.Y.D.); (M.I.B.)
| | - Vladimir Y. Dushkov
- Semenov Institute of Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (L.M.A.); (V.Y.D.); (M.I.B.)
| | - Mikhail I. Budnik
- Semenov Institute of Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (L.M.A.); (V.Y.D.); (M.I.B.)
| | - Alexander M. Belyakov
- Federal Scientific Center for Agroecology, Integrated Land Reclamation and Protective Afforestation of the Russian Academy of Sciences, 400062 Volgograd, Russia; (A.M.B.); (K.N.K.)
| | - Konstantin N. Kulik
- Federal Scientific Center for Agroecology, Integrated Land Reclamation and Protective Afforestation of the Russian Academy of Sciences, 400062 Volgograd, Russia; (A.M.B.); (K.N.K.)
| | - Shamil Validov
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420008 Kazan, Russia;
| | - Denis V. Yanykin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.D.); (S.V.B.); (A.B.E.); (V.I.L.); (V.A.S.); (D.V.Y.); (M.E.A.); (R.M.S.)
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.D.); (S.V.B.); (A.B.E.); (V.I.L.); (V.A.S.); (D.V.Y.); (M.E.A.); (R.M.S.)
| | - Ruslan M. Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.D.); (S.V.B.); (A.B.E.); (V.I.L.); (V.A.S.); (D.V.Y.); (M.E.A.); (R.M.S.)
| | - Valery P. Kalinichenko
- All-Russian Phytopathology Research Institute, 143050 Big Vyazyomy, Russia; (V.P.K.); (A.P.G.)
| | - Alexey P. Glinushkin
- All-Russian Phytopathology Research Institute, 143050 Big Vyazyomy, Russia; (V.P.K.); (A.P.G.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.D.); (S.V.B.); (A.B.E.); (V.I.L.); (V.A.S.); (D.V.Y.); (M.E.A.); (R.M.S.)
- Correspondence:
| |
Collapse
|
19
|
Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms22157798. [PMID: 34360564 PMCID: PMC8346078 DOI: 10.3390/ijms22157798] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, studies on the functional features of Se nanoparticles (SeNP) have gained great popularity due to their high biocompatibility, stability, and pronounced selectivity. A large number of works prove the anticarcinogenic effect of SeNP. In this work, the molecular mechanisms regulating the cytotoxic effects of SeNP, obtained by laser ablation, were studied by the example of four human cancer cell lines: A-172 (glioblastoma), Caco-2, (colorectal adenocarcinoma), DU-145 (prostate carcinoma), MCF-7 (breast adenocarcinoma). It was found that SeNP had different concentration-dependent effects on cancer cells of the four studied human lines. SeNP at concentrations of less than 1 μg/mL had no cytotoxic effect on the studied cancer cells, with the exception of the A-172 cell line, for which 0.5 μg/mL SeNP was the minimum concentration affecting its metabolic activity. It was shown that SeNP concentration-dependently caused cancer cell apoptosis, but not necrosis. In addition, it was found that SeNP enhanced the expression of pro-apoptotic genes in almost all cancer cell lines, with the exception of Caco-2 and activated various pathways of adaptive and pro-apoptotic signaling pathways of UPR. Different effects of SeNP on the expression of ER-resident selenoproteins and selenium-containing glutathione peroxidases and thioredoxin reductases, depending on the cell line, were established. In addition, SeNP triggered Ca2+ signals in all investigated cancer cell lines. Different sensitivity of cancer cell lines to SeNP can determine the induction of the process of apoptosis in them through regulation of the Ca2+ signaling system, mechanisms of ER stress, and activation of various expression patterns of genes encoding pro-apoptotic proteins.
Collapse
|
20
|
Lymphaticovenous Anastomosis Supermicrosurgery Decreases Oxidative Stress and Increases Antioxidant Capacity in the Serum of Lymphedema Patients. J Clin Med 2021; 10:jcm10071540. [PMID: 33917571 PMCID: PMC8038828 DOI: 10.3390/jcm10071540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Excess lymphedematous tissue causes excessive oxidative stress in lymphedema. Lymphaticovenous anastomosis (LVA) supermicrosurgery is currently emerging as the first-line surgical intervention for lymphedema. No data are available regarding the changes in serum proteins correlating to oxidative stress and antioxidant capacity before and after LVA. METHODS A total of 26 patients with unilateral lower limb lymphedema confirmed by lymphoscintigraphy were recruited, and venous serum samples were collected before (pre-LVA) and after LVA (post-LVA). In 16 patients, the serum proteins were identified by isobaric tags for relative and absolute quantitation-based quantitative proteomic analysis with subsequent validation of protein expression by enzyme-linked immunosorbent assay. An Oxidative Stress Panel Kit was used on an additional 10 patients. Magnetic resonance (MR) volumetry was used to measure t limb volume six months after LVA. RESULTS This study identified that catalase (CAT) was significantly downregulated after LVA (pre-LVA vs. post-LVA, 2651 ± 2101 vs. 1448 ± 593 ng/mL, respectively, p = 0.033). There were significantly higher levels of post-LVA serum total antioxidant capacity (pre-LVA vs. post-LVA, 441 ± 81 vs. 488 ± 59 µmole/L, respectively, p = 0.031) and glutathione peroxidase (pre-LVA vs. post-LVA, 73 ± 20 vs. 92 ± 29 U/g, respectively, p = 0.018) than pre-LVA serum. In addition, after LVA, there were significantly more differences between post-LVA and pre-LVA serum levels of CAT (good outcome vs. fair outcome, -2593 ± 2363 vs. 178 ± 603 ng/mL, respectively, p = 0.021) and peroxiredoxin-2 (PRDX2) (good outcome vs. fair outcome, -7782 ± 7347 vs. -397 ± 1235 pg/mL, respectively, p = 0.037) in those patients with good outcomes (≥40% volume reduction in MR volumetry) than those with fair outcomes (<40% volume reduction in MR volumetry). CONCLUSIONS The study revealed that following LVA, differences in some specific oxidative stress markers and antioxidant capacity can be found in the serum of patients with lymphedema.
Collapse
|
21
|
Radzinski M, Oppenheim T, Metanis N, Reichmann D. The Cys Sense: Thiol Redox Switches Mediate Life Cycles of Cellular Proteins. Biomolecules 2021; 11:469. [PMID: 33809923 PMCID: PMC8004198 DOI: 10.3390/biom11030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis is an essential component of proper cellular function; however, sustaining protein health is a challenging task, especially during the aerobic lifestyle. Natural cellular oxidants may be involved in cell signaling and antibacterial defense; however, imbalanced levels can lead to protein misfolding, cell damage, and death. This merges together the processes of protein homeostasis and redox regulation. At the heart of this process are redox-regulated proteins or thiol-based switches, which carefully mediate various steps of protein homeostasis across folding, localization, quality control, and degradation pathways. In this review, we discuss the "redox code" of the proteostasis network, which shapes protein health during cell growth and aging. We describe the sources and types of thiol modifications and elaborate on diverse strategies of evolving antioxidant proteins in proteostasis networks during oxidative stress conditions. We also highlight the involvement of cysteines in protein degradation across varying levels, showcasing the importance of cysteine thiols in proteostasis at large. The individual examples and mechanisms raised open the door for extensive future research exploring the interplay between the redox and protein homeostasis systems. Understanding this interplay will enable us to re-write the redox code of cells and use it for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Tal Oppenheim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Norman Metanis
- Institute of Chemistry, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| |
Collapse
|
22
|
Sharapov MG, Glushkova OV, Parfenyuk SB, Gudkov SV, Lunin SM, Novoselova EG. The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6. Arch Biochem Biophys 2021; 702:108830. [PMID: 33727039 DOI: 10.1016/j.abb.2021.108830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 01/11/2023]
Abstract
Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with multi-substrate peroxidase and phospholipase activities that is involved in cell redox homeostasis and regulates intracellular processes. Previously, recombinant Prdx6 was shown to exert a radioprotective effect during whole-body exposure to a lethal dose of X-ray radiation. Moreover, a mutant form Prdx6-C47S, which lacks peroxidase activity, also had a radioprotective effect, and this indicates that the mechanism of radioprotection is unknown. The present study was aimed to test the hypothesis that the radioprotective effect of Prdx6 and Prdx6-C47S may be mediated through the TLR4/NF-κB signaling pathway. It was demonstrated that exogenously applied Prdx6 protected 3T3 fibroblast cells against LD50 X-ray radiation in vitro. Pretreatment with Prdx6 increased cell survival, stimulated proliferation, normalized the level of reactive oxygen species in culture, and suppressed apoptosis and necrosis. Wild-type Prdx6 and, to a lesser degree, the Prdx6-C47S mutant proteins promoted a significant increase in NF-κB activation in irradiated cells, which likely contributes to the antiapoptotic effect. Pretreatment with TLR4 inhibitors, especially those directed to the extracellular part of the receptor, significantly reduced the radioprotective effect, and this supports the role of TLR4 signaling in the protective effects of Prdx6. Therefore, the radioprotective effect of Prdx6 was related not only to its antioxidant properties, but also to its ability to trigger cellular defense mechanisms through interaction with the TLR4 receptor and subsequent activation of the NF-κB pathway. Recombinant Prdx6 may be useful for the development of a new class of safe radioprotective compounds that have a combination of antioxidant and immunomodulatory properties.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia.
| | - Olga V Glushkova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Svetlana B Parfenyuk
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Elena G Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| |
Collapse
|
23
|
The Role of Mitochondria in the Dual Effect of Low-Temperature Plasma on Human Bone Marrow Stem Cells: From Apoptosis to Activation of Cell Proliferation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The potential use of low-temperature plasma (LTP) for therapeutic purposes has aroused the concern of many researchers. This paper examines the effect of LTP on the morphofunctional state of human bone marrow stem cells (BMSC). It has been established that LTP-induced oxidative stress has a dual effect on the state of stem cells. On the one hand, a cell culture exposed to LTP exhibits the progression of a destructive processes, which is manifested by the perturbation of the cell’s morphology, the initiation of lipid peroxidation and the accumulation of products of this process, like diene conjugates and malondialdehyde, as well as the induction of mitochondrial dysfunction, leading to cell death. On the other hand, the effect of LTP on BMSC located at a distance from the plasma is accompanied by the activation of proliferative processes, as evidenced by the tendency of the activity of mitochondrial biogenesis and fission/fusion processes to increase. The paper discusses the role of mitochondria and reactive oxygen species (ROS) in the cellular response to LTP.
Collapse
|
24
|
Sharapov MG, Gudkov SV. Peroxiredoxin 1 - Multifunctional antioxidant enzyme, protects from oxidative damages and increases the survival rate of mice exposed to total body irradiation. Arch Biochem Biophys 2020; 697:108671. [PMID: 33181129 DOI: 10.1016/j.abb.2020.108671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Peroxiredoxin 1 (Prx1) is known to be a multifunctional antioxidant enzyme playing an essential role in protecting the organism against oxidative stress. We hypothesized that administration of exogenous recombinant Prx1 may provide additional protection of the mammalian organism during the development of acute oxidative stress induced by ionizing radiation. Hence, the aim of the present work was to study the radioprotective properties of exogenous Prx1. MATERIALS AND METHODS Recombinant Prx1 was obtained by genetic engineering. The properties of Prx1 were studied using physicochemical methods. An immunoblotting and ELISA were used for the determination of the level of endogenous and exogenous Prx1 in animal blood. The survival rate of irradiated animals was assessed for 30 days with various modes of administration (intraperitoneal, intramuscular, intravenously) Prx1. Using a hematological analyzer and microscopic analysis, the changes in the level of leukocytes and platelets were assessed in animals that received and did not receive an intravenous injection of Prx1 before irradiation. Genoprotective properties of Prx1 were confirmed by micronucleus test. Real-time PCR was used to investigate the effect of Prx1 on the expression of genes involved in response to oxidative stress. RESULTS Recombinant Prx1 was shown to significantly reduce oxidative damage to biological macromolecules. Prx1 is an effective radioprotector which decreases the severity of radiation-induced leuko- and thrombocytopenia, plus protects bone marrow cells from damage. The half-life of Prx1 in the bloodstream is more than 1 h, while within 1 h there is a loss of the antioxidant activity of Prx1 by almost 50%, which limits its use long (2 h) before irradiation. The introduction of Prx1 after irradiation has no significant radiomitigating effect. The most effective way of using Prx1 is intravenous administration shortly (15-30 min) before exposure to ionizing radiation, with a dose reduction factor of 1.3. Under the action of ionizing radiation a dose-dependent appearance of endogenous Prx1 in the bloodstream was also observed. The appearance of Prx1 in the bloodstream alters the expression of stress response genes (especial antioxidant response and DNA repair) in the cells of red bone marrow, promoting the activation of repair processes. CONCLUSION The recombinant Prx1 can be considered as an effective radioprotector for minimizing the risks of injury of animal's body by ionizing radiation.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia.
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
25
|
Chen N, Zhang H, Zong X, Li S, Wang J, Wang Y, Jin M. Polysaccharides from Auricularia auricula: Preparation, structural features and biological activities. Carbohydr Polym 2020; 247:116750. [DOI: 10.1016/j.carbpol.2020.116750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
26
|
New Nanostructured Carbon Coating Inhibits Bacterial Growth, but Does Not Influence on Animal Cells. NANOMATERIALS 2020; 10:nano10112130. [PMID: 33120890 PMCID: PMC7692575 DOI: 10.3390/nano10112130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
An electrospark technology has been developed for obtaining a colloidal solution containing nanosized amorphous carbon. The advantages of the technology are its low cost and high performance. The colloidal solution of nanosized carbon is highly stable. The coatings on its basis are nanostructured. They are characterized by high adhesion and hydrophobicity. It was found that the propagation of microorganisms on nanosized carbon coatings is significantly hindered. At the same time, eukaryotic animal cells grow and develop on nanosized carbon coatings, as well as on the nitinol medical alloy. The use of a colloidal solution as available, cheap and non-toxic nanomaterial for the creation of antibacterial coatings to prevent biofilm formation seems to be very promising for modern medicine, pharmaceutical and food industries.
Collapse
|
27
|
PRDX2 Promotes the Proliferation and Metastasis of Non-Small Cell Lung Cancer In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8359860. [PMID: 32908916 PMCID: PMC7474358 DOI: 10.1155/2020/8359860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Purpose Previous studies have reported that the levels of PRDX2 were correlated with tumorigenicity, recurrence, and prognosis of patients with different cancers. We investigated the association between PRDX2 levels and the prognosis of lung cancer patients. We also measured PRDX2 expression of non-small cell lung cancer (NSCLC) cells and examined its roles in the proliferation and migration in vitro and in vivo. Methods We used the Kaplan–Meier plotter to analyze the survival of different levels of PRDX2 in lung cancer patients. The expression of PRDX2 in normal bronchial epithelial cell line and NSCLC cell lines was measured by qRT-PCR and western blot assays. Biological functions of NSCLC cells were detected by CCK8 and Transwell assays. We constructed tumor growth model using subcutaneously injection of nude mice and metastasis model by tail vein injection in vivo. The protein levels of proliferation related markers were measured by immunohistochemistry assay. Immunofluorescence method was used to detected EMT-related proteins. Results The high levels of PRDX2 were associated with bad prognosis in lung cancer patients, especially in patients with adenocarcinoma. The expression of PRDX2 in NSCLC cell lines was higher than normal bronchial epithelial cells. Knockdown of PRDX2 inhibited the proliferation, migration, and invasion in A549 cells, while overexpression of PRDX2 promoted the malignancy in NCI-H1299 cells in vitro. Silencing PRDX2 restrained tumor growth and repressed lung metastasis by EMT in vivo. Conclusion Our data indicates that PRDX2 functions as a protumor regulator and is involved in tumorigenesis and tumor progression of lung cancer.
Collapse
|
28
|
Comparative Study of Protective Action of Exogenous 2-Cys Peroxiredoxins (Prx1 and Prx2) Under Renal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2020; 9:antiox9080680. [PMID: 32751232 PMCID: PMC7465264 DOI: 10.3390/antiox9080680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023] Open
Abstract
The pathogenesis of ischemia-reperfusion (I/R) injuries is based on oxidative stress caused by a sharp increase in the concentration of free radicals, reactive oxygen species (ROS) and secondary products of free radical oxidation of biological macromolecules during reperfusion. Application of exogenous antioxidants lowers the level of ROS in the affected tissues, suppresses or adjusts the course of oxidative stress, thereby substantially reducing the severity of I/R injury. We believe that the use of antioxidant enzymes may be the most promising line of effort since they possess higher efficiency than low molecular weight antioxidants. Among antioxidant enzymes, of great interest are peroxiredoxins (Prx1–6) which reduce a wide range of organic and inorganic peroxide substrates. In an animal model of bilateral I/R injury of kidneys (using histological, biochemical, and molecular biological methods) it was shown that intravenous administration of recombinant typical 2-Cys peroxiredoxins (Prx1 and Prx2) effectively reduces the severity of I/R damage, contributing to the normalization of the structural and functional state of the kidneys and an almost 2-fold increase in the survival of experimental animals. The use of recombinant Prx1 or Prx2 can be an efficient approach for the prevention and treatment of renal I/R injury.
Collapse
|
29
|
Nishida T, Yamaguchi M, Tatara Y, Kashiwakura I. Proteomic changes by radio-mitigative thrombopoietin receptor agonist romiplostim in the blood of mice exposed to lethal total-body irradiation. Int J Radiat Biol 2020; 96:1125-1134. [PMID: 32602419 DOI: 10.1080/09553002.2020.1787546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The thrombopoietin receptor agonist romiplostim (RP) is a therapeutic agent for immune thrombocytopenia that can achieve complete survival in mice exposed to a lethal dose of ionizing radiation. The estimated mechanism of the radio-protective/mitigative effects of RP has been proposed; however, the detailed mechanism of action remains unclear. This study aimed to elucidate the mechanism of the radio-protective/mitigative effects of RP, the fluctuation of protein in the blood was analyzed by proteomics. MATERIALS AND METHODS Eight-week-old female C57BL/6J mice were randomly divided into 5 groups; control at day 0, total-body irradiation (TBI) groups at day 10 and day 18, and TBI plus RP groups at day 10 and day18, consisting of 3 mice per group, and subjected to TBI with 7 Gy of 137Cs γ-rays at a dose rate of 0.74 Gy/min. RP was administered intraperitoneally to mice at a dose of 50 µg/kg once daily for 3 days starting 2 hours after TBI. On day 10 and day 18 after TBI, serum collected from each mouse was analyzed by liquid chromatography tandem mass spectrometry. RESULTS Nine proteins were identified by proteomics methods from 269 analyzed proteins detected in mice exposed to a lethal dose of TBI: keratin, type II cytoskeletal 1 (KRT1), fructose-1, 6-bisphosphatase (FBP1), cytosolic 10-formyltetrahydrofolate dehydrogenase (ALDH1L1), peptidyl-prolyl cis-trans isomerase A (PPIA), glycine N-methyltransferase (GNMT), glutathione S-transferase Mu 1 (GSTM1), regucalcin (RGN), fructose-bisphosphate aldolase B (ALDOB) and betain-homocysteine S-methyltransferase 1 (BHMT). On the 10th day after TBI, KRT1 was significantly increased (p < 0.05) by 4.26-fold compared to the control group in the TBI group and significantly inhibited in the TBI plus RP group (p < 0.05). Similarly, the expression levels of other 8 proteins detected at 18th day after TBI were significantly increased by 4.29 to 27.44-fold in the TBI group, but significantly decreased in the TBI plus RP group compared to the TBI group, respectively. CONCLUSION Nine proteins were identified by proteomics methods from 269 analyzed proteins detected in mice exposed to a lethal dose of TBI. These proteins are also expected to be indicators of the damage induced by high-dose radiation.
Collapse
Affiliation(s)
- Teruki Nishida
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Masaru Yamaguchi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Yota Tatara
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| |
Collapse
|
30
|
Sharapov M, Novoselov V, Samygina V, Konarev P, Molochkov A, Sekirin A, Balkanov A, Gudkov S. A chimeric recombinant protein with peroxidase and superoxide dismutase activities: Physico-chemical characterization and applicability to neutralize oxidative stress caused by ionizing radiation. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Goncharov RG, Filkov GI, Trofimenko AV, Boyarintsev VV, Novoselov VI, Sharapov MG. The Protective Effect of a Chimeric PSH Antioxidant Enzyme in Renal Ischemia–Reperfusion Injury. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Khurana H, Hazari PP, Mishra AK. Radioprotective efficacy of GSH based peptidomimetic complex of manganese against radiation induced damage: DT(GS) 2Mn(II). Free Radic Biol Med 2019; 145:161-174. [PMID: 31550530 DOI: 10.1016/j.freeradbiomed.2019.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022]
Abstract
The adverse effects of ionizing radiation (IR) on biological tissues are mediated via increased production of reactive oxygen species (ROS) often resulting in life-threatening injuries. The effects of ionizing radiation on cells include the formation of ROS, DNA single-strand breaks, double-strand breaks, and extensive base modifications inducing the complex DNA damage. The capacity to endure the radiation insult lies in the biochemical mechanisms and structural properties in many bacterial species such as Deinococcus radiodurans and Thermococcus radiotolerans. In addition, a mechanistic link has established between the presence and accumulation of short peptides and Mn2+ in the protection of bacteria (Deinococcus radiodurans) from the harmful ionizing radiation. This paradigm has opened up novel avenues of radioprotection in diverse settings and systems for human application. We hereby report a new bifunctional system that comprises of thiol groups in the form of Glutathione (GSH), and manganese to mimic the above system for radioprotection. The present study, therefore, adopts a novel approach to use GSH complexed Mn, and this conjugated system is complying with the prerequisite for radioprotection as seen in the above mechanism. This unique conjugate DT(GS)2Mn(II) was evaluated for its efficacy invitro and invivo. Radioprotective efficacy of DT(GS)2Mn(II) on NIH/3T3 cells revealed that compound could significantly protect cells against radiation-induced toxicity as compared to the standard compound N-acetyl cysteine. Pre-treatment of DT(GS)2Mn(II) increased the survival of mice by 50% compared to radiation alone treatment group. A significant decrease in cytochrome c levels in the group pre-treated with test compound (0.50 ± 0.14) compared to radiation alone group (1.60 ± 0.07) was observed. DT(GS)2Mn(II) attenuated radiation induced apoptosis by promoted expression of anti-apoptotic Bcl-2 along with suppression of cyt-c release and augmented cell survival following irradiation. A distinct improvement in villi length was observed in the group treated with DT(GS)2Mn(II) with an average of 1546 ± 61 μm versus 763 ± 154 μm for radiation alone group. The present findings suggested DT(GS)2Mn(II) is a promising radioprotective agent and exerts it protective effect both invitro and invivo systems by decreasing radiation induced cytotoxicity.
Collapse
Affiliation(s)
- Harleen Khurana
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India
| | - Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India.
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India
| |
Collapse
|
33
|
Protection from ionizing radiation-induced genotoxicity and apoptosis in rat bone marrow cells by HESA-A: a new herbal-marine compound. J Bioenerg Biomembr 2019; 51:371-379. [PMID: 31388813 DOI: 10.1007/s10863-019-09808-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
HESA-A is an herbal-marine compound which improves the quality of life of end-stage cancer patients. The aim of the present study was to evaluate the possible protective effect of HESA-A against IR-induced genotoxicity and apoptosis in rat bone marrow. Rats were given HESA-A orally at doses of 150 and 300 mg/kg body weight for seven consecutive days. On the seventh day, the rats were irradiated with 4 Gy X-rays at 1 h after the last oral administration. The micronucleus assay, reactive oxygen species (ROS) level analysis, hematological analysis and flow cytometry were used to assess radiation antagonistic potential of HESA-A. Administration of 150 and 300 mg/kg of HESA-A to irradiated rats significantly reduced the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) and micronucleated normochromatic erythrocytes (MnNCEs), and also increased PCE/(PCE + NCE) ratio in bone marrow cells. Moreover, pretreatment of irradiated rats with HESA-A (150 and 300 mg/kg) significantly decreased ROS level and apoptosis in bone marrow cells, and also increased white blood cells count in peripheral blood. For the first time in this study, it was observed that HESA-A can have protective effects against radiation-induced genotoxicity and apoptosis in bone marrow cells. Therefore, HESA-A can be considered as a candidate for future studies to reduce the side effects induced by radiotherapy in cancer patients.
Collapse
|
34
|
Oxidized Cell-Free DNA Role in the Antioxidant Defense Mechanisms under Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1245749. [PMID: 31360293 PMCID: PMC6644271 DOI: 10.1155/2019/1245749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/08/2019] [Indexed: 12/15/2022]
Abstract
The present study focuses on the investigation of the oxidized cell-free DNA (cfDNA) properties in several experimental models, including cultured cerebellum cells, peripheral blood lymphocytes (PBL), plasma, and hippocampus under an acute and chronic unpredictable stress model in rats. Firstly, our study shows that Spectrum Green fluorescence-labeled oxidized cfDNA fragments were transferred into the cytoplasm of 80% of the cerebellum culture cells; meanwhile, the nonoxidized cfDNA fragments do not pass into the cells. Oxidized cfDNA stimulates the antioxidant mechanisms and induction of transcription factor NRF2 expression, followed by an activation of NRF2 signaling pathway genes-rise of Nrf2 and Hmox1 gene expression and consequently NRF2 protein synthesis. Secondly, we showed that stress increases plasma cfDNA concentration in rats corresponding with the duration of the stress exposure. At the same time, our study did not reveal any significant changes of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) level in PBL of rats under acute or chronic stress, probably due to the significantly increased Nrf2 expression, that we found in such conditions. 8-oxodG is one of the most reliable markers of DNA oxidation. We also found an increased level of 8-oxodG in the hippocampal homogenates and hippocampal dentate gyrus in rats subjected to acute and chronic stress. Taken together, our data shows that oxidized cfDNA may play a significant role in systemic and neuronal physiological mechanisms of stress and adaptation.
Collapse
|
35
|
Simakin AV, Astashev ME, Baimler IV, Uvarov OV, Voronov VV, Vedunova MV, Sevost'yanov MA, Belosludtsev KN, Gudkov SV. The Effect of Gold Nanoparticle Concentration and Laser Fluence on the Laser-Induced Water Decomposition. J Phys Chem B 2019; 123:1869-1880. [PMID: 30696249 DOI: 10.1021/acs.jpcb.8b11087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This Article covers the influence of the concentration of gold nanoparticles on laser-induced water decomposition. It was established that addition of gold nanoparticles intensifies laser-induced water decomposition by almost 2 orders of magnitude. The water decomposition rate was shown to be maximal at a nanoparticle concentration around 1010 NP/mL, whereas a decrease or increase of nanoparticle concentration leads to a decrease of water decomposition rate. It was demonstrated that, if the concentration of nanoparticles in water-based colloid was less than 1010 NP/mL, laser irradiation of the colloid caused formation of molecular hydrogen, hydrogen peroxide, and molecular oxygen. If the concentration of nanoparticles exceeded 1011 NP/mL, only two products, molecular hydrogen and hydrogen peroxide, were formed. Correlations between the water decomposition rate and the main optical and acoustic parameters of optical breakdown-generated plasma were investigated. Variants of laser-induced decomposition of colloidal solutions of nanoparticles based on organic solvents (ethanol, propanol-2, butanol-2, diethyl ether) were also analyzed.
Collapse
Affiliation(s)
- Aleksander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia
| | - Maxim E Astashev
- Institute of Cell Biophysics of the Russian Academy of Sciences , 3 Institutskaya St. , Pushchino, Moscow Region 119991 , Russia
| | - Ilya V Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia.,Moscow Institute of Physics and Technology , Institutsky Lane 9 , Dolgoprudny, Moscow Region 141700 , Russia
| | - Oleg V Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia
| | - Valery V Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia
| | - Maria V Vedunova
- Institute of Biology and Biomedicine , Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Ave. , Nizhny Novgorod 603950 , Russia
| | - Mikhail A Sevost'yanov
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences , 49 Leninskiy Ave. , Moscow 119334 , Russia
| | | | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia.,Institute of Biology and Biomedicine , Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Ave. , Nizhny Novgorod 603950 , Russia.,Moscow Regional Research and Clinical Institute (MONIKI) , 61/2 Shchepkina St. , Moscow 129110 , Russia
| |
Collapse
|