1
|
Chen J, Huo ZJ, Sun FL, Zhang LQ, Han HB, Zhu J, Tan Y. Integrative Analysis of Transcriptomics and Proteomics for Screening Genes and Regulatory Networks Associated with Lambda-Cyhalothrin Resistance in the Plant Bug Lygus pratensis Linnaeus (Hemiptera: Miridae). Int J Mol Sci 2025; 26:1745. [PMID: 40004208 PMCID: PMC11855015 DOI: 10.3390/ijms26041745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The prolonged use of pyrethroid insecticides for controlling the plant bug Lygus pratensis has led to upward resistance. This study aims to elucidate the molecular mechanisms and potential regulatory pathways associated with lambda-cyhalothrin resistance in L. pratensis. In this study, we constructed a regulatory network by integrating transcriptome RNA-Seq and proteome iTRAQ sequencing analyses of one lambda-cyhalothrin-susceptible strain and two resistant strains, annotating key gene families associated with detoxification, identifying differentially expressed genes and proteins, screening for transcription factors involved in the regulation of detoxification metabolism, and examining the metabolic pathways involved in resistance. A total of 82,919 unigenes were generated following the assembly of transcriptome data. Of these, 24,859 unigenes received functional annotations, while 1064 differential proteins were functionally annotated, and 1499 transcription factors belonging to 64 distinct transcription factor families were identified. Notably, 66 transcription factors associated with the regulation of detoxification metabolism were classified within the zf-C2H2, Homeobox, THAP, MYB, bHLH, HTH, HMG, and bZIP families. Co-analysis revealed that the CYP6A13 gene was significantly up-regulated at both transcriptional and translational levels. The GO and KEGG enrichment analyses revealed that the co-up-regulated DEGs and DEPs were significantly enriched in pathways related to sphingolipid metabolism, Terpenoid backbone biosynthesis, ABC transporters, RNA transport, and peroxisome function, as well as other signaling pathways involved in detoxification metabolism. Conversely, the co-down-regulated DEGs and DEPs were primarily enriched in pathways associated with Oxidative phosphorylation, Fatty acid biosynthesis, Neuroactive ligand-receptor interactions, and other pathways pertinent to growth and development. The results revealed a series of physiological and biochemical adaptations exhibited by L. pratensis during the detoxification metabolism related to lambda-cyhalothrin resistance. This work provided a theoretical basis for further analysis of the molecular regulation mechanism underlying this resistance.
Collapse
Affiliation(s)
- Jing Chen
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Zhi-Jia Huo
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Fei-Long Sun
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Li-Qi Zhang
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Hai-Bin Han
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Jiang Zhu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yao Tan
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolian Agricultural University, Hohhot 010019, China
| |
Collapse
|
2
|
Hua Y, Li X, Yin B, Lu S, Qian B, Zhou Y, Li Z, Meng Z, Ma Y. Genome-wide analysis of alternative splicing differences in hepatic ischemia reperfusion injury. Sci Rep 2024; 14:31349. [PMID: 39732885 PMCID: PMC11682299 DOI: 10.1038/s41598-024-82846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Alternative splicing (AS) contributes to transcript and protein diversity, affecting their structure and function. However, the specific transcriptional regulatory mechanisms underlying AS in the context of hepatic ischemia reperfusion (IR) injury in mice have not been extensively characterized. In this study, we investigated differentially alternatively spliced (DAS) genes and differentially expressed transcripts (DETs) in a mouse model of hepatic IR injury using the high throughput RNA sequencing (RNA-seq) analysis and replicate multivariate analysis of transcript splicing (rMATS) analysis. We further conducted Gene ontology (GO) term enrichment, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the protein-protein interaction (PPI) network. A total of 898 DAS genes (p ≤ 0.05) were screened out in the hepatic IR group compared to the sham group, while functional enrichment analysis revealed that DETs and DAS genes were significantly associated with the ATP-dependent chromain, splicesome and metabolic pathways. The expression level of the DAS genes: Gabpb2, Smg1, Tnrc6c, Mettl17, Smpd4, Kcnt2, D16Ertd472e, Rab3gap2, Echdc2 and Ssx2ip were verified by RT-PCR and qRT-PCR. Our findings provide a comprehensive genome-wide view of AS events in hepatic IR injury in mice, enhancing our understanding of AS dynamics and the molecular mechanisms governing alternative pre-mRNA splicing.
Collapse
Affiliation(s)
- Yongliang Hua
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Pediatric Surgery, Key Laboratory of Hepatosplenic Surgery, the Sixth Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Yongzhi Zhou
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Zhongyu Li
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Zhanzhi Meng
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Cui W, Cao Q, Liu L, Yin X, Wang X, Zhao Y, Wang Y, Wei B, Xu X, Tang Y. Artemisia Argyi essential oil ameliorates acetaminophen-induced hepatotoxicity via CYP2E1 and γ-glutamyl cycle reprogramming. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156106. [PMID: 39366156 DOI: 10.1016/j.phymed.2024.156106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND The hepatotoxicity induced by acetaminophen (APAP), a commonly used antipyretic, analgesic and anti-inflammatory drug in clinical practice, has received accumulated attention. Artemisia argyi essential oil (AAEO), a volatile oil component extracted from traditional Chinese medicine Artemisia argyi H.Lév. & Vaniot, has great hepatoprotective effects. However, the potential role of AAEO in APAP-induced hepatotoxicity has not been characterized. The present study aimed to investigate the effects of AAEO on hepatic metabolic changes in mice exposed to APAP. METHODS In this study, 300.00 mg/kg acetaminophen was used to establish liver injury model in C57BL/6 J mice. Hepatoprotective effect of AAEO on APAP-induced hepatotoxicity in mice was investigated by detecting liver function enzymes and histopathological examination. Secondly, UPLC-MS/MS was used to analyze the to analyze the small molecule metabolites and metabolic pathways induced by AAEO treatment; In addition, the effect of AAEO on APAP-induced oxidative stress and inflammation were evaluated by detecting the levels of glutathione peroxidase 4, malondialdehyde, reactive oxygen species and inflammatory factors. Finally, the active components of AAEO were preliminarily screened by cellular assays. The hepatoprotective effect of AAEO against APAP-induced hepatotoxicity was examined through the Western blotting, after the CYP2E1 gene was knocked down in AML12 cells by siRNA transfection. RESULTS Compared with the APAP group, AAEO could reduce the abnormal increase in the levels of liver function enzymes caused by APAP. AAEO could enhance the antioxidant capacity by down-regulating the biosynthesis pathway of unsaturated fatty acids and promoting the activity of antioxidant enzymes SOD and CAT in liver tissue induced by APAP. Our study revealed that AAEO promoted GSH synthesis and covalently combined to form APAP-GSH conjugates to reduce the accumulation of APAP in liver tissue. In addition, the chemical constituents in AAEO were analyzed by GC-MS/MS, and it was determined to identify that dihydro-beta-ionone and (-)-verbenone in AAEO might have a significant protective effect on hepatocyte survival after APAP exposure. Further studies on the hepatoprotective mechanism of AAEO indicated that it might reduce the production of toxic metabolites by regulating CYP2E1 levels. CONCLUSION AAEO exerted hepatoprotective effects on acetaminophen-induced hepatotoxicity in mice via regulating the activity of CYP2E1 and regulating the γ-glutamyl cycle pathway.
Collapse
Affiliation(s)
- Weiqi Cui
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qianwen Cao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Luyao Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuecui Yin
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaohan Wang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Zhao
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanhong Wang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Youcai Tang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
4
|
Meng L, Zhou B, Liu H, Chen Y, Yuan R, Chen Z, Luo S, Chen H. Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174201. [PMID: 38936709 DOI: 10.1016/j.scitotenv.2024.174201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.
Collapse
Affiliation(s)
- Lingxuan Meng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Yuefang Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Marques ES, Severance EG, Arsenault P, Zahn SM, Timme-Laragy AR. Activation of Nrf2 at Critical Windows of Development Alters Tissue-Specific Protein S-Glutathionylation in the Zebrafish ( Danio rerio) Embryo. Antioxidants (Basel) 2024; 13:1006. [PMID: 39199250 PMCID: PMC11352166 DOI: 10.3390/antiox13081006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Activation of Nrf2-the master regulator of antioxidative response-at different stages of embryonic development has been shown to result in changes in gene expression, but the tissue-specific and downstream effects of Nrf2 activation during development remain unclear. This work seeks to elucidate the tissue-specific Nrf2 cellular localization and the downstream changes in protein S-glutathionylation during critical windows of zebrafish (Danio rerio) development. Wild-type and mutant zebrafish embryos with a loss-of-function mutation in Nrf2a were treated with two canonical activators, sulforaphane (SFN; 40 µM) or tert-butylhydroquinone (tBHQ; 1 µM), for 6 h at either pharyngula, hatching, or the protruding-mouth stage. Nrf2a protein and S-glutathionylation were visualized in situ using immunohistochemistry. At the hatching stage, Nrf2a protein levels were decreased with SFN, but not tBHQ, exposure. Exposure to both activators, however, decreased downstream S-glutathionylation. Stage- and tissue-specific differences in Nrf2a protein and S-glutathionylation were identified in the pancreatic islet and liver. Protein S-glutathionylation in Nrf2a mutant fish was increased in the liver by both activators, but not the islets, indicating a tissue-specific and Nrf2a-dependent dysregulation. This work demonstrates that critical windows of exposure and Nrf2a activity may influence redox homeostasis and highlights the importance of considering tissue-specific outcomes and sensitivity in developmental redox biology.
Collapse
Affiliation(s)
| | | | | | | | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA (E.G.S.)
| |
Collapse
|
6
|
Marques ES, Severance EG, Min B, Arsenault P, Conlin SM, Timme-Laragy AR. Developmental impacts of Nrf2 activation by dimethyl fumarate (DMF) in the developing zebrafish (Danio rerio) embryo. Free Radic Biol Med 2023; 194:284-297. [PMID: 36528121 PMCID: PMC9906634 DOI: 10.1016/j.freeradbiomed.2022.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Dimethyl fumarate (DMF) is pharmaceutical activator of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates of many cellular antioxidant response pathways, and has been used to treat inflammatory diseases such as multiple sclerosis. However, DMF has been shown to produce adverse effects on offspring in animal studies and as such is not recommended for use during pregnancy. The goal of this work is to better understand how these adverse effects are initiated and the role of DMF-induced Nrf2 activation during three critical windows of development in embryonic zebrafish (Danio rerio): pharyngula, hatching, and protruding-mouth stages. To evaluate Nrf2 activation, wildtype zebrafish, and mutant zebrafish (nrf2afh318/fh318) embryos with a loss of function mutation in Nrf2a, the co-ortholog to human Nrf2, were treated for 6 h with DMF (0-20 μM) beginning at the pharyngula, hatching, or protruding-mouth stage and assessed for survival and morphology. Nrf2a mutant fish had an increase in survival, however, morphology studies demonstrated Nrf2a mutant fish had more severe deformities occurring with exposures during the hatching stage. To verify Nrf2 cellular localization and downstream impacts on protein-S-glutathionylation in situ, a concentration below the LOAEL was chosen (7 μM) for immunohistochemistry and S-glutathionylation. Embryos were imaged via epifluorescence microscopy studies, the Nrf2a protein in the body tissue was decreased with DMF only when exposed at the hatching stage, while total protein S-glutathionylation was modulated by Nrf2a activity and DMF during the pharyngula and protruding-mouth stage. The pancreatic islet and liver were further analyzed via confocal microscopy. Pancreatic islets and liver also had tissue specific differences with Nrf2a protein expression and protein S-glutathionylation. This work demonstrates how critical windows of exposure and Nrf2a activity may influence toxicity of DMF and highlights tissue-specific changes in Nrf2a protein levels and S-glutathionylation in pancreatic islet and liver during embryonic development.
Collapse
Affiliation(s)
- Emily S Marques
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Emily G Severance
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Bellis Min
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Paige Arsenault
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
7
|
Chen K, Guo W, Li R, Han Y, Gao Q, Wang S. Demethylzeylasteral attenuates hepatic stellate cell activation and liver fibrosis by inhibiting AGAP2 mediated signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154349. [PMID: 35905567 DOI: 10.1016/j.phymed.2022.154349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Liver fibrosis is a common cause of chronic liver disease. If left untreated, it can ultimately develop into liver cirrhosis or hepatocellular carcinoma. However, a direct antifibrotic therapy is currently unavailable. A re-examination of existing chemicals might be a potential strategy for finding more lead compounds against liver fibrosis. Demethylzeylasteral (T-96), a naturally occurring bioactive compound found in Tripterygium wilfordii Hook. f. (TwHf) possesses multiple pharmacological properties. However, its antifibrotic potential has not yet been fully evaluated. PURPOSE This study aimed to investigate the antifibrotic properties of T-96 and its underlying molecular mechanisms. METHODS The antifibrotic properties of T-96 were investigated in three types of hepatic stellate cells (HSCs) and in a CCl4-induced liver fibrosis mouse model. The effect of T-96 on the proliferation, migration, and activation of HSCs was detected using CCK-8 and scratch/wound healing assays. Hepatic inflammation and fibrosis were evaluated by H&E, Masson's trichrome stain, and Sirius Red staining. The expression of inflammatory and fibrogenic genes was detected by quantitative real-time PCR (qRT-PCR) and western blotting. RNA sequencing (RNA-seq) was performed to explore the potential molecular mechanisms mediating the antifibrotic effect of T-96, which was verified by dual-luciferase reporter assay, qRT-PCR, western blotting, immunofluorescence, and immunoprecipitation analysis. RESULTS The T-96 treatment significantly suppressed the proliferation, migration, and activation of HSCs in vitro. The administration of T-96 attenuated hepatic injury, inflammation, and fibrosis progression in mice with CCl4-induced liver fibrosis. In addition, the RNA-seq of fibrotic liver tissues and subsequent functional verification indicated that the key mechanisms of the antifibrotic effect of T-96 were mediated by suppressing the expression of AGAP2 (Arf GAP with GTPase-like domain, ankyrin repeat and PH domain 2), inhibiting the subsequent phosphorylation of focal adhesion kinase (FAK) and protein kinase B (AKT), and finally reducing the expression of fibrosis-related genes. CONCLUSION Our results provide the first insight that T-96 exerts potent antifibrotic effects both in vitro and in vivo by inhibiting the AGAP2 mediated FAK/AKT signaling axis, and that T-96 may serve as a potential therapeutic candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ke Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Weiran Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Rongxin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yueqing Han
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Qi Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shuzhen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Lu R, Wang X, Zhao W, Wang P, Zhao S, Zhao X, Wang D. Comparative transcriptome and proteome profiles reveal the regulation mechanism of low temperature on garlic greening. Food Res Int 2022; 161:111823. [DOI: 10.1016/j.foodres.2022.111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
|
9
|
Ni J, Zhu P, Mo Q, Luo W, Du Z, Jiang J, Yang S, Zhao L, Gong Q, Wang Y. Dynamic Transcriptomic Profiling During Liver Development in Schizothorax Prenanti. Front Physiol 2022; 13:928858. [PMID: 35899028 PMCID: PMC9309550 DOI: 10.3389/fphys.2022.928858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Liver is an important organ for glucose and lipid metabolism, immunity, and detoxification in fish. However, the gene regulatory network of postnatal liver development still remains unknown in teleost fish. In this study, we performed transcriptome analysis on the liver of S. prenanti at three stages. A total of 1692 differentially expressed genes (DGEs) were identified across three liver developmental stages. The oil red O staining and PAS staining revealed that the lipid content of liver was increased and the glycogen content of liver was decreased during liver development. The fatty acids biosynthesis related genes were upregulated in adult and young stages compared with juvenile stage, while lipid degradation related genes were downregulated. The genes related to glycolysis, gluconeogenesis and glycogenolysis were upregulated in juvenile or young stages compared with adult stage. Further pathway analysis indicated that the CYP450 pathway, cell cycle and amino acid metabolic pathway were induced in the process of liver maturation. Our study presents the gene expression pattern in different liver development stages of S. prenanti and may guide future studies on metabolism of S. prenanti liver.
Collapse
Affiliation(s)
- Jiahui Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Peng Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qilang Mo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Quan Gong
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yan Wang,
| |
Collapse
|
10
|
ZHANG JM, LIANG S, NIE P, LIAO Y, AI Q, YAN X, LIU H, JI Y, ZENG Z. Efficacy of Kushen decoction on high-fat-diet-induced hyperlipidemia in rats. J TRADIT CHIN MED 2022; 42:364-371. [PMID: 35610005 PMCID: PMC9924673 DOI: 10.19852/j.cnki.jtcm.20220225.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To investigate the efficacy and underlying mechanisms of action of Kushen decoction on high-fat-diet-induced hyperlipidemia in rats using RNA-seq technology. METHODS The efficacy of a Kushen decoction, at a concentration of 1 mL/g of crude medicine prepared according to the method commonly used in clinical practice, was investigated on 24 specific pathogen-free male Sprague-Dawley rats. Liver tissues were compared using RNA-Seq technology. The differentially expressed genes were further investigated by real-time fluorescent quantitative polymerase chain reaction (qPCR and Western blot (WB). RESULTS Serum triglycerides (TG), liver low-density lipoprotein cholesterol (LDL-C), body weight, body length, and Lee's index were significantly increased in the untreated hyperlipidemia-induced group (model) compared with the control group, whereas liver high-density lipoprotein cholesterol (HDL-C) was significantly decreased. Serum TG, liver LDL-C, bodyweight, and Lee's index were decreased in the high-dose Kushen decoction group (HDKS) compared with the model group, whereas liver HDL-C was significantly increased. Similarly, liver TG tended to decline in the HDKS group. Comparison of the gene expression profiles in the livers from different groups indicated that the Kushen decoction significantly affected metabolic pathways, PPAR signalling pathway, and circadian rhythm ( ≤ 0.05), with the genes ARNTL, PER3, and CLOCK being differentially expressed. qPCR and WB analysis confirmed the differential expression of the genes discovered by transcriptomics analysis. CONCLUSION The Kushen decoction may achieve a lipid-lowering effect on hyperlipidemic rats by regulating metabolic pathways and the circadian rhythm pathway and in particular, their related genes ARNTL, PER3, and CLOCK.
Collapse
Affiliation(s)
- Jiri Mutu ZHANG
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
- 2 Mongolian Medical College, Inner Mongolia Minzu Uaniversity, Tongliao 028000, China
| | - Shilong LIANG
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Peng NIE
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Yong’an LIAO
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Qinying AI
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Xiaojun YAN
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Hongning LIU
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Yanhua JI
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
- JI Yanhua and ZENG Zhijun, Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China. and
| | - Zhijun ZENG
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
- JI Yanhua and ZENG Zhijun, Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China. and
| |
Collapse
|
11
|
Gu YF, Chen YP, Jin R, Wang C, Wen C, Zhou YM. Age-related changes in liver metabolism and antioxidant capacity of laying hens. Poult Sci 2021; 100:101478. [PMID: 34695635 PMCID: PMC8554276 DOI: 10.1016/j.psj.2021.101478] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the age-related changes of hepatic metabolism and antioxidant capacity of laying hens at 3 different ages. A total of 192 Hy-line Brown laying hens were assigned into 3 groups: 1) 195-day-old (D195 group); 2) 340-day-old (D340 group); 3) 525-day-old (D525 group). Each group replicated 8 times with 8 hens at the same age. Higher activity of aspartate aminotransferase and lower contents of total protein and globulin were observed in the serum of 525-day-old hens in comparison with their 195-day-old counterparts (P < 0.05). The 525-day-old hens accumulated higher contents of total cholesterol and triglyceride in the liver than 195-day-old birds. Additionally, compared with hens from D195 or D340 group, 525-day-old birds exhibited a lower circulating estradiol level (P < 0.05). For antioxidant capacity, birds in the D525 group showed a higher malondialdehyde concentration in both serum and liver as compared with D195 or D340 group (P < 0.05). The 525-day-old hens also exhibited lower glutathione peroxidase activities in both serum and liver when compared with 195-day-old birds (P < 0.05). Simultaneously, there was a decline of hepatic superoxide dismutase activity in the D525 group in comparison with D195 group (P < 0.05). Compared with 195-day-old counterparts, 340-day-old birds upregulated the mRNA abundance of nuclear factor erythroid-2 related factor 2 and glutathione peroxidase 1 in the liver (P < 0.05). In contrast, hens from D525 group showed the downregulation of hepatic nuclear factor erythroid-2 related factor 2, NAD(P)H quinone dehydrogenase 1, and superoxide dismutase 1 when compared with D340 group (P < 0.05). These results indicated that increasing age can adversely affect liver metabolism and function of laying hens.
Collapse
Affiliation(s)
- Y F Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - R Jin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - C Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - C Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
12
|
Sarantopoulou D, Brooks TG, Nayak S, Mrčela A, Lahens NF, Grant GR. Comparative evaluation of full-length isoform quantification from RNA-Seq. BMC Bioinformatics 2021; 22:266. [PMID: 34034652 PMCID: PMC8145802 DOI: 10.1186/s12859-021-04198-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 05/16/2021] [Indexed: 11/18/2022] Open
Abstract
Background Full-length isoform quantification from RNA-Seq is a key goal in transcriptomics analyses and has been an area of active development since the beginning. The fundamental difficulty stems from the fact that RNA transcripts are long, while RNA-Seq reads are short. Results Here we use simulated benchmarking data that reflects many properties of real data, including polymorphisms, intron signal and non-uniform coverage, allowing for systematic comparative analyses of isoform quantification accuracy and its impact on differential expression analysis. Genome, transcriptome and pseudo alignment-based methods are included; and a simple approach is included as a baseline control. Conclusions Salmon, kallisto, RSEM, and Cufflinks exhibit the highest accuracy on idealized data, while on more realistic data they do not perform dramatically better than the simple approach. We determine the structural parameters with the greatest impact on quantification accuracy to be length and sequence compression complexity and not so much the number of isoforms. The effect of incomplete annotation on performance is also investigated. Overall, the tested methods show sufficient divergence from the truth to suggest that full-length isoform quantification and isoform level DE should still be employed selectively. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04198-1.
Collapse
Affiliation(s)
- Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Thomas G Brooks
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Soumyashant Nayak
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Antonijo Mrčela
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Liu J, Cui JY, Lu YF, Corton JC, Klaassen CD. Sex-, Age-, and Race/Ethnicity-Dependent Variations in Drug-Processing and NRF2-Regulated Genes in Human Livers. Drug Metab Dispos 2021; 49:111-119. [PMID: 33162398 PMCID: PMC7804821 DOI: 10.1124/dmd.120.000181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Individual variations in xenobiotic metabolism affect the sensitivity to diseases. In this study, the impacts of sex, age, and race/ethnicity on drug-processing genes and nuclear factor erythroid 2-related factor 2 (NRF2) genes in human livers were examined via QuantiGene multiplex suspension array (226 samples) and quantitative polymerase chain reaction (qPCR) (247 samples) to profile the expression of nuclear receptors, cytochrome P450s, conjugation enzymes, transporters, bile acid metabolism, and NRF2-regulated genes. Sex differences were found in expression of about half of the genes, but in general the differences were not large. For example, females had higher transcript levels of catalase, glutamate-cysteine ligase catalytic subunit (GCLC), heme oxygenase 1 (HO-1), Kelch-like ECH-associated protein 1 (KEAP1), superoxide dismutase 1, and thioredoxin reductase-1 compared with males via qPCR. There were no apparent differences due to age, except children had higher glutamate-cysteine ligase modifier subunit (GCLM) and elderly had higher multidrug resistance protein 3. African Americans had lower expression of farnesoid X receptor (FXR) but higher expression of HO-1, Caucasians had higher expression of organic anion transporter 2, and Hispanics had higher expression of FXR, SULT2A1, small heterodimer partner, and bile salt export pump. An examination of 34 diseased and control human liver samples showed that compared with disease-free livers, fibrotic livers had higher NAD(P)H-quinone oxidoreductase 1 (NQO1), GCLC, GCLM, and NRF2; hepatocellular carcinoma had higher transcript levels of NQO1 and KEAP1; and steatotic livers had lower GCLC, GCLM, and HO-1 expression. In summary, in drug-processing gene and NRF2 genes, sex differences were the major findings, and there were no apparent age differences, and race/ethnicity differences occurred for a few genes. These descriptive findings could add to our understanding of the sex-, age-, and race/ethnicity-dependent differences in drug-processing genes as well as NRF2 genes in normal and diseased human livers. SIGNIFICANCE STATEMENT: In human liver drug-processing and nuclear factor erythroid 2-related factor 2 genes, sex differences were the main finding. There were no apparent differences due to age, except children had higher glutamate-cysteine ligase modifier subunit, and elderly had higher multidrug resistance protein 3. African Americans had lower expression of farnesoid X receptor (FXR) but higher expression of heme oxygenase 1, Caucasians had higher expression of organic anion transporter 2, and Hispanics had higher expression of FXR, small heterodimer partner, SULT2A1, and bile salt export pump.
Collapse
Affiliation(s)
- Jie Liu
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - Julia Yue Cui
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - Yuan-Fu Lu
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - J Christopher Corton
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - Curtis D Klaassen
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| |
Collapse
|
14
|
Shan Q, Chen N, Liu W, Qu F, Chen A. Exposure to 2,3,3',4,4',5-hexachlorobiphenyl promotes nonalcoholic fatty liver disease development in C57BL/6 mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114563. [PMID: 32304952 DOI: 10.1016/j.envpol.2020.114563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Previous in vitro studies have indicated that 2,3,3',4,4',5-hexachlorobiphenyl (PCB 156) may be a new contributor to metabolic disruption and may further cause the occurrence of nonalcoholic fatty liver disease (NAFLD). However, no study has clarified the specific contributions of PCB 156 to NAFLD progression by constructing an in vivo model. Herein, we evaluated the effects of PCB 156 treatment (55 mg/kg, i.p.) on the livers of C57BL/6 mice fed a control diet (CD) or a high-fat diet (HFD). The results showed that PCB 156 administration increased intra-abdominal fat mass, hepatic lipid levels and dyslipidemia in the CD-fed group and aggravated NAFLD in HFD-fed group. By using transcriptomics studies and biological methods, we found that the genes expression involved in lipid metabolism pathways, such as lipogenesis, lipid accumulation and lipid β-oxidation, was greatly altered in liver tissues exposed to PCB 156. In addition, the cytochrome P450 pathway, peroxisome proliferator-activated receptors (PPARs) and the glutathione metabolism pathway were significantly activated following exposure to PCB 156. Furthermore, PCB 156 exposure increased serum transaminase levels and lipid peroxidation, and the redox-related genes were significantly dysregulated in liver tissue. In conclusion, our data suggested that PCB 156 could promote NAFLD development by altering the expression of genes related to lipid metabolism and inducing oxidative stress.
Collapse
Affiliation(s)
- Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China; State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
15
|
Zhang DI, Li C, Shi R, Zhao F, Yang Z. Lactobacillus fermentum JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity. Pol J Microbiol 2020; 69:205-215. [PMID: 32548989 PMCID: PMC7324864 DOI: 10.33073/pjm-2020-024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress-induced series of related degenerative diseases have received widespread attention. To screen new lactic acid bacteria (LAB) strains to resist oxidative stress, traditional Chinese fermented vegetables were used as a resource library to screen of LAB. The Lactobacillus fermentum JX306 strain, which showed high scavenging activity of DPPH free radical and hydrogen radical, and a strong lipid peroxidation inhibition rate in vitro was selected. L. fermentum JX306 was also examined for its antioxidant capacity in D-galactose-induced aging mice. The results showed that L. fermentum JX306 could significantly decrease malondialdehyde (MDA) levels and improve the activity of glutathione peroxidase (GSH-Px), and total antioxygenic capacity (TOC) in the serum, kidney, and liver. Meanwhile, the strain could remarkably upregulate the transcriptional level of the antioxidant-related enzyme genes, such as peroxiredoxin1 (Prdx1), glutathione reductase (Gsr), glutathione peroxidase (Gpx1), and thioredoxin reductase (TR3) encoding genes in the liver. Besides, histopathological observation proves that this probiotic strain could effectively inhibit oxidative damage to the liver and kidney in aging mice. Therefore, this unique antioxidant strain may have a high application value in the functional food industry and medicine industry.
Collapse
Affiliation(s)
- D I Zhang
- Department of Microbiology , College of Life Science , Key Laboratory for Agriculture Microbiology , Shandong Agricultural University , Taian , China
| | - Chuang Li
- Department of Microbiology , College of Life Science , Key Laboratory for Agriculture Microbiology , Shandong Agricultural University , Taian , China
| | - Ruirui Shi
- Department of Microbiology , College of Life Science , Key Laboratory for Agriculture Microbiology , Shandong Agricultural University , Taian , China
| | - Fengchun Zhao
- Department of Microbiology , College of Life Science , Key Laboratory for Agriculture Microbiology , Shandong Agricultural University , Taian , China
| | - Zhengyou Yang
- Department of Microbiology , College of Life Science , Key Laboratory for Agriculture Microbiology , Shandong Agricultural University , Taian , China
| |
Collapse
|